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OF DISTRIBUTIONS
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Summary. The aim of this paper is to derive by elementary means a theorem on the representa-
tion of certain distributions in the form of a Fourier integral. The approach chosen was found
suitable especially for students of post-graduate courses at technical universities, where it is in
some situations necessary to restrict a little the extent of the mathematical theory when con-
centrating on a technical problem.
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We shall deal with distributions introduced by Mikusinski — Sikorski (see [1]).
By the symbol f®)(¢) (or f'(t) for k = 1) we will denote the derivative of the k-th
order of a distribution f (¢) in the distributive sense, whereas the symbol d* f(r)/d¢*
will represent the derivative of the k-th order of a functlon f(¢) in the usual sense.
In this connection see Theorem 6.5 in [1].

1. Theorem. Let a distribution f(t) be defined on the set E, = (—o0, o) and let
x, y € E,. Further, let f,() be an indefinite integral of the distribution f(t) . cos yt,

and let fz(t) be an indefinite integral of the distribution f(t). sin yt. Then the
distribution

(1.1) a(t) = [ 08 yx:l St + x) + [Sin yx] St + x)

—sin yx cos yx

cos yt
is an indefinite integral of the distribution f(t + x) [sin it] .

Proof. A simple calculation yields
[cos yx . fi(t + x) + sin yx . f5(t + x)]" = cos yx . fi(t + x) +
+ sin yx . f5(t + x) = cos yx . {f(t + x) . cos y(t + x)} +
+ sin yx . {f(t + x).sin p(t + x)} = f(t + x).cos[yx — y(t + x)] =
= f(t + x) . cos yt.

In the second case the proof may be carried out analogously.
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2. Obviously the distribution -

SN = cos yx sin yx
a(t) = a(t — x) |:—sin yx] NAGES [cos yx] (1)
generated with the aid of distribution (1.1) is an indefinite integral of the distribution

cos y(t — x) . ‘
(0 [sin Wit — x)] . If the values f,(4 o), f,(+ o) exist, then the values

(2.1) a(+0) = a(+00) = [ cos y"] i) + [Si“ y"] Sr(+ )

—sin yx cos yx
exist as well.

3. Theorem. Let the assumptions of Theorem 1 be satisfied. Further, let the values
fi(£ ), f,(£ ) exist. Then

(3.1) 120 f(t + x) [°°S y"] dx = =, f(x) [°°S yx - ’)] dx .

sin yx sin y(x — 1)

Proof. Equality (3.1) follows directly from Theorem 1 and formula (2.1):

o e+ )| o e 85 = o) = a(—c0) = () - (o) -

sin yx
- o[ 0 Z s

4. If the assumptions of Theorem 3 are satisfied, then for any integer k we have
by (3.1)

- cos (yx + _Ig_r) )
(4.1) J'_wf(t + x) . <yx . %) dx =
e e {y(x —0+ 52’-‘}
- j_wf(x) sin {y(x -1+ I—ZE} a

Let f(t) be a distribution with the domain E,, let x, y € E,. Further, let f;(t), f(¢) be
distributions from Theorem 1. For any integer k = 1 we then have

k) k [k . (i)
CEIR U st R T et B

cirn
cos (yt + ——)
(G| V2

sin yt+£7E ’
2

i
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(k=1)
cos yt]} = a®(t) [see (1.1)] is an indefinite in-

i.e. the distribution {f(t + x)[ )
sin yt
tegral of the distribution on the left-hand side of equality (4.2). If the values

f1(£00), f,(4 o0) exist, then the values a(+ o0) also exist (cf. Sect. 2). By Theorem
18.3 (see [1]) we then have a®)(+ o0) = 0. This proves that we have

Ccos (yx + E)

2

. dx =0.
sin | yx + T

2

5. Theorem. Let k = O be an integer. Further, let the assumptions of Theorem 3

[ 15 s

(4.3)

cos <yx + EE)
2 dx .

sin [ yx + i
2

be fulfilled. Then
(5.1) cos yx]

J’G_o f(k)(t +x) [sin yx

= (-1 ykjfwf(t + x)

Proof. For k = 0, (5.1) is obvious. Let k = 1, and let j equal one of the numbers

0,1,....k — 1. Wehave
CcoS (yx + ! ;] n)

. ( i+j)
sin {yx + —m

T . in . jm
— —sin| yx + —}.sn —
2 ( 2) 2

B . in in j
sin <yx + —) . Cos— + cos (yx + E) . sIn —
* This yields -
+ cos (yx + Pr) ﬂ:>W
2 ;
) L for j even,
cos yx+-llt + sin yx+l+]7r
2 B 2 J
(5.2) = .
sin (yx + %) + sin <yx + l—~2-—] 1r>T
T for j odd.
L+ cos(yx + ! ;] n)
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If the number k is replaced by k — j in relation (4.3), then

. P+
S _ cos|yx + —=n
Lk =T p-i-n 2 -
(5.3) y ; f (t+ x) dx =0.
0

el L Sin (yx “+ E_-'-__‘! n)
2
. . . [k . k\(k—j
Multiply equality (5.3) by the number (— 1)/ y’ i and substitute. i ; =
k
= i+ it
(i + j) (i + j)!/i!j!. Then

—w |i=0 ilj!

cos (yx + ! _2*.‘/ n)
dx

sin ( yx + : +]7r
2

Forj=0,1,...,k — 1, we obtain from (5.4) k equations and their addition yields

(54) J‘w kij(—l)i yi+j< k )Mf(k—mm (t+x).

o |i=0i=0 +J ilj!
(yx -1 )
. dx =0.

. i+j
sin | yx + —
(= 577)

The sum under the integral sign in equality (5.5) is denoted by the symbol B. In the
sum B we collect into one term all terms for which the expression i + j is constant.
Then X

B= Y yf+f(i fj)(i +EED 1 4 x).

) (=1

(5:9) | r kil kij(—l)j y”"<i ¢ )M FEGED(1 4 ). |

i+

Ji*k

2
* . . * -' " *
sin | yx + L 1 B
2
For i + j = 0 there exists only one possibility: i = j = 0, i.e.

(5.6) B = f®(t + x) [COS yx] + B,

cos (yx +

sin yx
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° . . * -' a' *
sin { yx + s Sk
2
Puti + j = s(1 < s < k) and consider the sum

(5.8) Z ( 1) i (_l)j

i+j=s l'_]' j= 0]!(S‘j)'
Since 1[j! (s — j)! = (j)/s' it follows that

69 3 G- new ()= g0 or=o.

itj=s l‘_]‘ S’j—
For s = k it follows from (5.8) that

s x CF-ryen()--5F

i+j=k 1.]: k'] 0 k!
j¥

By (5.9) and (5.10), (5.7) acquires the form

cosfyx + —
(5.11) B = —(=1)*yf(r + x) ( 2)

. km
sin | yx + —
2

(512) B =f®(t + x) [“F’S y"] — (=1 YAt + X)

Substituting (5.11) into (5.6) we get

cos | yx + E
2

sin yx . < kn®
sin { yx + —2—)

If the sum B in the integral (5.5) is replaced by (5.12), then

(5.13) f : 791 + x) [cf’s y"] — (=D A1+ X).

sin yx

(=+3)
cos | yx + —2~
. dx=0.
sin { yx + E
2
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After adding the integral

kr
" cos (yx + —2—)
J‘ (=% y*f(t + x) dx
) . km
sin (yx + 7)

to both sides of (5.13) we obtain formula (5.1). This proves the theorem.

6. Theorem. Let k = O be an integer. Further, let the assumptions of Theorem 3
be fulfilled. Then

(6.1) (f £t + x )[Sf’ns ifc] ) f 7O+ )[:f: ii]

Proof. In equality (6.1) the index ¢ indicates that the derivative of the k-th order
is understood in the distributive sense of the integral [see (2.1)]

(= f(t + %) [°.°S y"] dx =

sin yx

_ CoS Y| o sin yt| .o .
= [—sin yt:| 2 f(x) cos yx dx + [cos yt] - J2 o f(x) sin yx dx ,

which is an indefinitely continuously differentiable function of the variable t € E;.
Integral (6.2) can be viewed as a distribution with the domain E,. By (6.2) we have

x)
© COS yXx o
(wa(t +x) [sin yx] dx)t =
_ cos yt © .
—<|:—sin ytil'.“—wf(x)COSyxdx? +
sin yt - ) o) B
" [COS yt] - [2 f(x) sin yx dx)t =
i < kn)
cos | yt + ?
: jofoof(x) Ccos yx dx +
—sin{ yt + Iﬁ
L 2
~sin yt + EE)
k 2
cos [ yt + E
L 2

=

2 f(x) sin yx dx .
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Hence it follows that

I (R R

t

kn . km\ .
cos yt+—£- . COS yx + sin yt+—2— . sin yx
= ykjufwf(x)

dx =
. kn kn .
—sin{ yt.+ ——2— . Cos yx + cos| yt + —2— . SIn yx

kn
cos y(t — x) + 5

= 7 A e
—sin y(t — x) + _ZE

Since

cor {1 =9+ 4] - (- tpeon - + 2],

2
sin {30 = 9 + 7 = (= sin oo — 0+ a
it is possible to express (6.3) in the form

o (el

cos {y(x — 1)+ %n}
sin {y(x — 1)+ %7—:}

From equality (6.4) it follows by (4.1) and (5.1) that (6.1) is true.

= (=) y* 2 f(x) dx.

7. Let the assumptions of Theorem 1 be satisfied. If we put
_ | sin yx —COS yx
(7.1) b(t) = [cos yx] St + x) + [ in yx] St + x),
then we find by a simple calculation that
" —sin yt
(7.2) b'(1) = f(t + x)[ cos yt] .
Hence the distribution b(z) is an indefinite integral of the distribution f(f + x)

[“zlons i 5 . Further, the distribution 5(f) = b(t — x) is an indefinite integral of

the distribution f(t)[ _Zlons ;)E: ___ 3:’ . If the values f,(+ 60), f2(£0) exist, then
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the values

(1.3) B(+00) = b(+o0) = [Si“ y"] i) + ["".’S y"] fa(+0)

cos yx sin yx
exist as well.
8. Let k = 0 be an integer. We shall prove that the relation

0 e[ = S () e o)

is valid.

Equality (8.1) holds for k = 0. Assume that (8.1) holds for a certain integer k = 0.
We shall prove that (8.1) holds also for the number k + 1. By (8.1) we have

(63 e+ [ y‘] = (f)¥(1 + %) [ ﬂ] _

sin yt sin yt

=S (Ol nlresof

Further we have

() (i+
63 [ ]res = {50 e of <[ e,

Substituting (8.3) into (8.2) we obtain

v ] -

sin yt

K\ ([cos® yt] (k+1-i)
T t —
i) { sin® yt | St + x)

K\ ([cost* P pt k=0
o e

-cos(“) yt | 1+ %) @h1=p
| sin® yt |

(i E 1) {[:,(:0) yt]f(t + x)}("ﬂ—i) _

cos yt]f(t N x)](k+1) N

sin yt

(i{) {[Sm(” yt]f(t + x)}(k+1+,‘) )
( >{[§fns") yt]f(t + x)}("”—i) .
[COS

Sin®+D yt] f(t+ x) =

Il
M=
—~

|

—
~
/N

0

|
UR

i
°

Il

I
M=
—_

|

—

~
—
.~ w‘
——
—A—

= -
+
- O

|
—_
|
f—
~
I
-

TI.

Il
uMw ||M*' ".:_":‘..1

)z
+ ( 1)k+1
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f] . k /K
e e gioo]()
k @ (k+1-i)

SO0 et L

o [cos® D pt
+ (—1)kt e yt]f(t +x) =

el o
" é’t(_ 1) (k >{[Smm yt]/(t ! X)}(Hl—i) "

b (=1 [( y‘]f(r +x) =

| —

sin

_kil(_ 1)’ {[Sm(,) yt] f(t + x)}("ﬂ b

This yields that formula (8.1) is also valid for the number k + 1.

9. Let k = 0 be an integer, and the assumptions of Theorem 3 be satisfied. By
(8.1) we have

1 O+ [:ﬁj fﬂ - i(—nf(i‘) {[sm"’ y’] £t + x)} “

i=0
in (k—1i)
' o, cos (yt + -E)
=.Zyi(‘1)'(-)< LA+ x) -
-
2
- ik cos yt in
=iz=:0y (-1 (z> {f(t + x) [sin yt] cosz +
+ f(r + x)[—zi;ls ij;] sin i—:z—n}(k—l).

Since a'(7) = f(t + )[cos Y t] (see Theorem 1) and (7.2) holds, (9.1) can be written

in the form

(9:2) F9(t + x) [c_os y t] -

sin yt

- 20 () {roes T b(t)sm_;}"‘ "

{
[kz (") {a(t) cos ™ 4+ (1) sin 5}( ’] — ().
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Relation (9.2) implies that the distribution c(¢) is an indefinite integral of the distribu-
tion f®(t + x) [cos i t:I Then the distribution

09 0 =ti=0 =30} faes - sysn 5

(cf. Sect. 2 and 7) is an indefinite integral of the distribution f®)(r) z:)ns i g B 23]
Since the values f,( 4 o), f,( & 00) exist, it follows from (9.3), (2.1), (7.3) and Theorem
18.3 (see [ 1]) that the values

(9-4) &E ) = (£ o) = y*(—1)* {a(-_i— ) cos %—E + b(+00)sin l—czlt}

exist as well.

10. Theorem. Let k = O be an integer. Further, let the assumptions of Theorem 3
be fulfilled. Then

(10.1) [= £t + )[cos yx] % = 2. O (x) [cos y(x t)]

sin yx sin y(x — t)

Proof. Formula (10.1) holds for k = 0 [see (3.1)]. For an integer k = 1 we have,
by Sect. 9 and formula (9.4),

[20 SOt + x) [ y"] dx = o) — (=) = &(00) — &(~c0) =

sin yx
= [ fO(x) [;ons ’ g‘c g] dx .

11. Equality (5.1) easily follows from relation (9.4) [see (2.1), (7.3) and (4.1)]:

f2a 10004 3) [ S = (o) = (=) =

sin yx
= (—1)y* {cos ke [ o8 ytj] {2 f(x) cos yx dx +
2 | —sin yt
+ cos— | 1™ yt] {20 f(x) sin yx dx +
| cos yt

+ sin K | Sin ¥t ® o f(x) cos yx dx +

2 | cos yt
+ sin X% —eos ¥ §20 f(x) sin yx dx =

2 sin yt i
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cos y(x — t). cos k?n —siny(x — 1). sin 2

= (= D* Y2, £ (%) 2 dx

sin y(x —¢). cosl—? + cos y(x — 1). sin%

knl
cos y(x — 1) + 5
= ("l)kyk,fu—owf(x) dx =
. kn
sin y(x — 1) + 5

kn
cos (yx + 7)
= (=) Y2, f(t + x) dx

sin | yx + kn
2

The following theorem is a direct consequence of Theorems 6 and 10.

12. Theorem. Let f(t) be a distribution with the domain E, and let y € E,. Let
f1(*) be an indefinite integral of the distribution f(t)cos yt, and let f,(t) be an

indefinite integral of f(t)sin yt. Let the values fy(+ ), f,(£ o) exist. Then for
every integer k = 0 we have

(12.1) ( 2. 109 [cos y(x - t)] dx)i") () [cos y(x = t)] dx .

sin y(x — ¢) sin y(x — f)

13. Example. Let us consider Dirac’s §(t) “function”. It is a distribution with the
domain E;. For any number y e E; we have: §(¢) cos yt = §(t) cos 0 = &(1), &(t) .
.sin yt = §(t) sin 0 = 0 (the zero distribution). Let

1 for t=0
D HO={y o 120
(Heaviside’s function). Further, let m(t) = m € E, be a constant function with the
domain E,. If we put f,(f) = H(t), then f,(¢) is an indefinite integral of the distribution
(t) cos yt. If we put f,(t) = m(t), then f;(t) = 0 = &(t) sin yt, i.e. the distribution
f>(t) is an indefinite integral of the (zero) distribution &(¢) sin yz. The values f;(c0) =

=1, fi(= o) = 0, fo(+0) = m exist. Since all assumptions of Theorem 12 are
satisfied, (12.1) yields

EREC ot {5 AT EREE] et
14. Let f(t) € L(— o, ). Then

(141)  Fyt) = }t [4(12. £(x) cos y(x — f) dx) dy
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is a convergent Lebesgue integral. By the symbol 4 we understand a continuous
variable which assumes positive and finite values.
The following two theorems are true.

15. Theorem. Let k = 0 be an integer, f(t) € L(— o0, ). Then for every number
te E, the integral

(151)  *F (1) = (—i;_l)k_[: (.[:f(x) W cos [y(x . 52’5] dx) dy

converges as the Lebesgue integral.
Proof. For k = 0 we have °F,(t) = F,(¢) [see (14.1)]. Since the estimate

IfxsE, fx) y* COS[J’(‘C -1+ ] dxdy =<
ye<0,4>

Ak+1
£ — x)| dx < oo

holds, the theorem is proved.

The proof of the following theorem is given for the reader, who does not know
the Lebesgue’s theorem on the derivative of the integral with respect to the parameter
(for the unbounded domain of interation); in the oposite, reader can prove this
theorem by a simple derivative of the integral (14.1) after integral sign with respect to t.

16. Theorem. Let f(t) € L(— 0, o0). Then for any integer k = 1 the derivative
of the k-th order of the function (14.1) exists at any point t € E; and we have

61 LG =E0

[ef. (15.1)].

Proof. By the symbol V(k) we denote the following assertion (which depends
on the integer k = 1): At any point ¢ € E, the derivative d* F ,(f)/df* = *F () exists.
Let us consider the function

(16.2) I(y, 1) = [*, f(x)cos y(x — 1) dx =
= cos yt. (2, f(x)cos yx dx + sin yt. [*  f(x) sin yx dx

of the variables y, t € E;. A simple calculation yields

(16.3) ——I(y, =y cos(yt ; ) .[ £(x) cos yx dx + y sm(yt n "2)
.J._wf(x) sin yx dx =j_wf(x) W cos[y(x —h - _2_] dx =
_ (—l)kffwf(x) r cos[y(x —+ -’22’-‘] dx

216



We know (see Theorem 15 for k = 0) that for every number t € E, the integral
F4(t) = (1/x) {4 1(y, t) dy is a convergent Lebesgue integral. Further, for any number
1€ E; we have [see (16.3) for k = 1]

(164 %Wﬂgwﬁmewﬂm

where f(y) is a continuous and bounded function on the interval {0, 4), thus inte-

grable over this interval. A familiar theorem from theory of integral implies [see
(16.3), (15.1) for k = 1] that

d 1(*o
16.5 — F,(t)=~| —I(y,t)dy =
(65) SR =1[ Siia

_ ij:( :f(x) ycos[y(x — 1)+ —;E] dx) dy = "F(1)

at every point 1 € E;. Assertion V{1) follows from (16.5).
Let us suppose that assertion V(k) holds for a certain integer k = 1:

Il

(166) L) =£0)

at any point t € E;. By Theorem 15 the integral

A

(16.7) MF (1) = i j g;kl(y, t)dy

0

[see (16.3), (15.1)] is a convergent Lebesgue integral for every number ¢ € E,. Further
[see (16.3) where the number k is replaced by k + 1], for any number ¢ € E, we have

the estimate
o [0
— | —I(y,t
ot (6:" v ))

where y* I(y) is a continuous and bounded function on 0, 4}, thus integrable over
this interval. By (16.6), (16.3), (15.1) and a familiar theorem from the theory of
integral (where the number k is replaced by k +1)

(16.8) i"FA(t)=d< A()) ey F (1) =

< 242 |f(x)] dx = Y I()

- lr 9 (ak (y, t)) dy —1r :,‘“I(y, 1) dy = *"1F (1)

), Ot

holds for the integral (16.7) at every point t € E,. The assertion V(k + 1) holds by
(16.8). Thus it is proved that the assertion ¥(k) holds for all integer k = 1.
A direct consequence of Theorem 16 is the following theorem.
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17. Theorem. Let f(t)e L(— o0, o0). The function F,(t) of the variable te E,
[see (14.1)] is infinitely continuously differentiable in the set E,.

18. Let the interval (a,b) (—oo < a < b < ) be a part of the interval («, §)
(=0 =« < B < o). Every distribution f(¢) with the domain («, §) can be inter-
preted as a distribution with the domain (a, b) (see [1], page 30). We write f(t) =
= g(t) if and only if the distributions f(¢), g(¢) are defined in the same interval and are
equal. We write f(¢) = g(¢) in the interval a < t < b if and only if the interval
(a, b) is a part of the domains of the distributions f(t), g(¢) and the “interpreted”
distributions f(t), g(t) coincide on the interval (a, b). For instance

5(1) = 0 ontheinterval —o0 <1t <0,

5(f) = 0 ontheinterval 0 <t < o0.

19. Theorem. Let f(t) € L(— o0, oo). Further, let f(t) be continuous on the interval
{a,b) (—o0 < a < b < o) and have finite variation in this interval. For the
interpreted distributions F (1) [see (14.1)], f(¢) in the interval (a, b) we then have

(19.1)  1im F(t) = £(7)
A0
in the distributive sense.

Proof. It can be proved (see [2], e.g.) that lim F(t) = f(¢) uniformly with

respect to ¢ in the interval (a, b). Then (19.1) holds in the dxstrlbutlve sense by Theorem
10.2 (see [1]).

20. Theorem. Let — oo < a < b < oo. Further let f(t)e L(a, b). Then we have
(20.1) [of(f)dt =D [bf(r)dr.
By the symbol D we indicate that the integral on the right-hand side of equality
(20.1) is to be understood in the distributive sense.

Proof. Put f(f) = 0 for t € E; — (a, b). Further let

0 for t <a (provided aeE,),
(20.2) G(t) =1 [ f(x)dx for te(a,b),
[f(x)dx for t=b.
The distribution G(¢) is an indefinite integral of the dlstrlbutlon f (t) with the domain
E,.
I. Let a € E,. The function G(¢) is locally 1ntegrable and contmuous at the points

a, b. By Theorem 16.3 (see [1]) there exist values of the distribution G(¢) at the
points a, b and they are equal to the number G(a), G(b), respectively. We have

D [t f(x)dx = G(b) — G(a) = [5f(x)dx — 0 =[5 f(x)dx.



II. Let @ = —oo. Since the distribution G(t) is a continuous function and
lim G(f) = 0 holds (in the usual sense), by Theorem 18.2 (see [1]) the value of the

E;tzbution G(t) at the point — oo exists and we have G(— o) = 0. Hence
D [; f(x) dx = G(b) — G(— ) = G(b) = [°f(x)dx.
In both cases (20.1) is true.
Similarly the following theorem holds.
*'21. Theorem. Let —o0 < a < b < . Further, let f(t) € L(a, b). Then
(ul)  [A()dt =D (.

The following theorem is proved similarly as Theorem 20 and 21.

22. Theorem. Let f(f) € L(— o0, o0). Then we have
(22.1) 2o f(t)dt =D |2, f(r)dt.

Proof. Let c e E;. We may assume that f(c) = 0. Let us consider the functions

() = {.(f)(t) for t<c,

for teE; — (—o0,¢)

and
_ [0 for teE; —(c,0),
fle) = {f(t) for t>c.

Then f(f) = f,(f) + f2(¢) holds in the set E,. To the function f1(t) we assign the func-
tion [cf. (20.2)]

mon-[LA0 1

and to the function f,(f) we assign the function

R 7 S E
Then

|Lo filx)dx — [2 fo(x)dx for t<c,
(22.4) G(t) = Gy(t) + Go(t) = <o fu(x)dx = [P fo(x)dx for t=c,
[ow f1i(x)dx — [ fo(x)dx for t>c.

The distribution G(¢) is an indefinite integral of the distribution f() with the domain
E,. By (20.1) (where we put a = — o0, b = ¢), (21.1) (where we put a = ¢, b = )
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and (22.2)—(22.4) we then have
120 f(t)dt = [, fi(t) dt + [& fo(2) dt =
=D [, fi())dt + D [2 f,(t)dt = G(c) — G{(— ) + G,(0) —
— Gy(c) = G(0) — G(—0) = D %, f(¢) dt

i.e. (22.1) holds.

23. Let f(f) € L(— o0, ). For the inner integral in relation (14.1) which is a con-
vergent Lebesgue integral, the following holds by Theorem 22: [ = D j."_"w (we
do not write out the corresponding integrands in full). Further, the outer integral
°F (t) = F(t) = (1/n) {3 in this relation is a convergent Lebesgue integral {(the
integrand is again omitted here), i.e. by Theorem 20 and 21 we have [§ = D [§.
Both the inner and outer integrals in relation (14.1) can be understood either in the
usual or in the distributive sense. The same holds for the integral *F 4(t) [see (15 1)].

The following theorem is true.

24. Theorem. Let f(t) € L(— o0, o). Further, let this function be contiruous on the
interval {a, by (—o0 < a < b < ) and have finite variation in this interval.
Let k = 0 be an arbitrary integer. For the interpreted distributions F ,(t) [see (14.1)]
and f(t) on the interval (a, b) we then have

(24.1) lim FQ(1) = 11m = j" (2 £(x) cos p(x — £) dx)® dy = f®)(t)

A—

in the distributive sense (see Sect. 23).

Proof. By Theorem 19, lim F,(t) = f(¢) holds (in the distributive sense). By
A—-

Theorem VII (see [ 1]) we then have (in the distributive sense)
(24.2) lim FP(1) = f®(1).
A= o0
By Theorem 17, the function F ,(t) is infinitely continuously differentiable on the set

E;, and by Theorem 6.5 (see [1]) we have (under the corresponding interpretations
in the interval @ < t < b)

g (f‘” f(x) cos y(x — 1) dx) = (J%,, f(x)cos y(x — t) dx){¥,

i.e. [see (24.3)]

(244)  FO@) = L [A([2. £(x) cos y(x — 1) dx)® dy .
7

Then (24.2) and (24.4) imply (24.1). The proof is complete.
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25. Let f(t) be a distribution with the domain E,. By Theorem VII (see [L]) there

exists an integer k > 0 and a function f(t) continuous in the set E, such that f(f) =
= J®(1),

26. Definition. We say that a distribution f(t) with the domain E, is an element
of a class ', if there exist an interval {a, by (—o0 < a < b < ®), an integer
k = 0 and a function f(t) continuous in the set E, with the following properties:

L f(t) = f®(@),

2. f(t) e L(— 0, 0),

3. the function f(t) has finite variation in the interval {a, b).

27. The class o is not empty. For instance, every function f(¢) continuous in the
set E,, belonging to the class L(— o0, o0) and having finite variation in an interval
{a,by (—0 < a < b < ) is, as a distribution, an element of the class . Tt is
easy to show that this class contains also some discontinuous functions, e.g.

H(t+ 1) —2H(t) + H(t — 1) for teE, [see (13.1)] belongs as a distribution
to the class .

In conclusion we prove the following theorem:

28. Theorem. Let a distribution f(t) with the domain E, be an element of the class
A (see Definition 26). For an interpreted distribution f(t) in the interval (a,b) we have

(81)  f() = lim i [ (1.0 £(x) cos y(x — 1) dx) dy

(the limit and integrals in equality (28.1) are understood in the distributive sense).

Proof. By Definition 26 there exist an interval <{a, b) (—o0 < a < b < ©),
an integer k > 0 and a function f(t) continuous in the set E, so that 1, 2 and 3 hold
true. For the interpreted distribution f(t) in the interval (a, b) we then have, by
(24.1),

(282)  JO() = lim L [4([2., 7(x) cos y(x — 1) dx)®® dy .
Ao T
Since the distribution f(¢) with the domain E, satisfies the assumptions of Theorem 12,

it follows by (12.1), property 1 from Definition 26, and (28.2) that for the interpreted
distribution f(¢) in the interval (a, b) we have

F®(t) = lim 1 [& (2 f(x) cos y(x — 1) dx){ dy =
A~ T
~ lim & fa([2, F®(x) cos y(x — 1) dx)dy =
A—-o T
—lim 1 [&([2 o f(x) cos y(x — t)dx) dy = f(t),
A-o T
i-e. (28.1) holds true.
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s Souhrn

Joser MATUSU

V préci uvaZované distribuce se chapou ve smyslu Mikusiiského-Sikorského. Pfedmétem je
tfida X distribuci f(¢) s defini€nim oborem E,, k nimZ existuje interval {a, b) (—© < a< b <
< o), celé &slo k= 0 a funkce f(#) spojita v mnozin& E, tak, Ze plati: 1. f(z) = f®)(s) (v distribu-
tivnim smyslu), 2. () € L(—o0, ), 3. f(t) ma konetnou variaci v intervalu {a, b). V praci je
dokazano, Ze pro kazdou distribuci z t¥tidy J¢°, interpretovanou v intervalu (a, b), plati reprezen-
tace Fourierovym integralem.
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