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EXPERIMENTS WITH KRYLOV SUBSPACE METHODS 
ON A MASSIVELY PARALLEL COMPUTER 

MARTIN HANKE, Karlsruhe, MARLIS HOCHBRUCK, Zúrich, 
and WlLHELM NlETHAMMER, Karlsruhe 

Summary. In this notě, we compare some Krylov subspace iterative methods on the 
MAS PAR, a massively parallel computer with 16K processors. In particular, we apply 
these methods to solve large sparse nonsymmetric linear systems arising from elliptic par-
tial differential equations. The methods under consideration include conjugate gradient type 
methods, semiiterative methods, and a hybrid variant. Our numerical results show that, 
on the MAS PAR, one should compare iterative methods rather on the basis of total com-
puting time than on the basis of number of iterations required to achieve a given accuracy. 
Our limited numerical experiments here suggest that, in terms of total computing time, 
semiiterative and hybrid methods are very attractive for such MASPAR implementations. 

Keywords: massively parallel computers, iterative methods, nonsymmetric linear sys­
tems, Krylov subspace methods, preconditionings 

AMS classification: 65F10, 65W05 

1. I N T R O D U C T I O N 

The University of Karlsruhe recently installed a massively parallel computer, a 
M A S P A R MP-1 with 16,384 processors. Like the Connection Machine CM-2, the 
M A S P A R is extremely well-suited (cf. Section 3) for the particular data structures 
arising from finite-difference discretizations of elliptic partial differential equations, 
such as 

(1) Lu = -aAu + bux + cuy + du = / in fi = (0, 1) x (0, 1), 
u — g on r = <9íž, 

where a, 6, c, d, / and g are appropriate real-valued coefficient functions. These 
discretizations give rise to large sparse reál nonsymmetric linear systems 

(2) Ax = h. 

The development of iterative methods for (2), and their implementation on modern 
supercomputers is currently an important research area in numerical linear algebra 

440 



(cf., e.g., Freund, Golub, and Nachtigal [5]). It is well-known that on supercomouters, 
and in particular on single-instruction-multiple-data (SIMD) machines, it is not only 
the rate of convergence but also the parallel potential of the particular iterative 
schemes which matters . We refer to Niethammer [12] for a comparison of Krylov 
subspace methods on vector computers, and to Tong [18] for a similar comparison 
on the Connection Machine CM-2. 

In this notě, we want to summarize some of our numerical experiments on the 
M A S P A R with Krylov subspace methods which coinpute an approxirnate solution of 
(2). In Section 2, we give a short description of Krylov subspace methods. These 
can be divided into two main classes: conjugate gradient type methods, and semiit-
erative methods. While the most important basic operation—as far as the nurnber 
of arithmetical operations is concerned—is the samé for both classes, námely the 
matrix-vector product with A, there is nevertheless a major difference between these 
two types of methods: semiiterative methods require certain parameters which de-
pend on a priori required spectral information on A] conjugate gradient type methods 
are parameter-free, but accurnulate similar information by means of inner products 
which are computed during the iterative process. Notě that no inner products arise 
in semiiterative methods. As we will show below, on a massively parallel computer 
like the M A S P A R , it is no longer the matrix-vector multiplication which dominates 
the cost per iteration, because an inner product is more expensi ve in terms of com-
putat ional t ime. Hybrid variants cornbine methods from both classes in order to 
také advantage of their particular properties: typically, a few steps of a conjugate 
gradient type method are performed which acquire enough spectral information on 
A, to switch to a promising semiiterative methods. 

For our numerical experiments we selected representative methods from each class, 
and one hybrid method; we also included preconditioning. In Section 3 we describe 
sorne aspects concerning the implementation of these methods on the M A S P A R . Our 
codes are written in M P L , a parallel extension of C; we emphasize the simplicity of 
the M P L routines. 

In the finál section we present our numerical results. We consider two model 
problems taken from the literatuře. Our results are significantly diíferent, when 
compared on the basis of nurnber of iterations required or on the basis of total 
computing time; the semiiterative methods converged fastest in all our experiments, 
the timings of the hybrid method are also quite promising. 
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2. KRYLOV SUBSPACE METHODS 

Krylov subspace methods are known as powerful methods for the iterative solution 
of linear systems. In each step, they produce approximations xn to the exact solution 
A~lh of the form 

(3) xn = x o + ACn(ro,;4), n = l , 2 , . . . . 

Here xo € R^ is any initial guess for the solution of (2), ro = b — AXQ is the initial 
residual, and 

(4) £ n ( r 0 , A) ~ spán {r0, ArQ)..., An"1r0} 

is the nth Krylov subspace with respect to ro and A. 

In the following, we denote by IIn the set of all complex polynomials of degree at 

most n, and by H the set of all complex polynomials. 

From (3) and (4) it is straightforward to deduce that the nth residual vector 

r n = b — Axn can be written as 

(5) r n = p n ( . 4 ) r o , n = 0 ,1 ,2 , . . . , 

where the so-called residual polynomials pn E IIn fulfill 

P„(0) = 1. 

It is obvious from (5) that the convergence of a Krylov subspace method will be 
fastest if its associated residual polynomials are as small as possible in a region Q 
enclosing the spectrum of A. This leads to the polynomial minimization problém 

max |p n (z ) |= min max|p(z)|, 
zeQ P €n n : P(o)=i zeo v 

for which an exact solution is known only in speciál cases. 

The various Krylov subspace methods diífer in the way they approach the compu-
tation of the residual polynomials. The classical Hestenes-Stiefel conjugate gradient 
(CG) method [8], for instance, chooses the residual polynomials to be orthogonal 
with respect to the inner product 

(P, q) := r%p(A)q(A)r0l p, q E H. 
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As a result, the n th iterate can be computed by means of three-term or coupled 

two-term recurrences, and the residual vectors satisfy a rninimization property in 

the A~l norm: 

I M U - « =Jj%A-lrn= min | | b - i 4 x | U - i . 
v x€x 0+£n(r 0 ) ,4) 

Unfortunately, classical CG only works for symmetric positive definite systems of 

equations. 

In the past few years many new generalizations of the conjugate gradient method 

to nonsymmetric linear systems háve been proposed. It is well-known that for generál 

nonsymmetric linear systems no method exists which minimizes a given norm of the 

residual in each step using only short recurrences (cf. Faber and Manteuffel [4]). For 

example, the residual vectors of the GMRES method, developed by Saad and Schultz 

[15], satisfy a rninimization property in the Euclidean norm: 

| | r „ | | 2 = min | | b - j 4 x | | 2 , 
xex0+Kn{r0,A) 

but long recurrences are required to update the iterates. Therefore it is usually 

impossible to run the full algorithm and it is necessary to use restarts. In the 

following, we refer to GMRES(ra) as the GMRES algorithm restarted after each 

cycle of m iterations. 

Alternatively, generalized CG-type methods háve been based on other concepts 

such as biorthogonality (like BCG, cf. Lanczos [9], as its most popular representa-

tive), tha t still allow short recurrences. Unfortunately, most of these algorithms lack 

numerical stability. Therefore, several modifications háve been suggested recently. 

One of them, the quasi-minimal residual (QMR) algorithm by Freund and Nachtigal 

[7], uses a look-ahead version of the Lanczos algorithm [6] and in addition imposes 

a quasi-minimization principle. This combination leads to a stable algorithm. An­

other modification is Van der Vorsťs BiCGStab algorithm [19], which appends a 
smoothing step on top of the BCG algorithm, but does not address the breakdown 
problém. For an excellent overview on Krylov subspace methods for nonsymmetric 
linear systems we refer the reader to the survey páper [5]. 

All methods mentioned so far are parameter-free, in the sense that no a priori 
information on the spectrum of the matrix A is ušed. Another important class of 
Krylov subspace methods consists of parameter dependent or semiiterative methods 
as introduced by Varga [20]. These require some spectral information on the matr ix 
A before the algorithm itself can be started. With this information at hand, tools 
from complex polynomial approximation theory can be applied to determine suitable 
residual polynomialsp n for (5). We refer to the survey páper by Eiermann, Nietham-
rner and Varga [3] for an extensive exposition of semiiterative methods. The most 
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important representatives out of this class are the Chebyshev algorithm (cf. Man-
teuffel [10]), stationary &-step methods (Niethammer and Varga [13]), and cyclic 
Richardson methods (cf., e.g., Smoiarski and Saylor [16]). 

From an implementation point of view, the main difference between parameter-free 
and semiiterative methods is that , for the latter, no computation of inner products 
is necessary. On massively parallel machines the computation of inner products 
represents a bottleneck of the implementation, and therefore semiiterative methods 
háve a certain advantage in cornputational tirne per iteration over parameter-free 
methods. 

Since spectral information is usually not available and expensive to obtain, new hy­
brid methods (cf., e.g., Smoiarski and Saylor [16], Nachtigal, Reichel, and Trefethen 
[11], and Starke and Varga [17]), which try to combine the advantages of parameter-
free and semiiterative methods, recently háve gained importance. The basic idea 
of hybrid algorithms is to start with a parameter-free method such as GMRES, to 
determine suitable parameters for a semiiterative method. In the second phase, one 
switches to a much cheaper semiiterative method, using the above parameters. If the 
semiiterative method does not converge, another GMRES phase is run to improve 
the set of parameters, and so forth. 

For our experiments on the M A S P A R we concentrated on four particular methods: 
BiCGStab, as a representative of parameter-free methods based on the Lanczos pro-
cess, restarted GMRES(16) which is based on the Arnoldi process, stationary two-
and four-step semiiterative methods, and the hybrid GMRES-Richardson method 
by Nachtigal, Reichel, and Trefethen. For the latter, Hybrid(16), we ušed cycles of 
length 16 and based the implementation of the Richardson cycle on Horner's scheme. 
However, we noticed that this variant is susceptible to numerical instabilities. We 
did not consider the QMR algorithm in this páper because preliminary experiments 
with QMR showed that look-ahead is substantial for our examples. An actual im­
plementation of QMR with look-ahead on the M A S P A R is currently under work. 

Notě that none of the methods under consideration involves multiplications with 
AT, i.e., they are transpose-free. We would like to stress that the implementation 
of the multiplication with A does not involve any difficulties in our particular ap-
plication. It can be implemented similar to the multiplication with A at exactly the 
samé expenses. 

Today, Krylov subspace methods are rarely applied to the basic linear systém 
without preconditioning. Preconditioning means that one transforms the underlying 
equation into an equivalent one by multiplyingyl with adequate nonsingular matrices 
Qi and Qi from the left and /or from the right. This leads to the preconditioned 
problém 

QiAQ2z = Qib , x = Q2z. 
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The idea is to determine Q\ and Q2 ín such a way that the new systém has better 
spectral properties, and thus, iterative methods can converge faster. As a rule of 
thumb, a good preconditioner somehow satisfies Q2Q1 « A~l. 

Usually, the matrices Q\ and Q2 are only given implicitly. To gain good speedup, 
it is impor tant that their implernentation has an inherent parallel structure that 
can be employed on the M A S P A R . In our numerical experiments we ušed (i) the 
originál mat r ix without preconditioning, and (ii) symmetric SSOR preconditioning 
with red/black ordering and relaxation pararneter u; = 1. Notě that u) = 1 is the 
optimal relaxation pararneter for SSOR in our applications (cf., e.g., Ortega [14, 
p. 175]). For implernentation details concerning SSOR we refer to [14, Section 3.4]. 

3. IMPLEMENTATION 

The SIMD machine M A S P A R MP-1 has 16,384 (4-Bit) processors, arranged in a 
regular two-dimensional toroidal grid of 128 x 128 processors. Another processor takés 
the exceptionai role of the array control unit (ACU) which controls the execution of 
the grid processor's operations, and carries out the seriál parts of the algorithm. The 
ACU also contains the shared memory. The MP-1 uses a UNIX workstation as front-
end computer. All programs are written and compiled on the front-end; in addition, 
there is a feature to switch to front-end routines to execute bigger sequential parts 
of the program. Our codes were written in M P L , a parallel extension of C. 

Each of the M A S P A R processors has fořty 32-bit registers, and can use up to 16 
Kbytes local memory for so-called p l u r á l variables; 128 Kbytes shared memory of 
the ACU contain the s i n g l e variables. All our computations háve been perforíned 
in double precision. 

Employing the natural da ta mapping of the unit square domain Q = (0, 1) x (0,1) 
onto the M A S P A R processor array (cf. [14]), each processor maintains one of the grid 
unknowns of a regular mesh with mesh size h — 1/129; notě that we did not reservě 
processors for grid points 011 the boundary T = díl. The N-dimensional vector x 
and the right hand side vector b thus reduce to simple p l u r á l doub le variables in 
M P L . 

The block tridiagonal matr ix A from a centrál difference discretization of the 
partial differential equation (1) can be represented as a five-point stencil in the usual 
way, cf., e.g., [14]. The stencil elements per grid point are stored in the respective 
processors in a parallel initialization step. 

A multiplication with A then simply requires the extremely fast xnet-commu-
nication with the nearest neighbors in the North, West, East, and South. Extra 
considerations are necessary concerning the grid points on the boundary. As in con-
ventional seriál discretizations we eliminate boundary elements from the systém by 
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incorporating their contribution into the right hand side. Due to the "wrap around" 
concept of the M A S P A R , stencils of close-to-boundary grid points refer to grid points 
on the opposite side of the square. This is easily fixed by initializing the respective 
stencil elements to zero. In this fashion, the finál matrix-vector product reduces to 
a one-line s ta tement in M P L , cf. the first part of Figuře 1. Again, we ernphasize the 
simplicity of the M P L routines. 

p l u r á l double x , y , z ; 
p l u r á l double c , n , s , w , e ; 

/ * c , n , s , w , e contain the five-point stencil */ 

/ * matrix-vector product: */ 
y = c*x + n*xnetN[l] .x + s*xnetS[ l ] .x 

+ w*xnetW[l].x + e*xnetE[l] .x 

/* SSOR preconditioned matrix-vector product: */ 
z • 0; 
i f (red) 
{ z * n*xnetN[l] .x + s*xnetS[ l ] .x 

+ ¥*xnetW[l].x + e*xnetE[l] .x; } 
y * x - n*xnetN[l] .z - s*xne tS[ l ] . z 

- w*xnetW[l].z - e*xnetE[l] .z ; 

Figuře 1: MPL-listings of the basic routines 

For the red-black-SSOR preconditioned matrix-vector product we obtain a slightly 
more complicated subroutine (cf. Figuře 1): in a first substep, the stencil is evaluated 
for all red grid points; the second substep then cornputes the finál update in all grid 
points. In this way, the SSOR implementation takés about twice the time as a 
s tandard matrix-vector product (cf. Table 1). 

Compared with these local communication routines, the implementation of the 
inner product involves globál communication. We compute inner products with the 
built-in function reduceAddd, which performs a globál suinmation over one p l u r á l 
d o u b l e variable of all processors. 

For illustration, we provide the execution times for our basic linear algebra routines 
in Table 1. The consideration of seiriiiterative inethods is justified by the fact that 
one inner product is more time-consuming than a matrix-vector product. 

x + a y 95 //secs 
x T y 480 /xsecs 
Ax 445 //secs 
Q1AQ2X 805 f.isecs 

Table 1: Timings of the basic routines 
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4 . EXPERIMENTAL RESULTS 

For our numerical experiments we considered two particular partiai diíferential 

equations (1) with operators 

(a) Lu = —Au + | u 5 , 

(b) Lu = -estAu + (50(5 4-1) - test)us - sestut + (5 -f y ^ K 

In both exampies, the functions / and g were chosen such that u = 1 is an exact 

solution of Lu = / . The first exampie, which is taken from [17], is chosen such that 

the associated cell-Reynolds number is four, and thus gives a highly nonsymmet-

ric but well-conditioned linear systém Ax. = b ; the coefficient matr ix of the second 

exampie—taken from [1]—is more ill conditioned. Thus, the two exampies empha-

size different properties of the iterative solvers. We would like to stress, that it is 

not mereiy the condition number which affects the rate of convergence of iterative 

methods, but tha t the location of the eigenvalues and the condition number of the 

associated eigenvalue problém play an important role. 

In the first exampie, the spectrum of A can be computed explicitly (cf. [17]): 

it irlls up a rectangle with vertices 2 < Re A < 6 and |Im A| < 2y/Tb. Following 

Eiermann [2, Séct. 4] we ušed this information to determine parameters for an almost 

opt imals ta t ionary four-step method (SIM) with a convergence factor K « 0.84. Using 

Young's functional equation between the eigenvalues of the Jacobian and those of 

the SOR iteration matr ix, we computed the eigenvalues of the SSOR matrix, too. 

Its spectrum is better suited for a two-step semiiterative method than for a four-step 

method. ManteuffePs algorithm [10] was ušed to find the parameters for the optimal 

stationary two-step method; the corresponding convergence factor is K « 0.74. 

In Table 2 we present the time that is required in the average to perform one 

iteration by SIM, BiCGStab, GMRES(16), and Hybrid(16), respectively; the tim-

ing of Hybrid(16) is based on the (quite pessimistic) assumption that one out of 

seven cycles of Hybrid(16) is a GMRES(16) cycle while the remaining six cycles are 

Richardson cycles of length 16, each. Our timings concern the basic iteration and 

the preconditioned iteration, respectively. 

without precond. with precond. 

BiCGStab 3.98 4.69 

GMRES(16) 11.30 11.68 

SIM 1.02 1.37 

Hybrid(16) 3.10 3.49 

Table 2: Average time per iteration (in msecs) 

W h a t is irnportant here is that the semiiterative method is by far the most in-

expensive per iteration; the most expensive method is GMRES(16). On the other 
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hand, we can see that SSOR preconditioning leads to an overhead of 10 to 4 0 % in 
time, the precise number depending on the particular iterative scheme. Clearly, it 
is the semiiterative method where the time per iteration increases the inost with 
preconditioning, because here the inatrix-vector multiplication dominates the overall 
costs. 

We now present the numerical results. In all our figures, the solid line represents 
BiCGStab, the dashed line GMRES(16), the dotted line the semiiterative method, 
and the dash-dotted line Hybrid(16). Our plots show the relative residual norms 
llrnlh/Hrolh versus the iteration index n on the left, and the relative residual norms 
versus t ime (in seconds) on the right. 

Figuře 2 contains the results for equation (a) without preconditioning. Since A 
is well-conditioned in this čase, the semiiterative method performs extremely well, 
both with respect to nurnber of iterations and with respect to time. We point out 
the five peaks of the plot of Hybrid(16) where the Richardson cycle changed the 
iteration to the worse, forcing the program to switch back to GMRES. In total, seven 
GMRES(16) cycles were performed in this čase. In this example, BiCGStab needs 
more than twice as many iterations as GMRES(16) but nevertheless significantly less 
t ime. 

Figuře 2: Example (a), no preconditioner 

The samé example with preconditioning gave the results in Figuře 3. In particular, 
we emphasize the tremendous speedup of BiCGStab. It required fewest iterations, 
and only the optimized semiiterative method was faster in time. Hybrid(16) needed 
more iterations than GMRES(16) but was almost as fast as BiCGStab. The reason 
is that Hybrid(16) required only one GMRES cycle in this test. 

Next, we consider the more ill-conditioned second problém. For this example, we 
only present the results with preconditioning, cf. Figuře 4. Our motivating remarks 
from the introduction are clearly underlined: CG-type methods required (signifi-
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Figuře 3: Example (a), SSOR preconditioner 

•-, Hybrid 

. CWRES a M 

I ' : 

-v\\ 
•BiCGStob 

SIM- • Hybrid 

\ 

\ GMRES 

\ j 
100 200 300 400 500 600 
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Figuře 5: Eigenvalue estimates for Example (b) 

cantly) less iterations in this exaniple than the semiiterative and the hybrid method; 
nevertheless, as far as time is concerned, there is no significant difference between 
BiCGStab and Hybrid(16); GMRES(16) is not competitive here. 
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To include a good semiiterative method for ease of comparison, we acquired eigen-
value estimations from the look-ahead Lanczos algorithm [6] (cf. Figuře 5). From 
these estimates we determined a stationary two-step method as before with conver-
gence factor K « 0.92. Clearly, this is no practical approach, but our emphasis here 
was merely to demonstrate the potential of semiiterative and hybrid methods. 

5. CONCLUSION 

We conclude that within our limited set of examples, the semiiterative method 
would always háve been our favorite choice because it achieved the required accuracy 
fastest. However, the a priori deterrnination of the parameters that are required to 
start the semiiterative method is not always practical. In principle, it should be 
possible to design hybrid methods that are close to the semiiterative ones as far 
as computat ional time is concerned. Nevertheless, we observe that there is still a 
significant gap between the timings of Hybrid(16) and the optimized semiiterative 
methods. It is a topič of current research to narrow this gap. 

A c k n o w l e d g e m e i i t . This project has been supported by the Deutsche For-
schungsgemeinschaft (DFG). We are grateful to Michael Eiermann, Gerhard Starke, 
and Richard Varga for their helpful advice and to Noěl Nachtigal for his careful 
reading of this manuscript . 

References 

[l] D. Baxter, J'. Saltz, M. Schultz, S. Eisenstat, and K. Crowley: An experimental study of 
methods for parallel preconditioned Krylov methods, Tech. Rep. RR-629, Department 
of Computer Science, Yale University, 1988. 

[2] M. Eiermann: On semiiterative methods generated by Faber polynomials, Numer. 
Math. 50(1989), 139-156. 

[3] M. Eiermann, W. Niethammer, and R. S. Varga: A study of semiiterative methods for 
nonsymmetric systems of linear equations, Numer. Math. ^7(1985), 505-533. 

[4] V. Faber and T. Manteuffel: Necessary and sufficient conditions for the existence of a 
conjugate gradient method, SIAM J. Numer. Anal. 21 (1984), 352-362. 

[5] R. W. Freund, G. H. Golub, and N. M. Nachtigal: Iterative solution of linear systems, 
Acta Numerica 1 (1992), 57-100. 

[6] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal: An implementation of the 
look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Statist. Com-
put. 14 (1993), 137-158. 

[7] R. W. Freund and N. M. Nachtigal: QMR: a quasi-minimal residual method for non-Her­
mitian linear systems, Numer. Math. 60 (1991), 315-339. 

[8] M. R. Hestenes and E. Stiefel: Methods of conjugate gradients for solving linear systems, 
J. Res. Nat. Bur. Standards ^9 (1952), 409-436. 

[9] C. Lanczos: An iteration method for the solution of the eigenvalue problém of linear 
differential and integrál operators, J. Res. Nat. Bur. Standards ^5 (1950), 255-282. 

450 



[10] T. A. Manteuffel: T h e Tchebychev iteration for nonsymmetric linear systems, Numer. 
Math . 28(1977), 307-327. 

[11] N. M. Nachtigal, L. Reichel and L. N. Trefethen: A hybrid GMRES algorithm for 
nonsymmetr ic linear systems, SIAM J. Matrix Anal. Appl. 13 (1992), 796-825. 

[12] W. Niethammer: I terative solution of non-symmetric systems of linear equations, ín: 
Numerical Mathemat ics , Singaporel988 (R. P. Agarwal, Y. M. Chow and S. J. Wilson, 
eds.) , Birkháuser, Basel, 1988, pp. 381-390. 

[13] W. Niethammer and R. S. Varga: The analysis of fc-step iterative methods for linear 
systems from summabil i ty theory, Numer. Math. 41 (1983), 177-206. 

[14] J. M. Ortega: Introduction to Parallel and Vector Solution of Linear Systems, Plenům 
Press, New York, London, 1988. 

[15] Y, Saad and M. H. Schultz: GMRES: a generalized minimal residual algorithm for 
solving nonsymmetr ic linear systems, SÍAM J. Sch Statist . Comput . 7(1986) , 856-869. 

[16] D. C. Smolař ski and P. E. Saylor: An opt imum iterative method for solving any linear 
systém with a square matr ix , BIT 28 (1988), 163-178. 

[17] G. Starke and R. S. Varga: A hybrid Arnoldi-Faber iterative method for nonsymmetr ic 
systems of linear equations, Numer. Math. 64 (1993), 213-240. 

[18] C. Tong: T h e preconditioned conjugate gradient method on the Connection Machine, 
In: Proceedings of the Conference on Scientific Applications of the Connection Machine 
(H. Simon, ed.) , World Scientific, Singapore, New Jersey, London, Hong Kong, 1989, 
pp . 188-213. 

[19] H. A. Van der Vorst: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for 
the solution of nonsymmetr ic linear systems, SIAM J. Sci. Statist . Comput . 13 (1992), 
631-644. 

[20] R. S. Varga: Matr ix Iterative Analysis, Prentice Halí, Englewood Cliffs, New Jersey, 
1962. 

Authors' addresses: Martin Hanke, Wilhelm Niethammer, Inst i tut fůr Praktische 
Mathemat ik , Universitát Karlsruhe, Englerstr. 2, W-7500 Karlsruhe 1, Germany; email 
a f 0 1 < 9 d k a u n i 2 . b i t n e t ; Marlis Hochbruck, Interdisciplinary Project Center for Supercom-
puting, ETH Zůrich, ETH-Zen t rum, CH-8092, Zůrich, Switzerland; email n a . h o c h b r u c k Q n a -
n e t . o r n í . gov. 

451 


		webmaster@dml.cz
	2020-07-02T08:24:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




