Josef Dalík
A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Persistent URL: http://dml.cz/dmlcz/104471

Terms of use:
© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A PETROV-GALERKIN APPROXIMATION
OF CONVECTION-DIFFUSION AND REACTION-DIFFUSION
PROBLEMS

JOSEF DALÍK

(Received October 26, 1988)

Summary. A general construction of test functions in the Petrov-Galerkin method is described. Using this construction, algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\varepsilon u'' + pu' + qu = f$ are presented and analyzed theoretically. The positive number ε is supposed to be much less than the discretization step and the values of $|p|, q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

Keywords: convection-diffusion problem with dominated convection, Petrov-Galerkin method.

AMS Subject Classification: 65L99, 65N99.

INTRODUCTION

Let a normed function space \mathcal{H}, a continuous bilinear form $a: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$, a continuous linear form $f: \mathcal{H} \to \mathbb{R}$ and a problem

(1)\[\text{find } u \in \mathcal{H}: \quad a(u, v) = f(v) \quad \forall v \in \mathcal{H} \]

be given. Let us choose subspaces \mathcal{V} (with a basis Φ_1, \ldots, Φ_n), \mathcal{W} (with a basis Ψ_1, \ldots, Ψ_k) in \mathcal{H} such that $n < k$, and a bilinear form $A: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$. Let a linear operator $\mathcal{L}: \mathcal{V} \to \mathcal{W}$ transform the given form a into the chosen form A in the following manner:

\[a(u, \mathcal{L}v) = A(u, v) \quad \forall u, v \in \mathcal{V}. \]

We call the problem

(2)\[\text{find } u^h \in \mathcal{V}: \quad a(u^h, \mathcal{L}v) = f(\mathcal{L}v) \quad \forall v \in \mathcal{V} \]

a (Petrov-Galerkin) \mathcal{L}-discretization of (1)\(^1\)) and the function u^h an \mathcal{L}-discrete solution of (1)\(^1\)). If we denote $u^h = u_1 \Phi_1 + \ldots + u_n \Phi_n$ then (2) can be written in

\(^1\) Or of the corresponding classically formulated problem.
the form

\[(3) \quad \text{find } u_1, \ldots, u_n; \quad \sum_{j=1}^{n} u_j a\left(\phi_j, \mathcal{L}\phi_i\right) = f(\mathcal{L}\phi_i) \quad \text{for } i = 1, \ldots, n.\]

The matrix of the system (3) will be called and \(\mathcal{L}\)-matrix of (1). In this situation the elements of \(\mathcal{V}\) and \(\mathcal{L}(\mathcal{V})\) are referred to as shape functions and test functions respectively.

Let us consider the problem

\[(4) \quad -\varepsilon u'' + pu' + qu = f \quad \text{on } (a, b), \quad u(a) = 0 = u(b),\]

where \(\varepsilon\) is a positive real number, \(p \in C^1(a, b), \quad q \in L^\infty(a, b), \quad 0 \leq q - 0.5p' \leq p\) on \((a, b)\) and \(f \in L^2(a, b)\). Using the Lax-Milgram theorem, one can see that (4) has exactly one weak solution \(u\) in \(H_0^1(a, b)\) and the supposition \(q \in L^\infty(a, b)\) implies \(u \in H^2(a, b)\). But if \(\varepsilon \ll |p|\) or \(\varepsilon \ll q\) then there usually exist some small subintervals in \((a, b)\), called boundary or internal layers, in which values of \(u\) change extremely quickly. This fact together with the use of the discretization step greater than \(\varepsilon\) are the reasons why the classical finite difference method and the Galerkin method, both having an optimal order of convergence, offer approximate solutions derailed by oscillations on the entire interval. In order to remove these oscillations, one can simply use a suitably decentralized approximation of \(u\) in the finite difference method or substitute a suitable major value for \(\varepsilon\) in the Galerkin method. Unfortunately, both these modifications reduce the order of convergence. For example, the Galerkin approximation by linear splines reduces the order of convergence from two to one in the \(L^2\)-norm and from one to zero in the \(H^1\)-norm. Several numerical methods giving nonoscillating approximate solutions of various special cases of (4) have been published. For some of them higher orders of convergence than those of the modifications have been proved. See for example [2], [8], [17] and surveys in [3], [10]. There also exist algorithms producing nonoscillating approximate solutions of the two-dimensional convection-diffusion problem with good convergence properties. See [5], [9-16], [18].

The aim of this paper is to show that the Petrov-Galerkin \(\mathcal{L}\)-discretization with a suitable bilinear form \(A\) can be successfully applied to the problem (4) and also to its two-dimensional analogue. The analyzed algorithms search for a solution in the space of linear splines on an equidistant net on \((a, b)\) in the following cases 1, 2.

1. \(q \equiv 0\). If \(p \geq 1\) on \((a, b)\) then it is proved that the \(L^2\)-norm of the error is of order 1.5 and its \(H^1\)-norm is of order 1. If one admits a first-order zero of \(p\) at one of the given nodes then the order of error decreases by 0.5 in both norms.

2. \(p \equiv 0, \quad 0 < q_0 \leq q\) on \((a, b)\) and \(q\) is uniformly continuous. The \(L^2\)-, \(H^1\)-norm of the error is of order 2, 1, respectively.

These error estimates are \(\varepsilon\)-uniform in the sense that they contain only constants independent of \(\varepsilon\). This property is shared also by the so-called local error estimates, which are of the same order as the estimates of the corresponding global errors. All approximate solutions obtained are shown not to oscillate.
In \mathbb{R}^n, the symbol $\mathbf{0}$ will be reserved for the null-vector, \mathbf{PQ} for a vector determined by an ordered pair \mathbf{P}, \mathbf{Q} of points and $|\mathbf{PQ}|$ for its Euclidean norm. Notation for function spaces on an open interval (a, b) in \mathbb{R} and in a bounded open subset Ω in \mathbb{R}^2 with a polygonal boundary Γ are used in the sense of [6]. Also the symbols (\cdot, \cdot) for the scalar product both in $L^2(a, b)$ and $L^2(\Omega)$, $\| \cdot \|$, $\| \cdot \|_{\infty}$ for the norms in $L^2(a, b)$, $L^\infty(a, b)$, respectively, and $| \cdot |_1$, $| \cdot |_2$ for the seminorms in $H^1(a, b)$, $H^2(a, b)$, respectively, are taken from [6]. By $\| \cdot \|_{\infty}$ the max-norm in \mathbb{R}^n is denoted, too. The symbol $g|_D$ stands for a restriction of a real function g from (a, b) to an interval $D \subseteq (a, b)$. If $g \in H^1(a, b)$ and E is a positive piecewise constant function on (a, b) then we put $\| g \|_{E, 1} = (Eg', g')^{1/2}$. Any generic constant in this text depends neither on ε nor on the step length.

The following problem is a weak formulation of (4).

(5) Find $u \in H^1_0(a, b)$: $\langle \alpha(u, v), v \rangle = \int_a^b (f, v) \, dv$ \quad $\forall v \in H^1_0(a, b)$. Here $\alpha(u, v) = \int_a^b (\xi'v' + pu'v + quv) \, dx$.

1.1. Definition. Let n be a positive integer, $m = n + 1$ and let $a = x_0 < x_1 < \ldots < x_m = b$, $a = x^*_0 < x^*_1 < \ldots < x^*_m = b$ be equidistant nodes with step length h, h^*, respectively. Further, let us put $x_{-1} = a - h$, $x^*_{-1} = a - h^*$, $x^*_{2m+1} = b + h^*$, $x_{m+1} = b + h$.

1.2. Definition. For each interval $D = (x_k, x_l) \subseteq (a, b)$ let us define the extension D^ε of D by $D^\varepsilon = (x_k - \varepsilon, x_l + \varepsilon) \cap (a, b)$.

1.3. Definition. Let us define scalar-valued functions

$$\phi_i(x) = \begin{cases} 1 - |x - x_i|/h & \text{for } x \in (a, b) \cap (x_{i-1}, x_{i+1}), \\ 0 & \text{for } x \in (a, b) \setminus (x_{i-1}, x_{i+1}) \end{cases}$$

$i = 0, \ldots, m$,

$$\psi_j(x) = \begin{cases} 1 - |x - x^*_j|/h^* & \text{for } x \in (a, b) \cap (x^*_{j-1}, x^*_{j+1}), \\ 0 & \text{for } x \in (a, b) \setminus (x^*_{j-1}, x^*_{j+1}) \end{cases}$$

$j = 0, \ldots, 2m$, vector-valued functions

$$\Psi_i(x) = [\psi_{2i-1}(x), \psi_{2i}(x), \psi_{2i+1}(x)]^T$$

$i = 1, \ldots, n$, and linear spaces

$$V_h(a, b) = \text{span} \{ \phi_1, \ldots, \phi_n \}, \quad V^s_h(a, b) = \text{span} \{ \psi_1, \ldots, \psi_{2n+1} \}.$$
If $L : V_h(a, b) \to V_h^*(a, b)$ is a linear operator then an \textit{L-discretization of (5)} is the problem

\begin{equation}
\text{(6) find } u^h \in V_h(a, b): \quad \alpha(u^h, Lv) = (f, Lv) \quad \forall v \in V_h(a, b).
\end{equation}

1.4. \textbf{Notation.} For every function $v \in V_h(a, b)$ we put

\[
v = \sum_{i=1}^{n} v_i \varphi_i \quad \text{and} \quad v_0 = 0 = v_m.
\]

1.5. \textbf{Lemma.} If v is an arbitrary function from $V_h(a, b)$ then the following assertions (a), (b), (c) are true.

(a) $|v_i|^2 = \frac{1}{h} \sum_{i=1}^{m} (v_i - v_{i-1})^2$.

(b) $\|v\|^2 = \frac{h}{3} \sum_{i=1}^{m} (v_{i-1}^2 + v_{i-1}v_i + v_i^2)$.

(c) $\frac{h}{6} |v_i|^2 + \frac{1}{h} \|v\|^2 = \sum_{i=1}^{n} v_i^2$.

\textbf{Proof.} The equations (a), (b) can be verified by a direct computation; (c) follows immediately by (a), (b).

1.6. \textbf{Definition.} Let Q be a constant such that $0 \leq Q \leq q - 0.5p'$ on (a, b) and let E be a positive piecewise constant function on (a, b). We define a norm

\[
[v] = (|v|_{E,1}^2 + Q\|v\|^2)^{1/2}
\]

in $\mathcal{H}_0^1(a,b)$.

1.7. \textbf{Proposition.} Let us suppose that a linear operator $L : V_h(a, b) \to V_h^*(a, b)$, real numbers k, l with the property $1 \leq k \leq l$ and parameters ε, h satisfy the following conditions.

(c1) There exist positive constants C_1, C_2 such that $\max \{\varepsilon, C_1 h^l\} \leq E \leq C_2 h^k$ on (a, b),

(c2) $[v] \leq C\alpha(v, Lv)$,

(c3) $|Lv|_1 \leq Ch^{-1/2}[v]$,

(c4) $\|Lv - v\| \leq Ch^{1-1/2}[v]$.

for all $v \in V_h(a, b)$. Then the following assertions (a1), (a2) hold for the solution u of (5), the L-discrete solution u^h of (5) and the interpolation \tilde{u} of u in $V_h(a, b)$.

(a1) $[u - \tilde{u}] \leq Ch_{min(1+k/2,2)}^{|u|_2}$.

(a2) $[u^h - \tilde{u}]^2 \leq C_1(h^{1+k/2} + \|p\|_{\infty} h^{2-l/2} + \|q\|_{\infty} h^{3-k/2})|u|_2 [u^h - \tilde{u}] + 2 C_2(\|p'\|_{\infty} + \|q\|_{\infty}) h^2 |u|_2 \|u^h - \tilde{u}\|$.
Proof. Let us put \(\eta = u - \tilde{u} \) and \(\theta = u^h - \tilde{u} \).

(i) \(h|\eta|_1 + \|\eta\| \leq Ch^2|u|_2 \) is true by [15], Theorem 3.2.1.

(ii) \(a(\theta, L\theta) = a(\eta, L\theta) \) is a consequence of the equation \(a(u - u^h, L\theta) = 0 \).

This one follows by (5) and (6).

Proof of (a1). The condition (c1) and statement (i) imply

\[
\frac{1}{h} + \frac{Ch}{2} \leq \frac{1}{h} \leq \frac{Ch}{2} + \frac{Ch}{2} \quad \text{for} \quad \eta \in L^{1/2}.
\]

Proof of (a2).

1° \(|\eta| = \frac{1}{h} + \frac{Ch}{2} \leq \frac{1}{h} \leq \frac{Ch}{2} + \frac{Ch}{2} \quad \text{by (i), (c1), (c3).} \)

2° \(|(p\eta, L\theta - \theta)| \leq C\|p\|_{\infty} h^{2-1/2}|u|_2 [\theta] \quad \text{by virtue of (i), (c4).} \)

3° \(|(p\eta, \theta)| \leq C\|p\|_{\infty} h^{2-1/2}|u|_2 [\theta] \quad \text{by (i).} \)

4° \(|(p\eta, \theta^*)| \leq C\|p\|_{\infty} h^{2-1/2}|u|_2 [\theta] \quad \text{follows by (i), (c1).} \)

5° \(|(q\eta, L\theta - \theta)| \leq C\|q\|_{\infty} h^{3-1/2}|u|_2 [\theta] \quad \text{is a consequence of (i), (c4).} \)

6° \(|(q\eta, \theta)| \leq C\|q\|_{\infty} h^2|u|_2 [\theta] \quad \text{follows immediately by (i).} \)

The conditions (c1) - (c4) and facts (ii), 1° - 6° give (a2).

Linear operators \(L \) will be always constructed so that \(\text{supp} \, Lv \subseteq \text{supp} \, v \quad \forall v \in V(a, b) \).

This condition is fulfilled if and only if \(L \) can be defined as in

\[
L \varphi_i = \varphi_i + x_i^T \Psi_i,
\]

where \(x_i = [x_{i1}, x_{i2}, x_{i3}]^T \) is a real vector for \(i = 1, \ldots, n \). Then

(a) \(|Lv|_1^2 = \frac{2}{h} \sum_{i=1}^{m} \left[v_{i-1}^2(2x_{i-1,1}^2 - 2x_{i-1,3}x_{i-1,2} + x_{i-1,2}^2 + x_{i-1,2} + 0.5) +

+ v_{i-1}v_i(4x_{i-1,3}x_{i1} - 2x_{i-1,3}x_{i2} - 2x_{i-1,2}x_{i1} - x_{i-1,2} - x_{i2} - 1) +

+ v_i^2(2x_{i1}^2 - 2x_{i1}x_{i2} + x_{i2}^2 + x_{i2} + 0.5) \right] \)

and

(b) \(\|Lv - v\|_2^2 = \frac{h}{6} \sum_{i=1}^{m} \left[v_{i-1}^2(x_{i-1,1}^2 + 2x_{i-1,3}x_{i-1,2}) +

+ v_{i-1}v_i(x_{i-1,2}x_{i1} + 4x_{i-1,3}x_{i1} + x_{i-1,3}x_{i2}) +

+ v_i^2(x_{i2}^2 + 2x_{i1}^2 + x_{i2}x_{i1}) \right] \)

for an arbitrary function \(v \in V(a, b) \).

Proof. Both statements can be proved by a direct computation.

The \(L \)-discrete solution of a problem does not oscillate whenever its \(L \)-matrix \(A \) is monotone (i.e. \(A^{-1} \) does exist and is non-negative). For an explanation consult [19].
1.9. **Lemma.** (Bramble, Hubbard [4]) A real square matrix $M = (m_{ij})$ of order n is monotone whenever the following assertions (a), (b), (c) are true.

(a) $i \neq j \Rightarrow m_{ij} \leq 0$.

(b) There is a non-empty set $I \subseteq \{1, \ldots, n\}$ such that

$$\sum_{j=1}^{n} m_{ij} > 0 \iff i \in I \quad \text{and} \quad \sum_{j=1}^{n} m_{ij} = 0 \iff i \notin I.$$

(c) For every $i \in \{1, \ldots, n\}$ one can find indices $j \in I$ and k_1, \ldots, k_s in such a way that each of the numbers $m_{ik_1}, m_{k_1k_2}, \ldots, m_{k_sj}$ is non-zero.

1.10. **Lemma.** (Raviart [19]) If $Mx = b$ is a system with a monotone matrix $M = (m_{ij})$ of order n then

$$\sum_{j=1}^{n} m_{ij} \geq \alpha_* > 0 \quad \text{for} \quad i = 1, \ldots, n \Rightarrow \|x\|_\infty \leq \alpha_*^{-1}\|b\|_\infty.$$

2. **THE CASE $q = 0$**

Let us consider the problem (4) provided with restrictions $q = 0$ and $p \geq 1$ on (a, b). A weak formulation of this problem is

\begin{equation}
\text{find} \quad u \in H^1_0(a, b): \quad \alpha_1(u, v) = (f, v) \quad \forall v \in H^1_0(a, b). \quad \text{Here} \quad \\
\alpha_1(u, v) = \int_0^b (eu'v' + pu'v) \, dx.
\end{equation}

2.1. **Definition.** Let us put

$$E_{1i} = \max \{e, \int_{x_{i-1}}^{x_i} p \phi_{i-1} \, dx\},$$

$$E_1(x) = E_{1i} \quad \text{for} \quad x \in (x_{i-1}, x_i), \quad i = 1, \ldots, m \quad \text{and} \quad$$

$$A_1(u, v) = \int_0^b (E_1 u'v' + pu'v) \, dx \quad \forall u, v \in H^1(a, b).$$

2.2. **Remark.** Obviously, the following assertions (a)–(c) hold for $i = 1, \ldots, m$.

(a) $A_1(\varphi_{i-1}, \varphi_i) \leq 0$,

(b) $A_1(\varphi_{i-1} + \varphi_i + \varphi_{i+1}, \varphi_i) = 0$,

(c) $e \leq \int_{x_i}^{x_{i+1}} p \varphi_i \, dx \Rightarrow A_1(\varphi_{i+1}, \varphi_i) = 0$.

2.3. **Definition.** Let us define a linear operator $L_1: V_h(a, b) \to V_{h*}(a, b)$ by

$$L_1 \varphi_i = \varphi_i + [a_i, 0, -a_{i+1}] \Psi_t \quad \text{for} \quad i = 1, \ldots, n, \quad \text{where} \quad a_i = (E_{1i} - e)(p, \psi_{2i-1}) \quad \text{for} \quad i = 1, \ldots, m.$$
2.4. Lemma. We have \(\alpha_1(u, L_1v) = A_1(u, v) \forall u, v \in V_h(a, b) \).

Proof. Since \(\alpha_1 \) and \(A_1 \) are bilinear, it is sufficient to prove

(i) \(\alpha_1(\phi_j, L_1\phi_i) = A_1(\phi_j, \phi_i) \) for \(i, j = 1, \ldots, n \):

\[
\alpha_1(\phi_{i-1}, L_1\phi_i) = \alpha_1(\phi_{i-1}, \phi_i) + a_1\alpha_1(\phi_{i-1}, \psi_{2i-1}) =
\]

\[
= \alpha_1(\phi_{i-1}, \phi_i) - (E_{1i} - \varepsilon) \frac{1}{h} = \alpha_1(\phi_{i-1}, \phi_i) + \int_{x_i}^x (E_{1i} - \varepsilon) \phi_{i-1}' \, d\xi =
\]

\[
= A_1(\phi_{i-1}, \phi_i) .
\]

If \(j = i, i + 1 \) then (i) can be proved analogously and for the other values of \(j \) it holds obviously.

2.5. Lemma. There exists a constant \(K \) such that

\[
|a_i| \leq K \quad \text{for} \quad i = 1, \ldots, m
\]

holds for all positive \(\varepsilon, h \).

Proof. Let us put \(p_i = p(x_i) \) for \(i = 1, \ldots, m \) and denote by \(c, C \) constants satisfying \(0 \leq c \leq -p' \leq C \) on \((a, b)\). Then

\[
p_i + c(x_i - x) \leq p(x) \leq p_i + C(x_i - x)
\]

on \((x_{i-1}, x_i)\). Hence

\[
E_{1i} - \varepsilon < E_{1i} \leq \int_{x_{i-1}}^{x_i} \left[p_i + C(x_i - x) \right] \varphi_{i-1} \, d\xi = p_i h/2 + C h^2/3
\]

and

\[
p_i h/2 + C h^2/4 = p_i h/2 + c(x_i - x, \psi_{2i-1}) \leq (p, \psi_{2i-1}) .
\]

These two inequalities give \(|a_i| \leq (6p_i + 4Ch)/(6p_i + 3Ch) \). This together with \(p_i \geq 1 \) yields \(|a_i| \leq K \) for \(K = 1 + \frac{2}{3}C \).
2.6. Remark. If \(p = 1 \) on \((a, b)\) and \(\varepsilon < h/2 \) then \(E_{1i} = h/2 \) and \(a_i = 1 - 2/h \). The graph of \(L_x \varphi_i \) can be seen in Fig. 1. Thus, up to the right-hand side, the classical upwind scheme is obtained by using the test functions \(L_x \varphi_i \) in this case.

2.7. Theorem. The \(L_x \)-matrix of problem (7) is monotone.

Proof. If \(M = (m_{ij}) \) stands for the \(L_x \)-matrix of (7) then \(M \) is tridiagonal and

\[
\begin{align*}
m_{i,i-1} &= A_1(\varphi_{i-1}, \varphi_i) \quad \text{for} \quad i = 2, \ldots, n, \\
m_{ii} &= A_1(\varphi_i, \varphi_i) \quad \text{for} \quad i = 1, \ldots, n, \\
m_{i,i+1} &= A_1(\varphi_{i+1}, \varphi_i) \quad \text{for} \quad i = 1, \ldots, n - 1
\end{align*}
\]

according to 2.4. Now using \(p' \leq 0 \) and 2.2(a), (b), (c), one can easily verify 1.9(a), (b), (c).

2.8. Definition. Let \(Q \) be a constant such that \(0 \leq Q \leq -0.5p' \) on \((a, b)\). We put

\[
[v]_1 = (|v|_{E_1}^2 + Q\|v\|^2)^{1/2}
\]

for arbitrary \((c, d) \subseteq (a, b)\) and \(v \in \mathbb{H}^1(c, d)\).

2.9. Theorem. Suppose that \(\varepsilon < h \), \(u \) is an exact solution of the problem (7) and \(u^h \) is an \(L_x \)-discrete solution of (7). Then

\[
[u - u^h]_1 \leq Ch^{3/2}\|u\|_2.
\]

Proof. Let us denote by \(\tilde{u} \) an interpolate of \(u \) in \(V_h(a, b) \) and put \(\eta = u - \tilde{u} \), \(\theta = u^h - \tilde{u} \).

(i) Obviously there exist positive constants \(C_1, C_2 \) such that \(\max \{\varepsilon, C_1h\} \leq E_1 \leq C_2h \) on \((a, b)\).

(ii) \([v]_1^2 \leq \alpha_1(v, L_xv) \forall v \in V_h(a, b) \) is a consequence of \([v]_1^2 \leq A_1(v, v) \) and 2.4.

(iii) \(|L_xv|_1 \leq C h^{-1/2} \|v\|_1 \forall v \in V_h(a, b) \): By 1.8(a) it follows that \(|L_xv|_1^2 = (1/h) \sum_{i=1}^m (4a_i^2 + 1) (v_i - v_{i-1})^2 \). This, 2.5 and 1.5(a) give \(|L_xv|_1 \leq C |v|_1 \). The last inequality together with (i) implies (iii).

(iv) \(\|L_xv - v\| \leq Ch^{1/2} \|v\|_1 \forall v \in V_h(a, b) \): By 1.8(b) we get \(\|L_xv - v\|^2 = (h/3) \sum_{i=1}^m a_i^2(v_i - v_{i-1})^2 \). With respect to this equality and 2.5, 1.5(a) we obtain

\[
\|L_xv - v\| \leq Ch |v|_1. \quad \text{Now, (iv) holds by (i)}.
\]

By virtue of (i)—(iv) and 1.7, the following assertions (v), (vi) are true.

(v) \([\eta]_1 \leq Ch^{3/2} |u|_2 \),

(vi) \([\theta]_1 \leq C_1h^{3/2} |u|_2 [\theta]_1 + C_2h^2 |u|_2 \|\theta\| \).

It follows by (i) and the Friedrichs inequality that \(\|\theta\| \leq Ch^{-1/2} [\theta]_1 \). This and (vi) imply

(vii) \([\theta]_1 \leq Ch^{3/2} |u|_2 \)

and the statement of the theorem is an immediate consequence of (v), (vii).

336
2.10. Remark. If the exact solution u of (7) has a boundary or internal layer then the norm $|u|_2$ is proportional to $e^{-1.5}$ thanks to the behaviour of u within the layers; see [15], Theorems 2.1, 2.3. Hence, Theorem 2.9 does not give any information concerning exactness of L_1-discrete solutions of such problems. The following local error estimate is much more valuable.

2.11. Theorem. Suppose that $\varepsilon < h$, u is an exact solution of the problem (7) and u^h is an L_1-discrete solution of (7). Let a subinterval $D = (a, x_i)$ in (a, b) have the property

$$l < m \Rightarrow \varepsilon \leq \int_{x_i}^{x_{i+1}} p\varphi_1 \, dx.$$

Then

$$[(u - u^h)/D]_1 \leq Ch^{3/2}|u|_{D^*}/2.$$

Proof. The function $u^h = u_1\varphi_1 + \cdots + u_n\varphi_n$ is a solution of the equations

$$\sum_{j=1}^{n} u_j A_1(\varphi_j, \varphi_i) = (f, L_1\varphi_i) \quad \text{for} \quad i = 1, \ldots, n$$

by 2.4. The case $l = m$ being trivial, we suppose that $l < m$ and

(i) $\varepsilon \leq \int_{x_i}^{x_{i+1}} p\varphi_1 \, dx.$

If we put $c = x_{i+1}$ then $D^c = (a, c)$. Let us consider the problem

$$\begin{align*}
\text{find} \quad \bar{u} &\in H^1(a, c) : \beta_1(\bar{u}, v) = (f, v) \quad \forall v \in H^1_0(a, c) \quad \text{and} \\
\bar{u}(a) &\equiv 0, \quad \bar{u}(c) = u(c),
\end{align*}$$

where $\beta_1(\bar{u}, v) = \int_a^c (e\bar{u}'v' + p\bar{u}v) \, dx$.

(ii) $\bar{u} = u/|D^c|$ is true obviously.

Let $\bar{\varphi}_i = \varphi_i/|D^c|$ for $i = 0, \ldots, l + 1$, let $R_1 : V_h(a, c) \to V_h(a, c)$ be the linear operator from 2.3 and $\bar{u}^h = \bar{u}_1\bar{\varphi}_1 + \cdots + \bar{u}_{l+1}\bar{\varphi}_{l+1}$ an R_1-discrete solution of (9).

(iii) $\bar{u}_i = u_i$ for $i = 1, \ldots, l$: Clearly, $\bar{u}_{i+1} = u(c)$ and $\bar{u}_1, \ldots, \bar{u}_l$ satisfy

$$\sum_{j=1}^{l+1} \bar{u}_j \beta_1(\bar{\varphi}_j, R_1\bar{\varphi}_i) = (f, R_1\bar{\varphi}_i) \quad \text{for} \quad i = 1, \ldots, l.$$

Using 2.4, one can easily see that $R_1\bar{\varphi}_i = L_1\varphi_i/|D^c$ and $\beta_1(\bar{\varphi}_j, R_1\bar{\varphi}_i) = A_1(\varphi_j, \varphi_i)$ for $j = 1, \ldots, l + 1, i = 1, \ldots, l$. Hence (10) can be written in the form

$$\sum_{j=1}^{l+1} \bar{u}_j A_1(\varphi_j, \varphi_i) = (f, L_1\varphi_i) \quad \text{for} \quad i = 1, \ldots, l.$$

We have $A_1(\varphi_{i+1}, \varphi_i) = 0$ according to (i) and 2.2(c). Thus, one can easily see that the values $u_1, \ldots, u_l (\bar{u}_1, \ldots, \bar{u}_l)$ do not depend on u_{l+1}, \ldots, u_n (on \bar{u}_{l+1}, respectively). This and the fact that equations (10) are exactly the first l equations from (8) imply (iii).

Now

$$[(u - u^h)/D]_1^{(ii),(iii)} = [(\bar{u} - \bar{u}^h)/D]_1 \leq \frac{\bar{u}^h}{[\bar{u} - \bar{u}^h]_1^{2.9, (ii)} \leq Ch^{3/2}|u|_{D^*}/2.}$$
2.12. Remark. If one computes an L_1-discrete solution u^h from Fig. 2 then one uses a bilinear form A_1 with $E_1 = 0.05$. In Fig. 2, besides u^h a Galerkin solution $u_G \in V_h(0, 1)$ of the problem

$$-0.05u'' + u' = x \quad \text{on } (0, 1), \quad u(0) = 0 = u(1)$$

is shown. The reader can observe an essential difference in the exactness of u^h and u_G in the whole interval.

![Graph showing exact and discrete solutions](image.png)

Fig. 2

- $-0.01u'' + u' = x \quad \text{on } (0, 1), \quad u(0) = 0 = u(1)$
- exact solution
- L_1-discrete solution with step 0.1
- Galerkin solution with step 0.1
- $-0.05u'' + u' = x \quad \text{on } (0, 1), \quad u(0) = 0 = u(1)$
- Galerkin solution with step 0.1

2.13. Remark. Theorems 2.9 and 2.11 can be reformulated for the case $p \leq -1$ on (a, b) in an obvious way. If we admit that p has a first-order zero at one of the nodes x_0, \ldots, x_m then Theorems 2.9, 2.11 remain valid with the following modification: $h^{1.5}$ has to be substituted by h.

338
3. THE CASE \(p = 0 \)

Let us consider the problem (4) provided with restrictions \(p = 0, 0 < q_0 \leq q \) and \(q \) is uniformly continuous on \((a, b)\). A weak formulation of this problem is

\[
\begin{align*}
\text{find } u \in H^1_0(a, b): & \quad \alpha_2(u, v) = (f, v) \quad \forall v \in H^1_0(a, b). \\
\text{Here } & \quad \alpha_2(u, v) = \int_a^b (eu'v' + quv) \, dx .
\end{align*}
\]

3.1. **Definition.** Let us put

\[
E_{2i} = \max \{ \varepsilon, h \int_{x_{i-1}}^{x_i} q \varphi_{i-1} \varphi_i \, dx \},
\]

\[
E_2(x) = E_{2i} \quad \text{for } x \in (x_{i-1}, x_i), \quad i = 1, \ldots, m \quad \text{and}
\]

\[
A_2(u, v) = \int_a^b (E_2 u'v' + quv) \, dx \quad \forall u, v \in H^1(a, b).
\]

3.2. **Remark.** Obviously, the following assertions (a) — (c) hold for \(i = 1, \ldots, n \).

(a) \(A_2(\varphi_{i-1}, \varphi_i) = A_2(\varphi_i, \varphi_{i-1}) \leq 0 \).

(b) \(A_2(\varphi_{i-1} + \varphi_i + \varphi_{i+1}, \varphi_i) = (q, \varphi_i) \geq q_0 h > 0 \).

(c) \(\varepsilon \leq h \int_{x_{i-1}}^{x_i} q \varphi_{i-1} \varphi_i \, dx \Rightarrow A_2(\varphi_{i-1}, \varphi_i) = 0 = A_2(\varphi_i, \varphi_{i-1}) \).

3.3. **Definition.** Let us define a linear operator \(L_2: V_h(a, b) \rightarrow V_h(a, b) \) by

\[
L_2 \varphi_i = \varphi_i + c_i \Psi_i \quad \text{for } i = 1, \ldots, n,
\]

where \(c_i = 0 \) in the case \(E_{2i} = \varepsilon = E_{2i+1} \) and \(c_i \) is a solution of the equations

\[
\alpha_2(\varphi_j, L_2 \varphi_i) = A_2(\varphi_j, \varphi_i) \quad \text{for } j = i - 1, i, i + 1
\]

in the case \(E_{2i} > \varepsilon \) or \(E_{2i+1} > \varepsilon \).

3.4. **Lemma.** We have \(\alpha_2(u, L_2 v) = A_2(u, v) \) \(\forall u, v \in V_h(a, b) \).

3.5. **Lemma.** There exist positive constants \(C \) and \(h_0 \) such that

\[
\| c_i \|_\infty \leq C \quad \text{for } i = 1, \ldots, n
\]

is true for all positive \(\varepsilon \) and all \(h \in (0, h_0) \).

Proof. Using the uniform continuity of \(q \), we define \(h_0 \) as a positive number satisfying

(i) \(|x - y| < 2h_0 \Rightarrow |q(x) - q(y)| < \frac{2}{2}q_0 \) for all \(x, y \in (a, b) \).

Let \(i \) be a fixed index, \(c_i = [c_1, c_2, c_3]^T \), \(m_j \) the minimum and \(M_j \) the maximum of \(q \) on \((x_{j-1}, x_j) \) for \(j = i, i + 1 \).

Obviously, it is sufficient to consider the case \(E_{2i} > \varepsilon \) or \(E_{2i+1} > \varepsilon \). Then

(ii) \(\varepsilon < (h^2/6) \max \{ M_i, M_{i+1} \} \).
By a simple modification of (13) we get

\[
(14)
\begin{bmatrix}
 a_{11} & a_{12} & 0 \\
 a_{21} & a_{22} & a_{23} \\
 0 & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3
\end{bmatrix}
= \frac{1}{h}
\begin{bmatrix}
 -E_{2i} + \varepsilon \\
 2E_{2i} + 2E_{2,i+1} - 4\varepsilon \\
 -E_{2,i+1} + \varepsilon
\end{bmatrix},
\]
where

\[
a_{11} = \alpha_2(\varphi_{i-1}, \psi_{2i-1}) \geq (h/4) m_i,
\]
\[
a_{22} = \alpha_2(\varphi_i - \varphi_{i-1} - \varphi_{i+1}, \psi_{2i}) \geq 4\varepsilon/h + (h/6)(m_i + m_{i+1}),
\]
\[
a_{33} = \alpha_2(\varphi_{i+1}, \psi_{2i+1}) \geq (h/4) m_{i+1},
\]
\[
a_{21} = \alpha_2(\varphi_i - \varphi_{i-1}, \psi_{2i-1}) \leq (h/12)(M_i - m_i) \quad \text{and}
\]
\[
a_{23} = \alpha_2(\varphi_i - \varphi_{i+1}, \psi_{2i+1}) \leq (h/12)(M_{i+1} - m_{i+1}).
\]

It remains to find upper estimates of \(a_{12} = \alpha_2(\varphi_{i-1}, \psi_{2i})\) and \(a_{32} = \alpha_2(\varphi_{i+1}, \psi_{2i}).\)

Taking into account

\[
-\frac{\varepsilon}{h} + \frac{h}{24} m_i \leq a_{12} \leq \frac{\varepsilon}{h} + \frac{h}{24} M_i,
\]
we investigate the following cases 1°—3°.

1° \(\frac{\varepsilon}{h} + \frac{h}{24} M_i \leq 0\). Then \(|a_{12}| \leq \frac{\varepsilon}{h} - \frac{h}{24} m_i\) and we obtain

\[
|a_{12}| \leq \frac{h}{6} \max\{m_i, m_{i+1}\} - \frac{h}{24} m_i \quad \text{by (ii)}.
\]

2° \(\frac{\varepsilon}{h} + \frac{h}{24} m_i \geq 0\). In this case \(|a_{12}| \leq -\frac{\varepsilon}{h} + \frac{h}{24} M_i\).

3° \(\frac{\varepsilon}{h} + \frac{h}{24} m_i < 0 < -\frac{\varepsilon}{h} + \frac{h}{24} M_i\). Then \(|a_{12}| \leq \frac{h}{24}(M_i - m_i)\).

It follows by these estimates that

\[
a_{11} - |a_{12}| \geq \min\left\{\frac{h}{24}(7m_i - 4\max\{M_i, M_{i+1}\})\right\},
\]
\[
\frac{\varepsilon}{h} + \frac{h}{24}(6m_i - M_i), \quad \frac{h}{24}(7m_i - M_i) \right\} = \frac{h}{24}(7m_i - 4\max\{M_i, M_{i+1}\})
\]

Analogously,

\[
a_{33} - |a_{32}| \geq \frac{h}{24}(7m_{i+1} - 4\max\{M_i, M_{i+1}\}) \quad \text{and}
\]
\[
a_{22} - |a_{21}| - |a_{23}| \geq 4\frac{\varepsilon}{h} + \frac{h}{12}[3(m_i + m_{i+1}) - M_i - M_{i+1}] \]

340
is true. Using the last three inequalities and (i), one arrives at
\[
\min_{1 \leq i \leq 3} (a_{ii} - \sum_{j \neq i} |a_{ij}|) \geq C_1 h \quad \text{for} \quad C_1 = \frac{q_0}{24}.
\]

At the same time, there is an upper estimate \(C_2 h \) of the absolute values of all the right-hand sides in (14) according to (ii) and the definition of \(E_2 \). Hence
\[
\|c_i\|_\infty \leq C \quad \text{for} \quad C = \frac{C_2}{C_1}.
\]

3.6. Remark. (a) If \(q(x) = 1 \) on \((a, b)\) and \(\varepsilon < h^2/6 \) then \(E_{2i} = h^2/6 = E_{2,i+1} \) and \(c_i = (h^2 - 6)/(h^2 + 12) [-1, 2, -1]^T \). See Fig. 3.

(b) Whenever \(\varepsilon \leq h \int_{x_{i-1}}^{x_i} q \varphi_{i-1} \varphi_i \, dx \) for \(i = 1, \ldots, n \), the \(L_2 \)-matrix of (12) is diagonal by 3.2 and it can be derived from the stiffness matrix appearing in the Galerkin method by lumping. See for example [1].

3.7. Theorem. The \(L_2 \)-matrix of problem (12) is monotone and
\[
\|u^h\|_\infty \leq C \frac{\|f\|_\infty}{q_0}
\]
for the \(L_2 \)-discrete solution \(u^h \) of (12).

Proof. The statement immediately follows by 3.2(a), (b) ,1.9 and 1.10.
3.8. **Definition.** Let us put
\[[v]_2 = \left(|v|_{L^2}^2 + q_0 \|v\|^2 \right)^{1/2} \]
for arbitrary \((c, d) \subseteq (a, b)\) and \(v \in H^1(c, d)\).

3.9. **Theorem.** Let \(u\) be an exact solution of the problem (12) and \(u^h\) an \(L^2\)-discrete solution of (12). There exist positive constants \(C\) and \(h_0\) such that
\[[u - u^h]_2 \leq C h^2 |u|_2 \]
holds for all \(h \in (0, h_0)\) and \(c < h^2\).

Proof. Let us denote by \(\tilde{u}\) an interpolate of \(u\) in \(V_h(a, b)\).

(i) Obviously there exist positive constants \(C_1, C_2\) such that \(\max\{s, C^2 h^2\} \leq E_2 \leq C_2 h^2\) on \((a, b)\).

(ii) \([v]_2^2 \leq \alpha_2(v, L_2v) \forall v \in V_h(a, b)\) is a consequence of \([v]_2^2 \leq A_2(v, v)\) and 3.4.

(iii) \([L_2v]_1^2 \leq \left(\frac{C}{h} \right) [v]_2^2 \forall v \in V_h(a, b)\): By means of 1.8(a) and the constant \(C\) from 3.5, the following estimate can be obtained:
\[[L_2v]_1^2 \leq \frac{48}{h} \max\{1, C^2\} \sum_{i=1}^{n} v_i^2 \]
Hence \([L_2v]_1^2 \leq C [v]_1^2 + (1/h^2) \|v\|^2\) with respect to 1.5(c). This and (i) imply (iii).

(iv) \([L_2v - v]_2 \leq C [v]_2^2 \forall v \in V_h(a, b)\): Using 1.8(b) and the constant \(C\) from 3.5, the following estimate can be derived:
\[[L_2v - v]_2^2 \leq 3h \max\{1, C^2\} \sum_{i=1}^{n} v_i^2 \]
This inequality and 1.5(c) imply \([L_2v - v]_2 \leq C (h^2 |v|_1^2 + \|v\|^2)\) and one gets (iv) by (i).

Assertions (i)-(iv) and Proposition 1.7 imply \([u - \tilde{u}]_2 \leq Ch^2 |u|_2\) and \([u^h - \tilde{u}]_2 \leq \leq Ch^2 |u|_2\); the statement follows immediately.

Now, we illustrate the need for a local error estimate.

3.10. **Example.** If \(u\) is a solution of the problem
\[-\varepsilon u'' + u = 1 \text{ on } (0, 1), \quad u(0) = 0 = u(1),\]
then it has boundary layers in neighborhoods of 0 and 1. One can easily see that \(|u|_2 > \varepsilon^{-3/4}\) and, at the same time,
\[-\sqrt(\varepsilon) \ln \varepsilon < t_1 < t_2 < 1 + \sqrt(\varepsilon) \ln \varepsilon \Rightarrow |u|_{(t_1, t_2)} \leq 1.\]

3.11. **Theorem.** Let \(u\) be an exact solution of the problem (12), \(u^h\) an \(L^2\)-discrete solution of (12), and let a subinterval \(D = (x_k, x_l) \in (a, b)\) have the property
\[0 < k \Rightarrow \varepsilon \leq h \int_{x_{k-1}}^{x_k} q \varphi_{k-1} \varphi_k \, dx \quad \text{and} \quad l < m \Rightarrow \varepsilon \leq h \int_{x_l}^{x_{l+1}} q \varphi_l \varphi_{l+1} \, dx.\]
Then there exist positive constants C and h_0 such that

$$[(u - u^h)_D]_2 \leq Ch^2|u|_{D^2}$$

is true for all $h \in (0, h_0)$ and $\varepsilon < h^2$.

Proof. Let us denote $D^e = (c, d)$ and consider the problem

\begin{equation}
\begin{aligned}
\text{find } \bar{u} \in H^1(c, d): & \quad \beta_2(\bar{u}, v) = (f, v) \quad \forall v \in H^1(c, d) \\
& \quad \bar{u}(c) = u(c), \quad \bar{u}(d) = u(d), \quad \text{where}
\end{aligned}
\end{equation}

$$\beta_2(\bar{u}, v) = \int_c^d (\varepsilon \bar{u}v' + q\bar{u}v) \, dx.$$

Let $R_2: V_0(c, d) \rightarrow V_0^*(c, d)$ be a linear operator from 3.3 and \bar{u}^h an R_2-discrete solution of (15).

Similarly as in 2.11 one can see that $\bar{u} = u^h / D$ and $\bar{u}^h / D = u^h / D$. These facts and 3.9 give

$$[(u - u^h)_D]_2 = [(\bar{u} - \bar{u}^h)_D]_2 \leq [\bar{u} - \bar{u}^h]_2 \leq C h^2 |\bar{u}|_2 \leq C h^2 |u|_{D_2}.$$

3.12. Remark. (a) If one computes the L_2-discrete solution u^h of the problem from Fig. 4 then one uses a bilinear form A_2 with $E_2 = 0.0016$. In Fig. 4, besides u^h a Galerkin solution $u_G \in V_0^*(0, 1)$ of the problem

$$-0.0016u'' + u = 1 + \sin 2\pi x \quad \text{on } (0, 1), \quad u(0) = 0 = u(1)$$

is shown. An essential difference in the exactness of u^h and u_G in the whole interval can be observed.
(b) L_2-discrete solutions of the problem from Fig. 5 with steps 0.1, 0.05 and 0.025 have been computed. The mutual differences of their values at each of the points 0.1, ..., 0.9 are less than $4 \cdot 10^{-6}$.

\[-10^{-6}u'' + (1 + 10x^2) u = \begin{cases}
2 & \text{for } x \leq 0.5, \\
-10 & \text{for } x > 0.5
\end{cases} \quad u(0) = 0, \quad u(1) = 1 \]

Fig. 5

4. A MORE GENERAL ONE-DIMENSIONAL CASE

Let us consider the problem (4) satisfying $0 < Q \leq q - 0.5p'$ on (a, b) for a constant Q. A weak formulation of this problem is

(16) \[
\text{find } u \in \mathcal{H}_0^1(a, b): \; \alpha_3(u, v) = (f, v) \quad \forall v \in \mathcal{H}_0^1(a, b). \quad \text{Here}
\]

$$
\alpha_3(u, v) = \int_a^b (eu'v' + pu'v + quv) \, dx.
$$
4.1. **Definition.** Let us define a linear operator \(L_3 : V_h \rightarrow V_{h*} \) by
\[
L_3 \varphi_i = \varphi_i + d_i^T \Psi_i \quad \text{for} \quad i = 1, \ldots, n ,
\]
where the vectors \(d_i \) satisfy
\[
\begin{align*}
\chi_3(\varphi_j, L_3 \varphi_j) & \leq 0 , \\
\chi_3(\varphi_j, \varphi_i) & \geq 0 \quad \Rightarrow \quad \chi_3(\varphi_j, L_3 \varphi_i) = 0
\end{align*}
\]
for \(j = i - 1, i + 1 \) and
\[
d_{i1}^2 + \frac{1}{h} d_{i2}^2 + d_{i3}^2 \quad \text{is minimal}.
\]

4.2. **Remark.** In [7] an apriori error estimate is proved illustrating that the size of the \(H_0^1 \) - and \(L^2 \)-norms of the error of the \(L_3 \)-discrete solution is of the same order as stated in Theorem 2.9, 3.9.

4.3. **Remark.** In Fig. 7, one can see graphs of the test functions used in the computation of \(u_8 \) from Fig. 6. The accuracy of \(L_3 \)-discrete solutions \(u_8, u_{16}, u_{32} \) \((h = 0.03125)\) from Fig. 6 is compared in Tab. 1. Approximate solutions of a problem which is no special case of (16) are given in Fig. 8.

\[
-10^{-6} u'' + 10 \cos(\pi x) u' + (10x^2 + 0.1) u = x \quad \text{on} \quad (0, 1), \quad u(0) = 2, \quad u(1) = 1
\]

Fig. 6

\(u_8 \) L3-discrete solution with step 0.125
\(u_{16} \) L3-discrete solution with step 0.0625
\(u_G \) Galerkin solution with step 0.0625
Tab. 1.

<table>
<thead>
<tr>
<th>x</th>
<th>$u_{16} - u_8$</th>
<th>$u_{32} - u_{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>−0.000472</td>
<td>−0.000153</td>
</tr>
<tr>
<td>0.250</td>
<td>−0.001798</td>
<td>−0.000533</td>
</tr>
<tr>
<td>0.375</td>
<td>−0.009081</td>
<td>−0.0027</td>
</tr>
<tr>
<td>0.500</td>
<td>−0.042566</td>
<td>−0.0433035</td>
</tr>
<tr>
<td>0.625</td>
<td>−0.006124</td>
<td>−0.0013585</td>
</tr>
<tr>
<td>0.750</td>
<td>−0.0022208</td>
<td>−0.0005918</td>
</tr>
<tr>
<td>0.875</td>
<td>−0.0012405</td>
<td>−0.0003525</td>
</tr>
</tbody>
</table>
Let us apply the basic ideas of the method used in Sections 2 and 3 to the problem

\begin{equation}
-10^{-6}u'' - 10 \cos(\pi x)u' + (10x^2 + 0.1)u = x \quad \text{on} \quad (0,1), \quad u(0) = 2, \quad u(1) = 1
\end{equation}

\begin{itemize}
 \item u_8 \text{-} L_2\text{-}discrete solution with step 0.125
 \item u_{16} \text{-} L_2\text{-}discrete solution with step 0.0625
 \item u_G \text{-} Galerkin solution with step 0.0625
\end{itemize}

5. A TWO-DIMENSIONAL PROBLEM

Let us apply the basic ideas of the method used in Sections 2 and 3 to the problem

\begin{equation}
-\varepsilon \Delta u + \mathbf{p} \cdot \nabla u + qu = f \quad \text{on} \quad \Omega, \quad u|_{\Gamma} = 0.
\end{equation}

Here ε is a positive real number, $\mathbf{p}(q)$ is a sufficiently smooth vector (scalar) valued function on Ω and $f \in L^2(\Omega)$. The functions \mathbf{p}, q are supposed to satisfy either $\text{div } \mathbf{p} \leq 0, q = 0$ on Ω or $\mathbf{p} = \mathbf{0}, 0 < q_0 \leq q$ on Ω.

347
Only a brief description of this application is presented. A theoretical analysis is not complete yet.

A weak formulation of (17) is

\begin{equation}
\text{find } u \in H^1_0(\Omega): \quad a(u, v) = (f, v) \quad \forall v \in H^1_0(\Omega), \quad \text{where}
\end{equation}

\[a(u, v) = \int_\Omega [e \nabla u \cdot \nabla v + (p \cdot \nabla u + qu) v] \, dx.\]

5.1. **Definition.** Let \(\tau \) be an arbitrary triangulation of \(\Omega \). We denote by \(T_\tau \) the set of triangles, by \(N_\tau \) the set of nodes of \(\tau \) and by \(J_\tau \) the set of \(P \in N_\tau \) satisfying \(P \notin \Gamma \).

Let us construct a new triangulation \(\tau^* \) by dividing each triangle from \(T_\tau \) into four equal parts in a way illustrated in Fig. 9.

![Fig. 9](image)

For each vertex \(P \in N_\tau \) (\(P \in N_{\tau^*} \)) define a real function \(\phi_P(\psi_P) \) continuous on \(\Omega \), linear on each triangle from \(T_\tau \) (from \(T_{\tau^*} \)) and such that

\[
\phi_P(Q) = \begin{cases} 1 & \text{for } Q = P \\ 0 & \text{for } Q \in N_\tau - \{P\} \end{cases}, \\
\left(\psi_P(Q) = \begin{cases} 1 & \text{for } Q = P \\ 0 & \text{for } Q \in N_{\tau^*} - \{P\} \end{cases}\right)
\]

Let us denote \(V_\tau = \text{span}\{\phi_P; P \in J_\tau\} \) and \(V_{\tau^*} = \text{span}\{\psi_P; P \in J_{\tau^*}\} \).

5.2. **Definition.** For arbitrary \(u, v \in H^1(\Omega) \) we put

\[b(u, v) = \sum_{T \in T_\tau} b_T(u, v),\]

where

\[b_T(u, v) = a_T(u, v) + \delta_T(u, v),\]

\[a_T(u, v) = \int_T [e \nabla u \cdot \nabla v + (p \cdot \nabla u + qu) v] \, dx,\]

\[\delta_T(u, v) = \int_T \left[T_x \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + T_y \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + T_z \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \right) \right] \, dx.\]
and the constants T_x, T_y, T_s satisfy the system of equations

$$
\begin{align*}
\delta_T(\varphi_P, \varphi_Q) &= r_1 = \min \{0, -a_T(\varphi_P, \varphi_Q), -a_T(\varphi_Q, \varphi_P)\} \\
\delta_T(\varphi_Q, \varphi_R) &= r_2 = \min \{0, -a_T(\varphi_Q, \varphi_R), -a_T(\varphi_R, \varphi_Q)\} \\
\delta_T(\varphi_R, \varphi_P) &= r_3 = \min \{0, -a_T(\varphi_R, \varphi_P), -a_T(\varphi_P, \varphi_R)\}
\end{align*}
$$

for each $T \in \mathcal{T}$, with nodes P, Q, R.

Lemma 5.3 can be proved by a direct computation and Lemma 5.4 is true obviously.

5.3. Lemma. Let τ be a triangulation of Ω. The determinant of the matrix of system (19) equals -0.125 for each $T \in \mathcal{T}_\tau$.

5.4. Lemma. The following assertions (a), (b) hold for an arbitrary triangulation τ of Ω.

(a) $b(\varphi_P, \varphi_Q) \leq 0 \quad \forall P, Q \in \mathcal{N}_\tau, \quad P \neq Q$.

(b) $\sum_{Q \in \mathcal{T}_\tau} b(\varphi_P, \varphi_Q) = \sum_{Q \in \mathcal{T}_\tau} a(\varphi_P, \varphi_Q) \quad \forall P \in \mathcal{T}_\tau$.

5.5. Lemma. If τ is a triangulation of Ω then the eigenvalues of the matrix

$$
\begin{bmatrix}
T_x & T_s \\
T_s & T_y
\end{bmatrix}
$$

are non-negative for each $T \in \mathcal{T}_\tau$.

Proof. Let P, Q, R be the vertices and s the area of an arbitrary triangle $T \in \mathcal{T}_\tau$. Denote $a = |PQ|$, $b = |PR|$, $a = (1/a) PQ = [a_1, a_2]^T$, $b = (1/b) PR = [b_1, b_2]^T$ and $M = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$. If we put

$$
\begin{bmatrix}
T_x & T_s \\
T_s & T_y
\end{bmatrix} = M^T \begin{bmatrix} Z_x & Z_s \\
Z_s & Z_y \end{bmatrix} M
$$

and

$$
\delta_T^*(u, v) = \int_T \left[Z_x \frac{\partial u}{\partial a} \frac{\partial v}{\partial a} + Z_y \frac{\partial u}{\partial b} \frac{\partial v}{\partial b} + Z_s \left(\frac{\partial u}{\partial a} \frac{\partial v}{\partial a} + \frac{\partial u}{\partial b} \frac{\partial v}{\partial b} \right) \right] dx
$$

then $\delta_T^*(u, v) = \delta_T(u, v)$ for all $u, v \in C^1(T)$. Thus instead of (19), one can solve the system of equations

$$
\begin{align*}
\delta_T^*(\varphi_P, \varphi_Q) &= r_1 \\
\delta_T^*(\varphi_Q, \varphi_R) &= r_2, \quad \text{in detail}\quad \frac{s}{(ab)^2} \begin{bmatrix} -b^2 & 0 & -ab \\ 0 & 0 & ab \\ 0 & -a^2 & -ab \end{bmatrix} \begin{bmatrix} Z_x \\ Z_y \\ Z_s \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}
\end{align*}
$$

Clearly, $Z_x = -(r_1 + r_2) a^2/s$, $Z_y = -(r_2 + r_3) b^2/s$ and $Z_s = r_2 a b/s$. This together with

(i) $r_i \leq 0$ for $i = 1, 2, 3$ yields

(ii) $\det \begin{bmatrix} Z_x & Z_s \\ Z_s & Z_y \end{bmatrix} \geq 0$. This result and (20) imply

(iii) $\det \begin{bmatrix} T_x & T_s \\ T_s & T_y \end{bmatrix} \geq 0$. At the same time, we have
(iv) \(T_x + T_y \geq 0: T_x + T_y = Z_x + Z_y + 2a^T b Z_s \geq Z_x + Z_y - 2 \sqrt{(Z_x Z_y)} \geq 0 \)
by virtue of (20), (ii), (i).

The statement follows by (iii) and (iv).

Hence the eigenvalues of the tensor \(\begin{bmatrix} T_x + \varepsilon & T_s \\ T_s & T_y + \varepsilon \end{bmatrix} \) of the so-called artificial diffusion are greater than those of the tensor \(\begin{bmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{bmatrix} \) of diffusion. Another way how to increase the diffusion coefficients in the bilinear form \(a \) in order to arrive at a bilinear form satisfying Lemma 5.4 is presented in [19]. Now, we construct a linear operator \(L_t: V_t \rightarrow V_{t*} \) such that

\[
a(u, L_t v) = b(u, v) \quad \forall u, v \in V_t,
\]

\[
supp L_t v \subseteq supp v \quad \forall v \in V_t.
\]

5.6. Definition. Let us put

\[
N_\varepsilon(P) = \{ Q \in N_\varepsilon; Q \in supp \varphi_P \}, \quad N_{\varepsilon*}(P) = \{ R \in N_{\varepsilon*}; R \in supp \psi_P \}
\]

for an arbitrary node \(P \in \mathcal{S}_t \).

In Fig. 10, the sets \(supp \varphi_K \) and \(supp \psi_K \) are sketched. Obviously, \(N_\varepsilon(K) = \{ A, B, C, D, E, K \} \) and \(N_{\varepsilon*}(K) = \{ F, G, H, I, J, K \} \).

5.7. Definition. Let us define a linear operator \(L_\varepsilon: V_t \rightarrow V_{t*} \) such that

\[
L_\varepsilon \varphi_P = \sum_{R \in N_{\varepsilon*}(P)} x_{P,R} \psi_R
\]

Fig. 10
and the coefficients \(x_{P,R} \) satisfy the system of equations

\[
(21) \quad a(\varphi_Q, L_r \varphi_P) = b(\varphi_Q, \varphi_P) \quad \forall Q \in \mathcal{N}_r(P)
\]

for any node \(P \in \mathcal{T}_r \).

Regarding the analysis of the one-dimensional cases, the systems (21) are solved by a weighted least squares method, making coefficients \(x_{P,R} \) as small as possible. Hence in general, (21) need not be satisfied exactly.

In 5.8 and 5.9, the following notation will be used:

\[\Omega = (0, 1) \times (0, 1),\]

\(g \) is a linear spline on the boundary \(\Gamma \) of \(\Omega \), related to the standard equidistant net with step 0.05 such that

\[g(x, y) = \begin{cases} 1 & \text{for } y = 0 \lor (x = 1 \land y \leq 0.2) \\ 0 & \text{for } y \geq 0.25 \lor (x = 0 \land y \geq 0.05)\end{cases}\]

\(\tau \) = the uniform triangulation shown in Fig. 11.

5.8. Example. An approximate solution of the problem

\[
(22) \quad -10^{-6} \Delta u - 0.8 \frac{\partial u}{\partial x} + 0.6 \frac{\partial u}{\partial y} = 0 \quad \text{on } \Omega,
\]

\[u = g \quad \text{on } \Gamma\]
has been computed in the space V_T. From its graph in Fig. 11, one can see that the inner layer along the segment AB (A = (1, 0.2) and B = (0, 0.95)) is preserved. This result is comparable with a solution of the same problem, published in [5]. Since the coefficients in (22) are constant and T is a uniform triangulation, the shape of all the test functions $L_{r,p}$, $P \in \mathcal{F}_r$, is the same. See Fig. 12. Likewise, the artificial diffusion on triangles is of two types only. It is shown in Fig. 13.

\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{fig12}
\caption{Fig. 12}
\end{figure}

\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{fig13}
\caption{Fig. 13}
\end{figure}

5.9. Example. Two approximate solutions of the problem
\begin{equation}
-10^{-6} \Delta u + u = xy \quad \text{on } \Omega, \quad u = g \quad \text{on } \Gamma
\end{equation}
have been computed. One, u^h, for the triangulation τ and the other, u^{2h}, for the triangulation τ_0 defined by $\tau_0^* = \tau$. It is well-known that the exact solution u coincides with the function $u_0 = xy$ outside the boundary layers. Let us denote
\[\|v\|_t = \max \{|v(P)| : P \in \mathcal{F}_t\} \]
for each continuous function v on Ω and $t = \tau, \tau_0$. We have
\[\|u^{2h} - u_0\|_{\tau_0} = 0.0007229 \quad \text{and} \quad \|u^h - u_0\|_{\tau} = 0.0001811 .\]
Hence, the seminorm of error seems to be proportional to h^2. The shape of test functions $L_{x_0, \varphi_p, P \in \mathcal{F}_{x_0}}$ can be seen in Fig. 14.

Fig. 14

References

Souhrn

PETROVOVA-GALERKINOVA APROXIMACE PROBLÉMŮ TYPU KONVEKCE-DIFÚZE A REAKCE-DIFÚZE

JOSEF DALÍK

V předloženém článku je prezentována nová obecná konstrukce testovacích funkcí jako varianta Petrovovy-Galerkinovy metody. Je využita při tvorbě a teoretické analýze nových algoritmů pro numerické řešení Dirichletovy úlohy pro diferenciální rovnici \(-u'' + pu' + qu = f\) na intervalu \((0, 1)\). Pozornost je soustředěna na případ, kdy kladné číslo \(e\) je podstatně menší než hodnoty funkcí \(|p|\) a \(q\). Je navržen rovněž algoritmus pro numerické řešení odpovídající rovinné úlohy a jsou uvedeny výsledky numerických experimentů.

Author’s address: Dr. Josef Dalík, katedra matematiky a deskriptivní geometrie stavební fakulty VUT, Barvičova 85, 662 37 Brno.