Chaitan P. Gupta
Solvability of a forced autonomous Duffing's equation with periodic boundary conditions in the presence of damping

Persistent URL: http://dml.cz/dmlcz/104546

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
SOLVABILITY OF A FORCED AUTONOMOUS DUFFING’S EQUATION WITH PERIODIC BOUNDARY CONDITIONS IN THE PRESENCE OF DAMPING

CHAITAN P. GUPTA, Reno

(Received April 22, 1992)

Summary. Let \(g: \mathbb{R} \to \mathbb{R} \) be a continuous function, \(e: [0, 1] \to \mathbb{R} \) a function in \(L^2[0, 1] \) and let \(c \in \mathbb{R}, \ c \neq 0 \) be given. It is proved that Duffing’s equation \(u'' + cu' + g(u) = e(x), \ 0 < x < 1, \ u(0) = u(1), \ u'(0) = u'(1) \) in the presence of the damping term has at least one solution provided there exists an \(R > 0 \) such that \(g(u)u \geq 0 \) for \(|u| \geq R \) and \(\int_0^1 e(x) \, dx = 0 \). It is further proved that if \(g \) is strictly increasing on \(\mathbb{R} \) with \(\lim_{u \to -\infty} g(u) = -\infty, \ \lim_{u \to \infty} g(u) = \infty \) and is Lipschitz continuous with Lipschitz constant \(\alpha < 4\pi^2 + c^2 \), then Duffing’s equation given above has exactly one solution for every \(e \in L^2[0, 1] \).

Keywords: Duffing’s equation, damping

AMS classification: 34B15, 34C25, 47H15

1. INTRODUCTION

Let \(g: \mathbb{R} \to \mathbb{R} \) be a continuous function, \(e: [0, 1] \to \mathbb{R} \) a function in \(L^2[0, 1] \) and let \(c \in \mathbb{R}, \ c \neq 0 \) be given. This paper is devoted to the existence of a solution of the forced autonomous Duffing’s equation

\[
 u'' + cu' + g(u) = e, \quad 0 < x < 1,
\]

\[
 u(0) = u(1), \quad u'(0) = u'(1).
\]

We call the equation in (1.1) “autonomous” since the nonlinear function \(g \) is independent of \(x \). When \(g \) is a function of both the variables \(x \) and \(u \), i.e. \(g: [0, 1] \times \mathbb{R} \to \mathbb{R} \) is a function satisfying Caratheodory’s conditions, the non-autonomous Duffing’s
equation
\[u'' + cu' + g(x, u) = e, \quad 0 < x < 1, \]
\[u(0) = u(1), \quad u'(0) = u'(1) \]

(1.2)

has been extensively studied earlier (see e.g. [1], [2], [3], [4], [8], among others). It was shown, for example, by Gupta in [1] that if there exists a \(\rho > 0 \) such that \(g(x, u)u \leq 0 \) for a.e. \(x \in [0, 1] \) and all \(u \in \mathbb{R} \) with \(|u| \geq \rho \) then (1.2) has at least one solution provided \(\int_0^1 e(x) \, dx = 0 \). In the case when there exists a \(\rho > 0 \) such that \(g(x, u)u \geq 0 \) for a.e. \(x \in [0, 1] \) and \(|u| \geq \rho \), it was shown in [3] that (1.2) has at least one solution provided \(\int_0^1 e(x) \, dx = 0 \) and \(\lim \sup_{|u| \to \infty} \frac{g(x, u)}{u} \) is strictly less than \(4\pi^2 + e^2 \). Now when \(c \neq 0 \), then \(4\pi^2 + e^2 > 4\pi^2 \), which is the second eigenvalue of the linear eigenvalue problem

\[-u'' = \lambda u, \]
\[u(0) = u(1), \quad u'(0) = u'(1). \]

(1.3)

It was remarked in [3] that \(\lambda = 0 \) is the only eigenvalue of the linear eigenvalue problem when \(c \neq 0 \),

\[u'' + cu' = \lambda u, \]
\[u(0) = u(1), \quad u'(0) = u'(1) \]

(1.4)

to explain that the nonlinearity in \(g(x, u) \) can resonate beyond the second eigenvalue \(4\pi^2 \) of the linear eigenvalue problem (1.3). Indeed, the author feels that when \(c \neq 0 \) and \(g(x, u)u \geq 0 \) for a.e. \(x \in [0, 1] \) and \(|u| \geq \rho \), then the boundary value problem (1.2) should have at least one solution when \(\int_0^1 e(x) \, dx = 0 \). But this is not known at this time. The purpose of this paper is to prove this conjecture in the case of the autonomous boundary value problem (1.1) when \(c \neq 0 \). The autonomous problem (1.1) was studied, when \(c \neq 0 \), by Nieto and Rao in [8] in the case when \(g: \mathbb{R} \to \mathbb{R} \) is increasing and \(\lim_{u \to \pm \infty} g(u) = g(\pm \infty) \) exists. But this case was already covered in [1] because then \(g \) is bounded on \(\mathbb{R} \) and accordingly, \(\lim_{|u| \to \infty} \frac{g(u)}{u} = 0 < 4\pi^2 \).

Our methods involve using Mawhin’s version of the Leray-Schauder continuation theorem and Wirtinger type inequalities to get the needed estimates. We also present some uniqueness results for the boundary value problem (1.1).
2. Main results

Let \(X, Y \) denote the Banach spaces \(X = C[0, 1] \) and \(Y = L^1[0, 1] \) with their usual norms. Let \(Y_2 \) be the subspace of \(Y \) spanned by the constant function 1 on \([0, 1]\), i.e.,

\[
Y_2 = \{ u \in Y \mid u(x) \equiv c \text{ for a.e. } x \in [0, 1], \ c \in \mathbb{R} \},
\]

and let \(Y_1 \) be the subspace of \(Y \) such that \(Y = Y_1 \oplus Y_2 \). We note that for \(u \in Y \) we can write

\[
(2.1) \quad u(x) = \left(u(x) - \int_0^1 u(x) \, dx \right) + \left(\int_0^1 u(x) \, dx \right)
\]

for \(x \in [0, 1] \). We define the canonical projection operators \(P: Y \to Y_1 \), \(Q: Y \to Y_2 \) by

\[
(2.2) \quad P(u)(x) = u(x) - \int_0^1 u(x) \, dx,
\]

\[
Q(u) = \int_0^1 u(x) \, dx
\]

for \(u \in Y \). Clearly, \(Q = I - P \), where \(I \) denotes the identity mapping on \(Y \), and the projections \(P \) and \(Q \) are continuous. Now let \(X_2 = X \cap Y_2 \). Clearly \(X_2 \) is a closed subspace of \(X \). Let \(X_1 \) be the closed subspace of \(X \) such that \(X = X_1 \oplus X_2 \). We note that \(P(X) \subset X_1 \), \(Q(X) \subset X_2 \) and the projections \(P|X: X \to X_1 \), \(Q|X: X \to X_2 \) are continuous. In the following, \(X, Y, P, Q \) will refer to the Banach spaces and projections as defined and we will not distinguish between \(P, P|X \) (resp. \(Q, Q|X \)) and rely on the context for proper meaning.

Also for \(u \in X, v \in Y \), let \((u, v) = \int_0^1 u(x)v(x) \, dx \) denote the duality pairing between \(X \) and \(Y \). We note that for \(u \in X, v \in Y \) such that \(u = Pu + Qu \), \(v = Pv + Qv \) we have

\[
(2.3) \quad (u, v) = (Pu, Pv) + (Qu, Qv).
\]

Let \(c \in \mathbb{R}, c \neq 0 \) be given. Define a linear operator \(L: D(L) \subset X \to Y \) by setting

\[
(2.4) \quad D(L) = \{ u \in X \mid u'(x) \in AC[0, 1], \ u(0) = u(1), \ u'(0) = u'(1) \},
\]

and for \(u \in D(L) \),

\[
(2.5) \quad Lu = u'' + cu'.
\]
(Here $A C^0[0,1]$ denotes the space of real-valued absolutely continuous functions on $[0,1]$. It is easy to see that L is a linear Fredholm mapping with $\ker L = X_2$, $\text{Im} L = Y_1$. Further, the mapping $K : Y_1 \to X_1$, defined for $u \in Y_1$ by

$$ (Ku)(x) = v(x) - \int_0^1 v(x) \, dx, $$

where

$$ v(x) = \int_0^x \int_0^t e^{c(t-\xi)} u(t) \, dt \, d\xi - \frac{e^{-cx} - 1}{c(e^c - 1)} \int_0^1 e^{ct} u(t) \, dt, $$

(note that we have assumed $c \neq 0$), satisfies the following conditions:

(i) for $u \in Y$, we have $KP(u) \in D(L)$, $LK P(u) = P(u)$,

(ii) $(KP(u), P(u)) \geq -\frac{1}{(4\pi^2 + c^2)} \|P(u)\|_{L^2[0,1]}^2$.

Indeed, note that for $v = KP(u) \in D(L)$,

$$ (KP(u), P(u)) = (v, Lv) = -\int_0^1 v'' \, dx \geq -\frac{1}{4\pi^2 + c^2} \|Lv\|_{L^2[0,1]}^2 $$

and so $(KP(u), P(u)) \geq -\frac{1}{(4\pi^2 + c^2)} \|P(u)\|_{L^2[0,1]}^2$ since

$$ \|Lv\|_{L^2[0,1]}^2 = \int_0^1 (v'' + cv')^2 \, dx = \int_0^1 \left[(v'')^2 + 2cv'v'' + c^2(v')^2 \right] \, dx $$

$$ = \int_0^1 \left[(v'')^2 + c^2(v')^2 \right] \, dx \geq (4\pi^2 + c^2) \int_0^1 v''^2 \, dx. $$

Let now $g : \mathbb{R} \to \mathbb{R}$ be a given continuous function. Let $N : X \to X \subseteq Y$ be the non-linear mapping defined by

$$ (Nu)(x) = g(u(x)), \quad x \in [0,1] $$

for $u \in X$. It is then easy to see, using Arzèla-Ascoli theorem, that $KPN : X \to X_1$ is continuous and compact.

Theorem 1. Let $g : \mathbb{R} \to \mathbb{R}$ be a given continuous function. Let e, a, A, r, R with $a \leq A, r < 0 < R, c \neq 0$ be such that

$$ g(u) \geq A \text{ for } u \geq R, $$

(2.9) and

$$ g(u) \leq a \text{ for } u \leq r. $$

198
Then, for every given function \(c(x) \in L^2[0, 1] \) with \(a \leq \int_0^1 c(x) \, dx \leq A \), Duffing’s equation

\[
\begin{align*}
 u'' + cu' + g(u) &= c, & 0 < x < 1, \\
 u(0) &= u(1), & u'(0) = u'(1)
\end{align*}
\]

(2.10)

has at least one solution.

Proof. Define functions \(g_1: \mathbb{R} \to \mathbb{R} \) and \(e_1: [0, 1] \to \mathbb{R} \) by setting

\[
 g_1(u) = g(u) - \frac{A + a}{2},
\]

\[
 e_1(x) = c(x) - \frac{A + a}{2}.
\]

Then \(g_1: \mathbb{R} \to \mathbb{R} \) is a continuous function and \(e_1: [0, 1] \to \mathbb{R} \) is such that \(e_1(x) \in L^2[0, 1] \). Furthermore,

\[
 g_1(u) \geq \frac{1}{2}(A - a) \geq 0 \quad \text{for } u \geq R,
\]

\[
 g_1(u) \leq \frac{1}{2}(a - A) \leq 0 \quad \text{for } u \leq R,
\]

and

\[
 \frac{1}{2}(a - A) \leq \int_0^1 e_1(x) \, dx \leq \frac{1}{2}(A - a).
\]

Duffing’s equation (2.10) is equivalent to the equation

\[
\begin{align*}
 u'' + cu' + g_1(u) &= e_1, & 0 < x < 1, \\
 u(0) &= u(1), & u'(0) = u'(1).
\end{align*}
\]

(2.11)

Now, for \(X = C[0, 1] \) and \(Y = L^1[0, 1] \) we consider the Niemytski operator \(N: X \to Y \) defined for \(u \in X \) by

\[
 (Nu)(x) = g_1(u(x)), \quad x \in [0, 1],
\]

and the linear operator \(L: D(L) \subseteq X \to Y \) defined in (2.4), (2.5).

The equation (2.11) is equivalent to the operator equation

\[
 (2.12) \quad Lu + Nu = e_1
\]

199
in X. To solve (2.12) it suffices to solve the system of equations

$$Pu + KPNU = KP_{e_1},$$

$$QN_{u} = Q_{e_1}$$

(2.13)

in X. Indeed, if $u \in X$ solves (2.13), then $u \in D(L)$ and

$$LP_{u} + LKPNU = Lu + PNU = LKP_{e_1} = P_{e_1},$$

$$QN_{u} = Q_{e_1},$$

which gives, on adding, that $Lu + Nu = e_1$.

Now, (2.13) is clearly equivalent to the single equation

$$Pu + QNU + KPNu = KP_{e_1} + Q_{e_1},$$

(2.14)

which has the form of a compact perturbation of the Fredholm operator P of index zero. We can, therefore, apply the version given in [6, Theorem I, Corollary 1] or [7, Theorem IV.4] or [5] of the Leray-Schauder continuation theorem, which ensures the existence of a solution for (2.14) if the set of all possible solutions of the family of equations

$$Pu + (1 - \lambda)Q_{u} + \lambda QNU + \lambda KPNu = \lambda KP_{e_1} + \lambda Q_{e_1},$$

(2.15)

$\lambda \in [0, 1[$, is a priori bounded independently of λ. Now (2.15) is equivalent to the system of equations

$$Pu + \lambda KPNu = \lambda KP_{e_1},$$

$$(1 - \lambda)Q_{u} + \lambda QNU = \lambda Q_{e_1}.$$

(2.16)

Let $u_\lambda \in X$ be a solution of (2.16) for some $\lambda \in [0, 1[$, then $u_\lambda \in D(L)$ and

$$Pu_\lambda + \lambda KPNu_\lambda = \lambda KP_{e_1},$$

$$(1 - \lambda)Q_{u_\lambda} + \lambda QNU_{u_\lambda} = \lambda Q_{e_1}.$$

(2.17)

It follows that

$$Lu_\lambda + (1 - \lambda)Q_{u_\lambda} + Nu_\lambda = \lambda e_1,$$

i.e.

$$u''_\lambda + cu'_\lambda + (1 - \lambda) \int_{0}^{1} u_\lambda(x) \, dx + g_1(u_\lambda) = \lambda e_1,$$

(2.18)

$$u_\lambda(0) = u_\lambda(1), \quad u'_\lambda(0) = u'_\lambda(1).$$

200
Multiplying the equation in (2.17) by u'_λ and integrating over $[0, 1]$ we obtain that

$$c \int_0^1 u'^2_\lambda = \lambda \int_0^1 e_1(x)u'_\lambda(x) \, dx,$$

which implies, using the Cauchy-Schwarz inequality, that

$$(2.19) \quad \|c\|\|u'_\lambda\|_{L^2[0,1]} \leq \|e_1\|_{L^2[0,1]}.$$

Now, we claim that there exists a $\xi \in [0, 1]$ such that $r \leq u_\lambda(\xi) \leq R$. Indeed, suppose that $u_\lambda(x) \geq R$ for every $x \in [0, 1]$, then we get from the second equation in (2.17) and our assumptions on g_1 and e_1 that

$$(1 - \lambda)R + \lambda \cdot \frac{1}{2}(A - a) \leq (1 - \lambda)Qu_\lambda + \lambda QNu_\lambda = \lambda Qe_1 \leq \lambda \cdot \frac{1}{2}(A - a),$$

so that $(1 - \lambda)R \leq 0$, which is a contradiction since $\lambda \in]0, 1[$ and $R > 0$. Similarly, $u_\lambda \leq r$ for $x \in [0, 1]$ leads to a contradiction. This proves the claim.

Next it follows that for every $x \in [0, 1]$

$$|u_\lambda(x)| \leq \max(-r, R) + \int_0^1 |u'_\lambda(x)| \, dx$$

$$\leq \max(-r, R) + \|u'_\lambda\|_{L^2[0,1]}$$

$$\leq \max(-r, R) + \frac{1}{|c|}\|e_1\|_{L^2[0,1]} \equiv C.$$

Hence

$$\|u_\lambda\|_{X} \leq C,$$

where C is a constant independent of $\lambda \in]0, 1[.$

This completes the proof of the theorem.

\[\square \]

Corollary 1. Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$, $c \neq 0$ be given. Suppose there exists an $R > 0$ such that $g(u)u \geq 0$ for $u \in \mathbb{R}$, $|u| \geq R$.

Then for every $c(x) \in L^2[0, 1]$ with $\int_0^1 c(x) \, dx = 0$, Duffing's equation (2.9) has at least one solution.

Proof. The proof follows immediately from Theorem 1 with $a = A = 0$ and $r = -R$. \[\square \]
Theorem 2. Let $g : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function with $\lim_{u \to -\infty} g(u) = -\infty$, $\lim_{u \to \infty} g(u) = \infty$ and let $c \in \mathbb{R}$, $c \neq 0$. Suppose that g is a Lipschitz continuous function with a Lipschitz constant α, i.e.

$$|g(u) - g(v)| \leq \alpha |u - v|$$

for $u, v \in \mathbb{R}$, with

$$\alpha < 4\pi^2 + c^2$$

for all $u \in \mathbb{R}$.

Then for every $c \in L^2[0, 1]$, the boundary value problem

$$u'' + cu' + g(u) = c(x), \quad 0 < x < 1$$

$$u(0) = u(1), \quad u'(0) = u'(1),$$

has exactly one solution u in $X = C[0, 1]$.

Proof. Under our assumptions, it is easy to see that there exist a, A, r, R with $a \leq A$, $r < 0 < R$ such that

$$g(u) \leq A \text{ for } u \geq R,$$

$$g(u) \leq a \text{ for } u \leq r,$$

and

$$a \leq \int_0^1 c(x) \, dx \leq A.$$

Accordingly, Theorem 1 implies that (2.22) has at least one solution u in X.

Let, now, u_1, $u_2 \in X$ be two different solutions for (2.22). Then

$$u_1'' - u_2'' + c(u_1' - u_2') + g(u_1) - g(u_2) = 0, \quad 0 < x < 1.$$

It follows that

$$0 = -\int_0^1 (u_1' - u_2')^2 \, dx + \int_0^1 (g(u_1) - g(u_2))(u_1 - u_2) \, dx$$

$$= -\int_0^1 (u_1' - u_2')^2 \, dx + \int_0^1 |g(u_1) - g(u_2)| |u_1 - u_2| \, dx$$

$$\geq -\frac{1}{4\pi^2 + c^2} \|Lu_1 - Lu_2\|_{L^2[0, 1]}^2 + \frac{1}{\alpha} \int_0^1 |g(u_1) - g(u_2)|^2 \, dx$$

$$= \left(\frac{1}{\alpha} - \frac{1}{4\pi^2 + c^2}\right) \int_0^1 |g(u_1) - g(u_2)|^2 \, dx,$$
in view of (2.23). Using (2.21), we get that
\[g(u_1(x)) = g(u_2(x)) \]
for a.e. \(x \in [0, 1] \), which implies \(u_1(x) = u_2(x) \) for a.e. \(x \in [0, 1] \), since \(g \) is strictly increasing on \(\mathbb{R} \). Hence \(u_1(x) = u_2(x) \) for every \(x \in [0, 1] \) since \(u_1, u_2 \) are continuous in \([0, 1]\).

This completes the proof of the theorem. \(\square \)

Remark 1. Theorem 2 seems to imply that Duffing's equation (2.22) in the presence of the non-zero damping term \(cu' \) has a unique solution as long as the non-linearity \(g(u) \) does not resonate against too many eigenvalues of the linear eigenvalue problem

\[
-u'' = \lambda u, \quad 0 < x < 1, \\
u(0) = u(1), \quad u'(0) = u'(1).
\]

Also, it indicates that while the presence of even a small amount of damping gives existence, the presence of large enough damping ensures uniqueness.

References

Author's address: Chaitan P. Gupta, Department of Mathematics, University of Nevada, Reno; Reno, NV 89557, U.S.A.