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A NEW APPROACH TO REPRESENTATION OF OBSERVABLES 

ON FUZZY QUANTUM POSETS 

LE BA LONG 

(Received November 26, 1990) 

Summary. We give a representation of an observable on a fuzzy quantum poset of 
type II by a pointwise defined real-valued function. This method is inspired by that of 
Kolesarova [6] and Mesiar [7], and our results extend representations given by the author 
and Dvurecenskij [4], Moreover, we show that in this model, the converse representation 
fails, in general. 
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1 . INTRODUCTION 

By a fuzzy set we understand a real-valued function a from a given non-void set 

0 into the interval [0,1], and we say that 

p | a t := infa t, 
i 

( Ja t := supat, 
t 

a 1 := 1 - a 

are the fuzzy intersection, the fuzzy union of the fuzzy sets a t 's, and the fuzzy 

complement of the fuzzy set a, respectively. 

Two models of fuzzy quantum posets were considered by A. Dvurecenskij, F. Cho-

vanec, F. Kopka and L. B. Long in [1, 2, 3, 4, 8], where two fuzzy sets a and b are 

said to be orthogonal, notation aJ_6 iff a + 6 ^ 1, and fuzzy orthogonal, notation 

a±.pb iff a D b ^ ~. (See also Mesiar [9].) 
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By a model I and model II of a fuzzy quantum poset we understand a couple 

(Q, M), where 0 is a non-void set and M C [0, l ] n is a system of fuzzy sets such that 

(i) If 1(UJ) = 1 for any w G i l , then 1 £ M; 

(ii) if a E M, then a 1 := 1 - a E M; 

(iii) if §(u>) = ± for any u> € ft, then f £ M; 
oo 

(iv) (model I) if { a n } ^ ^ C M, an±Fam for any n ^ m then (J an £ M; 
n = l 

(model II) if {anjJJ'Lj C M, anJLam for any n ^t m then (J an 6 M. 
n = l 

oo 

If (iv) is replaced by a stronger form (iv)* \J an £ M for any sequence { a n } ^ ! C 
n = l 

M, then (E,M) is said to be a fuzzy quantum space; this model was originally in­

troduced by Riecan [12] as a new axiomatic model of quantum mechanics. Similarly, 

the model II was suggested by J . Pykacz [11]. 

It is obvious that a fuzzy quantum space is a fuzzy quantum poset, and a model 

I of a fuzzy quantum poset is a model II, but the converse is not true, in general, as 

we can see below. 

E x a m p l e 1 . Put Q = [0,1]. Consider 

f 0.7 if 0 ^ u) < 0.6 
a(w) = < 

1 0.3 if 0.6 *C u> ^ 1, 

f 0.4 if 

\ 0.6 if 

0 ^ ш < 0.8 

0.8 ^ u) ^ 1, 

c = a U a x ; d^böb1. 

Put M = {0, l ,a,6,c, a1, a 1 , ^ 1 ^ 1 , ^ 1 } , then (Q,M) is a model II of a fuzzy 

quantum poset. 

On the other hand, we see that aLpb but aU6 ^ M, hence (Q, M) is not a model I. 

2 . REPRESENTATIONS OF OBSERVABLES 

We recall that an observable X on (Q, M) is a function from B(R), the cr-algebra 

of Borel sets of the real numbers J?, into M such that 

(i) X(EC) = X(E)L for any E G B(R). 
oo 

(ii) X{U?=lEi) = (J X(Ei) for any Et € B(R). 
i = \ 
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A simple example of an observable is a mapping Xa, where a is a fixed fuzzy 

element of M, defined by 

(1) Xa(E) 

a U a 1 if 0, 1 Є E 

a if 0 <£ E, 1 Є E 

a 1 if 0 Є Ey 1 g E 

a П a 1 if 0 ,1£ E 

for any E G B(R). 

Xa plays the role of the indicator of the fuzzy set a G M. If X is an observable 

on M and £ , F G £ ( # ) , Kn F = 0, then X(K)±K(F) as well as X(E)LFX(F). 

Indeed, we have K(FC) = X(E U (Fc n Ec)) = K(F) U K(FC n Kc), which entails 

the orthogonality of X(E) and X(F). 

Let us define 

K(M) := { A C Q ; 3a £M; {a > \} C A C {a ^ ±}}, 

where {a > | } := {cv G 0; a(a;) > | } , analogously for {a ^ ^ } . 

Let (Q, M) be a model I or II of fuzzy quantum posets. Let a be a given fuzzy set 

of M. Put 

Ma = { 6 G M ; 6 U 6 1 = a U a 1 } , 

Cta = {u>eQ;a(u>)j: - } , 

Qa(b) = {u> G -la : 6(w) = (a U a1)(a;)} 

- -{wGi la : b(u>) > - } , for any 6 G Ma , 

Qa = {tta(b)\b€Ma}. 

We see that if 6U61 = aUa1 , then a±6 iff aLFb. Therefore, Theorems and Lemmas 

2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3 for model I proved in [4] (see also A. Dvurecenskij, 

F. Chovanec, F. Kopka [2]) are still valid for model II. 

We recall that C is called a a-cr-algebra of subsets of a non-void set Q, if 

(i) O e C; 

(ii) if A £ C, then fi - A € C; 
OO 

(iii) if {Ai}flx C C, Ai n A, = 0 for any t # i , then (J At G C. 
t=i 

The following theorems for model II of fuzzy quantum posets can be proved by 

methods analogous to those in [4] and, therefore, their proofs are omitted. 
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Theorem 2. (i) Qa is a q-a-algebra, for any a £ M. 

(ii) Tiie mapping 0 a ( ) " M a —• Qa defined by b «—• fia(6) 

is a a-orthoisomorphism, i.e., it is bijective and preserves the maximal elements, 

complements and joins of any sequences of mutually orthogonal elements. 

T h e o r e m 3. Let X be an observable on (Q, M), then fcAere is a unique function 

<p: ftx(R) —• R SUCD tnat <P ls Qx(R)~measurahle and 

(2) QX(R)(X(E)) = 9-
l(E), E € B(R). 

Conversely, for any Qa-measurable mapping <p: f2a —• R, where a £ M, there is a 

unique observable X of(Q, M) with X(R) = a U a 1 such that (2) holds. 

T h e o r e m 4. Let X be an observable of a fuzzy quantum poset (Q, M), and let 

Q be the set of all rational numbers. For any r G Q denote Bx(r) = X((—oo,r)). 

The system {Bx(r); r G Q} fulfills the following conditions: 

(i) Bx(s) < Bx(t) ifs < t; s,t G Q; 

(ii) U Bx(r) = a; f] Bx(r) = aL; 

(iii) U Bx(s) = Bx(r), reQ; 

(iv)Bx(r)\JBx(r)L=a,r€Q, 

wherea = X(R), aL = K(0). 

Conversely, let {B(r)\ r G Q} be a system of fuzzy sets from M fulfilling the 

conditions (i)-(iv) for some a £ M. Then there is a unique observable X on (Q, M) 

sucii that Bx(r) = B(r) for any r G Q and X(R) = a. 

A representation of fuzzy observables in model I of fuzzy quantum posets was 

given by the author and A. Dvurecenskij [4], and for fuzzy quantum spaces by A. 

Dvurecenskij [5]. In both cases the proofs have used an embeddings of M onto ortho-

complemented, (T-orthocomplete, orthomodular poset and a Boolean er-algebra M/Jo 

(see [4, 5]), respectively, and the representation of M/Jo by K(M)'s. An interesting 

direct method of representation of observables via pointwise, K(M)-measurable real-

valued functions, has been presented by Kolesarova [6] and Kolesarova and Mesiar 

[7]. Applying this method we will give a representation of fuzzy observables on 

model II. 

Theo rem 5. Let (Q, M) be a model II of a fuzzy quantum poset, let X be an 

observable on M. Then there is a K(M)-measurable function f: il —* R such that 

(3) {X(E)>\}C f-\E) C{X(E)>\) 
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for any Borel set E. Moreover, if g is any K(M)-measurable7 real-valued function 
on ft, then g fulfills (3) iff 

{ a ; E f i ; / ( a ; ) ^ < / ( a ; ) } C { K ( 0 ) = I } . 

P r o o f . According to Kolesarova [6], for any given UJ from ft we consider X(u>,.): 

R — [0,1] defined by 

T H X(u>,t) = X((-ooyt))(u>). 

From the properties of fuzzy observables (Theorem 4) it follows that X(UJ, .) is a 
non-decreasing function with two values, X(R)(UJ) or 1 — X(R)(UJ). Therefore, there 
exists civ £ R such that 

/ * ( * ) ( « ) i f < > a w , 
A(w,n = < 

\l-X(R)(w) if t^aw, 

aw = sup{* € R; X(w,t) = l-X(R)(w)} ifX(R)(w) -. | . In the case X(R)(w) = \, 
aw can be chosen arbitrarily. 

It is clear that X((-oo,aw])(w) = X((-oo, aw))(w) UX({aw})(w). Thus 

X({aw})(w) = X(R)(w). 

Further, X(E)(w) assumes only two values, X(R)(w) or 1 - X(R)(w). Hence X can 
be written in the form 

J X(R)(w) if aw£E 
X{E){U) ~ { l - X(R)(w) if aw £ E; 

Now we consider a function / : ft —• R defined by 

UJ t—• / ( c - j ) = flu;-

We claim to prove that / fulfills the conditions of the theorem. To prove that, it 
suffices to verify that 

{X(E)>\}C f~l(E) C{X(E)>.\}. 

This is straightforward from the definition of / and (4). 
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Now, let g be a K(M)-measurable function with the condition (3). Then 

{ w G i ] ; / H < g(u>)} = | J {UJ G ft; / H < r < $(w)} 

= ( J {u> G ft; / H < r} n {w G ft; # H > r} 
reQ 

Q [J{UJ E fi; / H < r} n {a; G 0; tfH ^ r} 

C | J { a ; G f t ; K ( ( - o o , r ) n [ r , o o ) ) ^ ) ^ I } 

= {wGf t ;K (0 )H = ±}> 

where Q is the set of all rational numbers. Similarly, {u) G ft; / ( ^ ) > ^(w)} Q 

{a; G 0 ; * ( 0 ) H = | } . Thus {a; G ft; /(a;) # g(v)} C {u; G ft; X(0)H = ±}. 

Conversely, if g is a K(M)-measurable function from ft into R such that A := {a; G ft; 

/(a;) / <jf(u>)} C {a; G ft; X(0)(u>) = | } we claim to verify the condition (3). It is 

clear that if X(E)(u)) > \ then u) $ A. So u) G f~l(E) n Ac = g~l(E) 0 Ac, this 

means that {X(E) > \] C g~l(E). On the other hand, if CJ G g~l(E), there are two 

cases: 

(i) u> G -4, then K(0)(u>) = f = .X(.E?)(w); 

(ii) cv £ v4, Then u; G f~l(E), therefore X(E)(u) ^ | which entails g~l(E) C 

{ K ( ^ ) ^ I } . D 

The converse of Theorem 5 for model I of fuzzy quantum posets was proved in [4], 

but it is not true for model II, in general, as we show below. 

C o u n t e r e x a m p l e 6. Let ft = [0,1], a, 6, c, d be as in Example 1. 

f 0.1 if 0 ^ UJ < 0.6 or 0.8 ^ UJ ^ 1, 
Put e M = { 

[0 .9 if 0.6 ^ UJ < 0.8; 

f(u) = 0.9 for O^UJ <$ 1; 

and M = {0,1, a, 6, c, d, e, / a 1 , 61 , c 1 , d1 , e 1 , / - } . Then (ft, M) is a type II of fuzzy 

quantum posets. 

We see that K(M) = {0, ft, A, H, C,AC, £ c , C c}, where A = [0,0.6); H = [0.8,1]; 

C = [0.6,0.8). Hence K(M) is a <r-algebra. Therefore, the function h = I^c -f 2I#c, 

where I^c, IBc are indicators of the sets Ac and Bc, respectively, is I\"(M)-measurable 

and such that 

h~l({\}) = AC-C = B, /i_1({2}) = Bc - C = -4, A " 1 ^ } ) = C. 
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On the other hand, there exist unique a, 6 and e such that 

{a>i}ac{a^}, 
{ 6 > i } C 5 C { 6 ^ i } , 

{ e > i } C C C { e ^ I } , 

but a U a x / 6 U b1 / e U e 1 ^ - o U a 1 . Therefore, there exists no observable X on 

(ft, Af) such that (3) holds. • 

For any sequence {an}J!fLi of fuzzy sets of a model II fuzzy quantum poset (ft, M) 
oo 

there exist lK z= f] (an U a ^ ) G M and 0K = l £ G M. However, in general 
n = l 

an n 1/f U Ox does not belong to M if (ft, M) is not a type I, which entails that the 

converse of Theorem 5 fails for type II, in general. Nevertheless, we have a converse 

of Theorem 5 in the following case. 

T h e o r e m 7. Let (ft, M) be a model II fuzzy quantum poset such that 

(5) a n n( Q(amUa^)J eM 

for any n ^ 1 and any sequence {an }£°=1 ofM. If f: ft —* R is any K(M)-measurable 

function, then there exists an observable X of (ft, M) with (3). IfY is any observable 

of(Q,M) with (3), then X(E)±FY(EC) for any E G B(R). 

The theorem can be proved by a method analogous to the proof of Theorem 5.2 

in [4]. Therefore, the proof is omitted. 

It should be noted that a model II of a fuzzy quantum poset with the condition 

(5) need not be a model I, see the following example. 

E x a m p l e 8. Let ft, a, 6, c, a1, be as in Example 1. 

f 0.6 i f 0 ^ u ; < 0 . 6 , 
Put g(w) = < 

\ 0 . 4 if 0.6 ^ u ; ^ 1, 

put M = {0, l,a,6,c,a,,^,a-L,6J-,c-L,a,-L,g-L,5fU6,5f-1-n6J-}. Then (ft,M) is a model 

II of a fuzzy quantum poset with (5) but it is not a model I. 

T h e o r e m 9. Let X be an observable of a model II of fuzzy quantum poset (ft, M) 

and let <p: ftx(R) —> R be a unique Qx(R)-measurable function on ft. Then f fulfills 
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condition (3) of Theorem 5 iff 

I vo(^) ifu e fi 

Л-(Я), 

ÍЪr(Д). 

where <po is any mapping from Q — £lx(R) into R. 

P r o o f . Theorem is proved by a method similar to the proof of Theorem 5.4 [4]. 

D 

Following the ideas from [7], we arrive at the following result. 

Theorem 10, Let X be an observable on a model II of a fuzzy quantum poset 

(Q,M). Then there is a K(M)-measurable, real-valued function f and a fuzzy set 

ce Wi(M)such that 

íc(w) 
(") = < 

ifuЄf-ҚE) 

j) ifu f f l(E) 

for any E e B(R). 

Conversely, if f is a K(M)-measurable real-valued function and c e W\(M) is 

such that for any E e C the right-hand side of (6) determines fuzzy sets X(E) from 

M, where C is a a-countable generator ofB(R) which is closed with respect to finite 

intersection, for example C = {(—oo, r)\ r e Q}, then (6) defines a unique observable 

x of(n,M). 

P r o o f . If X is an observable, then from Theorem 5 we have an / : 0 —• R such 

that (3) holds. If we put c = X(R), then (6) is true. 

Conversely, let B be the set of all E € B(R) such that (6) defines X(E) E M. 

Then 

(i) 0, R e -9, C C B; 

(ii) if E e B, then Ec e B and X(EC) = X(E)1; 

(iii) if E, F e C then E n F G C C B\ 

(iv) if E, F e B, E n F = 0 then X(E)1X(F); 

(v) if {Ei}fexBt Ei n Ej = 0, i ± j , then 

/ DO v w 

•(u*)-u 
oo 

X(EІ) Є M. 

Hence j 
oo 

(J Ei e B. 

« ' = 1 
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Due to Proposition 4.13 and Theorem 4.20 by Neubrunn and Riecan [10], we see 
that B = B(R). Therefore, X is an observable on (ft, M). • 

R e m a r k . If (ft,M) is a type I of fuzzy quantum posets, then for any K(M)~ 

measurable function / : ft —* R there exists c 6 W\ (M) such that (6) always defines 
an observable X of (ft, M). 

3 . SUMMABILITY OF OBSERVABLES 

Let X, Y be two observables on a model I, II of fuzzy a quantum poset (ft,M). 
Let Q be the set of all rational numbers. 

Put Bz(t) = (J Bx(r) C\By(t- r), t £ Q. 

We see that if there exists Bz(t) E M for any t € Q, then {Bz(t); t G Q} fulfills 

the conditions of Theorem 3. Therefore, there exists a unique observable called the 

sum of X and Y and we write Z = X + Y; X and Y are said to be summable. 

Let X be an observable on M. We write X ~ / and X « ipx if / is defined by 

Theorem 4 and <px by Theorem 3. 

Proposition 11. Let X, Y be two observables on a model I, II of a fuzzy quantum 

poset (ft, M) and let X ~ / , Y ~ g, X « <px, Y w <PY- If X and Y are summable 

then f+g is also K(Mymeasurable and X + Y ~ f+g, (X+Y)(R) = XCR)n^(#). 
Therefore <px + <PY is Q(jr+Y)(K)--wasuraiWe and X + Y « <px + <PY • 

P r o o f . Let K + Y ~ A. We see that: 

{Bx+Y(t) > | } C {ft < 0 C {B*+y(0 ^ | } . 

On the other hand, for any t, r € Q-

{Bx(r) C\BY(t-r)>±}C{f<t)n{g<t-r}C {Bx(r) n B y ( f - r ) ) | } . 

Hence 

{ U 5 * ( r ) n £ M < - r ) > 2 } g U l I * < < > n l » < < ~ r l 

c{Us*(r)niM'-r)H}' 
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i.e. {Bx+Y(t) > | } C { / + j < ( ) c {BX+Y(t) >. §}. Therefore 

{f + g<h}C {J{f + g<r}n{h>r} 
rGQ 

C U iBx+Y(t) >. 1} n {Bx+Y(t) > \}c 

>-€Q 

C U I5x+y(<) = | } = {(* + Y)(R) = |} 
r€Q 

In the same way, we see also that { / + g > h) C {(X + Y)(R) = ±}. Hence 

A := {h = f + g} C {(X + Y)(R) = I } . Thus A< D {(X + Y)(E) > i } for 

any Borel set E. We see that ( / + g)~l(E) C\ A € K(M) for any Borel set E. So 

( / + 9)~l(E) C\AC = h~l(E) n Ac 

{(x + Y)(E) > i} c h~\E) n A* c {(x + y)(£;) ^ i}. 

On the other hand, 

( / + g)--(E) = ( ( / + g)--(E) n A) u ( ( / + y ) - 1 ^ ) n Ac). 

Hence {(K + Y)(E) > 1} C (f + g)~l(E) C {(X + Y)(£) ^ 1} for any Borel set K, 

which entails K(M)-measur ability of / -f g and X + Y ~ f + g. 

It can be proved that if X, Y are summable then (X + Y)(R) = K(#) O Y(#) . 

Therefore, <px 4-^Y is Q(X+Y)(/*)-measurable and X-f Y « <px + ^>y, by Theorem 9. 

D 

As we can see from the following, the sum of two observables on a fuzzy quantum 

poset need not always exist. 

E x a m p l e 12. Let Q = [0,1]. Put M = {0, 1, a0, 60, c, d,a£, &£, c 1 , a11}, where 

• ( K u ; < 0 . 6 , 
ao(w) = < 

• 0 . 6 ^ w $ 1, 

f 0.7 if I 

[0.3 if 

f 0.4 if 0 <. u < 0.8, 
bo(u) = \ 

[0.6 if0.8<.w<_ 1, 

c(w) = 0.7 O ^ w ^ l , 

d(u) = 0.6 0 <_ u <. 1. 
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Then (ft, M) is a model II of a fuzzy quantum poset, and 

K(M) = ( 0 , Q , ^ , H , ^ C , 5 C ) , 

where A = [0,0.6); B = [0.8,1]. K(M) consists only from two proper sub a-algebras 
{0, ft, ,4, Ac}, {0, ft, B, Bc}. Therefore / : ft -> R is K(M)-measurable iff / = aIA + 

(3IAc or / = JIB +SIBC, where a,/3,j,6 E I?. 

Let Xao> -̂ 6o be two observables on (ft,M) defined via (1). Then it is clear that 
Xao ~ I>i) Xf,Q ~ IB- But I^t + IB is not K(M)-measurable. Therefore, it follows 
from Proposition 10 that Xao and Kj,0 are not summable on (ft,M). • 

Definition 12. Let (ft, M) be a model I or II of a fuzzy quantum poset. Let 
Xi ~ /, for i = 1,2, . . ., N, where N can be either integer or oo, and let F: RN —+ I? 
be a Borel measurable function. We define F(Xi,... , X/v) as any observable X of 
(ft, M) such that 

(i) F(/i,..., //v) is K(M)-measurable; 
( i i ) X ~ F ( / 1 ) . . . , / J V ) ; 

(iii) X(R) = 0 Xi(fl). 
1 = 1 

It is easy to verify that such an X is unique. We recall that if N = oo, then by F 

we mean some limit expressions, or convergence, respectively. 

This definition enables us to define a calculus of observables. For example, let 
F(u, v) — u + v\ u,v £ R. If X and Y are summable and X ~ /, Y ~ g, then 
X + Y ~ F(/,g), i.e. X + Y = F(K, Y). If we consider G(uy v) = u.v, u,v e R and 
there exists XY then K.Y - G(f,g), XY = G(X, Y). 

If (ft, M) is a quantum space, the conditions of Definition 12 are fulfilled for any 
F: RN —* I2. Consequently, in this case we can always define F(Xi,..., Kjv)- In a 
model I, II of fuzzy quantum posets, this is not true, in general. (It suffices take into 
account the summation.) 
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