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CONSTRUCTION OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH SOLUTIONS
OF PRESCRIBED PROPERTIES

F. NeumaN, BryNoO

Received March 12, 1965

I. INTRODUCTION

We shall deal with the second-order linear differential equation

(1) or (1¥*) Yy =qt)y

where ¢(t) or g(t) < 0 is a continuous function and such that the dif.
equation (1) or (1*) is oscillatory in the whole interval (—oo, c0), re-
spectively. By solutions of this equation we understand such functions
only that are continuous, their second derivative included, in the whole
interval (—oo, 0), in which they satisfy the equation (1) or (1*) and
are not identically equal to zero. The condition ¢(t) < O implies that
every solution of (1*) has just one extremant between its every two
" neighbouring zeros. If we consider the differential equation (1) or (1*)
on the interval j only, then we require the function ¢, or ¢ < 0, respecti-
vely, to be continuous on j. If the interval j is unbounded from the
left or from the right, then the considered equation is required to be
oscillatory from the left or from the right as well.

In what follows, (a, b) denotes an open interval, [a, b] a closed in-
terval. Analogously we denote, e.g., an interval open from the left and
closed from the right. Furthermore, by the continuity or derivative of
a function at the right end-point of a closed interval we understand
the continuity or the derivative of the function at this point from the
left. Analogously, for the left end-point of an interval closed on the left.
A function belongs to the class C;, when it has continuous derivatives -
up to the order n (the latter included) on the interval I. The derivative
of the order zero of a function f(t) is the function f(t). Furthermore,
to be brief, denote C?_ ., by C". ‘

If weare interested in some special properties of the solution of Eq. (1),
e.g., in the position of the zeros or extremants, it is convenient to study
the disperisions of Eq. (1) which O. Boriivka, in [2] and [4], defines as
follows:
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Let t, be an arbitrary number; u, v are solutions of Eq. (1) or (1*)
such that u(t,) = v'(t,) = 0. Then

@(ty) is the first zero of the solution u(t) of Eq. (1) lying on the right
: of ¢,,

p(ty) is the first zero of the function v'(f) of Eq. (1*) lying on the right
of ¢,, :

%(to) is the first zero of the function w'(t) of Eq (1*) lying on the right
of ¢,

w(ty) is the first zero of the solution v(f) of Eq. (1*) lying on the right
of ¢,.

The functions ¢, y, x, w are called basic central dispersions of the
1st, 2nd 3rd 4th kind, respectively, with respect to the differential
equation (1) or (1*) (further more concisely: b.c. dispersions of the
lst 2nd 3rd 4th klnd)

In the same paper it has been proved that for the b.c. dlspersmn
of the 1%t kind ¢(t) of Eq. (1) there holds

(p) peC3 ¢'(t) >0, lim @) = 400, ¢t) >t
>+
for the b.c. dispersion of the 2°¢ kind y(f) of Eq. (1*) there holds

(v) pel, y'(t)>0, lim p(t) = o0, p) > ¢,

t—++ o
for the b.c. dispersion of the 3 kind y(t) of Eq. (1*) there holds
(x) xe€Cl, x'®t) >0, lim y(t) = +o0, x(t) > ¢, .

>+

for the b.c. dispersion of the 4" kind w(t) of Eq. (1*) there holds

() weCl, o'(t)> 0, lim o) = +w, of)>t.
t—»+4

When dealing with the transformations of the solutions of the dif-
ferential equation (1) on the solutions of the differential equation
y" = q,(t) y (where the cases g,(f) = q(t) or ¢,(f) = —1 are of special
interest), it is useful to notice the so called phases, defined by O. Boriivka
[4] for the pair (u, v) of independent solutions of the differential equation
(1) in the following way:
w'(t
tg ot) = o

V)’

u(t)

=0’ tg B(t) =
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where the continuous solutions «, f3, defined by these relations are
called the 1%t or the 2" phase of the ordered pair (u, v) of independent
solutions of the differential equation (1), respectively. If, in what
follows, it is not essential to which pair of solutions of Eq. (1) the 1%t or
the 2" phase belongs, then we shall not mention it explicitly. In the
same paper, on p. 237, O. Bortvka has derived the relation

(2) —{a,t}—a'zz—%(i)’+ %(::)z—a'2=q(t)-

[ 4

Further on, in [2] and [4], he has shown that for any It phase a(t) of
Eq. (1) and any 2" phase f(t) of Eq. (1*) there holds:

(o) aeC3 o #0, lim aff) . sign a'(t) = Foo,
t—> 400

)] gecC, B 0, lim (). sign f'(t) = oo,
{—4 o

(the condition ¢ < 0 beihg essential).

When we say, in what follows, that a certain function has the property
(@) or (B), - ., or (), we mean that this function satisfies the conditions
mentioned above and denoted by () or (f), ..., or (w). If we require
the function to have some of these properties on a certain interval j only,
it means that this function permits of an extension on the whole interval
(— 00, 00) so as to have this property in the whole interval (— oo, c0).

In his seminar on differential equations held at the university of
Brno, Prof. O. Bortivka has proved a number of relations between
the just defined functions.! Let me introduce only those I shall need:

“Two functions «(t) or f(t) in an interval j, «e C3, f€C}, o’ # 0
in j (and if j is unbounded from the left or from the rlght the same goes
for a(t)) are then, only then, the 15t or the 2"d phase, respectively,
of some pair (u, v) of 1ndependent solutions of the equation (1), if for
every t € j there holds

(3) p(t) = aft) + Arccotg (% (;1‘—,-)' ) .

Arccotg denotes an arbitrary, convenient, branch of this function.

1 Detailed studies of the differential equation (1) and the new results prof.
0. Boruvka has arrived at will form the contents of his book on linear 2¢ order
differential equations which will be published by the Deutscher Verlag der Wissen-
schaften, Berlin,
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If the relation (3) applies, then the functions

t

u(f) = sin a(t) . exp { f «'(0) cotg [B(o) — a(0)] da} s

ty
t

v(t) = cos aft) . exp { f o' (o) cotg [B(0) — a(0)] da} ,

to

where t, € j, possess the above mentioned properties and the function g(¢)
in the equation (1) is determined by the relation (2).”

“Let «(t) be an arbitrary 1°¢ phase of Eq. (1). Then, for the b.c.
dispersion of the 1°* kind ¢(t) of Eq. (1) in (— oo, o), there holds

@ wg(t) = at) + 7 signa’.”

“Let B(t) be an arbitrary 2" phase of Eq. (1*). Then, for the b.c.
dispersion of the 28 kind () of Eq. (1*) in (— o0, o), there holds

(5) B(w(t)) = B(t) + nsign f'.”

“Let «(t) and f(¢) be the 15t and the 2" phase, respectively, of Eq. (1*)
corresponding to the same pair (u, v) of linear independent solutions
of Eq. (1*). Let #(t) and w(t) be the b.c. dispersions of the 3" and the 4th
- kind respectively with regard to Eq. (1*). Since ¢(t) < 0, there holds
a'(t) . f'(t) > 0 in the whole interval (— oo, o0). Moreover, for

0< Bty —alty<=mn, « >0, p >0,
there holds

(6) and (7) Bx) = a(t) + = and  a(w(t)) = B(?),
for
0<pit)—at)<m,, o« <0, B <0,

there holds
(8) and (9) Blx(t)) = alt) and alw(r) = B(t) — =,
for
: O<at)—pBt) <z, « >0, f >0,
there holds
{(10) and (11)  B(y(t)) = «(t) and alw()) = B(t) + =,
for

: 0<alt)y—pt)y<m, « <0, p <0,
there holds

(12) and (13) B(x(t) = ) — = and (o) = 0"
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“The b. c. dispersions are uniquely characterised by the relations
(4) — (13).

In the second part of the present paper our considerations will be
directed to prove the existence and uniqueness of a solution of the
non-linear differential equation (3), possessing convenient properties
in the whole interval (— oo, ) and in the following third part, we
shall use this result together with the relations (3)—(13) to construct
differential equations (1) with solutions of certain prescribed properties.
The constructions of differential equations (1) whose solutions have
certain prescribed properties have already been dealt with by many
authors: E. Barvinek [1], J. Chrastina [6], [7], M. Laitoch [9],
F. Neuman [10], [11], in the complex domain, e.g., V. Seda [12].
Some of their results will be arrived at again in the present systematic
study of the problem in question.

II. THE EXISTENCE AND UNIQUENESS THEOREM
CONCERNING THE SOLUTION OF THE DIFFERENTIAL

EQUATION B (t) = & (t) + arccotg (_;_( 1 )’)

!

Let f(t)e C, '(t) > O for every t and éuppose, furthermore, there is

given ty€ (— 0, o) and numbers aye (B(t,) + km, B(t,) + k + 1m),
og > 0; k=0, 1, .... Then the differential equation

(14) B(t) = aft) 4 arccotg (—;— (olz’ ),) —k+1am,

(0 < arccotg t < 7), has just one solution a(t) € C?, satisfying a(t,) = oy,
o'(ty) = . For this solution wft) there applies «'(t) > 0, B(t) + km <
< aft) < B(t) + k + La for every t.

Proof. Suppose that in the theorem above k& = 0. If we prove that
under this additional assumption there exists a solution «(t) of the
differential equation (14) satisfying the statement of thé theorem,
then the function «(t) 4+ kx will be the solution of the differential
equation (14), complying with the statement of the theorem even
for k £ 0. . _

Every solution «ft) of the differential equation (14) in an interval 7
satisfies even the differential equation

(15) " = 2a'2 cotg [a(t) - B

At the same time every solution «(t) of the differential equation (15)
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in I, for which a’(f) > 0, B(t) < a(t) < B(t) + « in I, satisfies the
differential equation (14). Thus, if we show that every solution of the
differential equation (15), for which a e C}, alty) = «p, &'(t) = s
‘necessarily satisfies «'(f) > 0 and B(f) < «(t) < f(¢) + & in I, then
such a solution is always the solution of the differential equation (14)
in I as well. In this case, with respect to the initial conditions indicated
in the theorem, the set of the solutions of the differential equation (14)
would be identical with the set of the solutions of the dlfferentlal
equation (15).

Let us, therefore, deal with the differential equation (15). Since
a(ty) € (ﬂ(t(,), B(te) + @), there exists just one solution of the differential
equation (15) in a certain neighbourhood (t, — 8, t, + 8), 6 > 0, of
~ the number ¢;, complying with the prescribed initial conditions a(t,) =
= &, &'(ty) = ay. The function B(¢) € C* and therefore «(t) € 0(3,0._(,, ty+0) *
Because o'(t,) > 0, there exists 6* > 0, 6* < d such that, in the interval
(to — 0%, ty 4 6*), there is «'(¢) > 0 as well. Thus, it is possible to find
such a neighbourhood F of the number ¢, and such a solution «(t)
of the differential equation (15) meeting the initial conditions in the
number t,, that «(t)e C3, «'(t) > 0 and also «(t) €(S(t), B(t) + =)
in I. Let (¢, — 0, t, + ) be an arbitrary neighbourhood of the point ¢,
in which the relations are satisfied, «(f) being the corresponding solution
of the differential equation (15) in this neighbourhood. The theo-
rem will be proved if we show that this neighbourhood is the interval
(— o0, ), or that the definition of the function «(f) may be extended
up to the end-points of the neighbourhood (¢, — 6, ¢, + J) so that
the extended function is a solution of the differential equation (15)
and meets the mentioned relations even on this closed interval.

One has §(t) € C* and also §'(¢) > 0. On the closed interval [t, — 4,
¢y + 0] the function f'(t) reaches its minimum g, which is necessarily
positive, and its maximum M as well. Consequently, 0 < u < f'(t) £ M,
for te[t, — 4, to + 0]. For the function a(f), extended up to the end-
points of the interval (t, — &, ¢, + 0), to be of class C’[,o_,, ty+0]> W€
must set

lm «(f) = a(t, + 0), lim o'(t) = &'(t, + 0).

t>tokox trtot 0

If we sum up the preceding considerations, it is easy to see that
for the proof ot the theorem it is necessary and sufficient to show that

a) there exists

im «ft) = “(to+ 0) and " aft, + ) € (B(t, + 9), ﬂ(to + 0) + @),

Lty +0—
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b) there exists
lim o&'(t) = a'(ty + 6) and o&'(t, + ) > O,

t>tg+0_
c) there exists
lim oft) = a(ty — 0) and alty — ) € (B(ty — 0), (B(ty —0) +7),

t>tp—d 4.
d) there exists

lim o'(f) = o&'(t; —0) and a&'(f, — ) > 0.
T :
Let us now consider the single cases: '
a) In the interval [t,, ¢, + 0) there is «'(f) > 0, consequently x(t)
is an increasing function. Moreover, in this interval there holds a(t) <

< B(t) + m. Therefore there exists lim «(t) and we define a(ty+0) =
t—>to+0__ i

= lim «(t). It remains to show that there cannot occur:
t—>to+ 0

a’) «a(ty + 6) = f(t, + 0) + =, a") alty + 6) = B(ty+9).
a’) Let a(ty + ) = lim «(t) = B(¢, + O) + x. Since, in the whole
. t—>ty+

interval [t,, t, 4 J), there holds fS(t) < «(t) < B(t) + =, there exists,
for an arbitrary ¢ > 0, §, 0 < 6 < J such that in the interval (¢, + 6,
t, + 0) one has 0 < () + m — a(t) < &. Furthermore, for = € (0, =/3)
there holds 2z = tgx > 0. If we choose 0 < ¢ < #/3 then, in the
= 1
i > —
interval [t, + 0, {, + 0), there holds Sall) — ) — 7] = cotgla(t)
— B(®)]. Since «'(t) > 0, and even f'(t) > 0 in (fy — J, ¢, + 9), all
the more in [ty + 6, t, + J), there holds .

~ B o
2 Oalt) — B — ]

Therefore

_F

o 1
2(c — f— m) > 20 — f — m)

Z cotg [a — f].

For te [ty + s, ty + 0) there \accordingly holds
B0
LAV oy
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and because of o'(f) > O one gets
ala’ = 2o’ cotg [{x — Bl < [a — ')l — B — =].

Consequently o'’ = [o' — B')[x — B — n] + f(t) where f(t)
Therefore o =C.(B+ 7 —a).expF(t) £ C.[BE) + 7 — «(t)] where

F(t) = f f(o) da, Cisa convenient positive constant; for F(t) decreasing
to+d

and hence even exp F(t). At the same time, however,_there is a'(f) > 0
in the interval [ty 4 d, ¢, + 6). Choose, now, d, = 6 so that in the
interval [ty -+ dy, to + 0), there holds B(f) + m — «(f) < EET Then, in
the interval [ty + dy, ¢, + &), there also holds 0 < o'(f) < u/2. At the
same time §'(f) = u and therefore B'(t) — a'(t) = /2. Moreover, there
is Bty + 6p) + 7 > alty + 6,) and consequently x = B(t, + 6,) +
+ 7 — az(to + ) > 0. Let us set g(t) = B(t) + n — «(t). Evidently

g(t) eo['o"‘"o»'o""o)’ gty + 0y) = » > 0 and ¢’'(t) = /2 for t €[ty + Iy,

to + 0). Hence g(f) = » and, because lim g(t) exists and is equal to
t>to+0—

Bto + 8) + = — alty + 8) = », one necessarily gets Bty + 0) + = >
> oty + 6). But this is a contradiction, as we have assumed «(t, + ) =
= B(ty + 6) + m. Consequently the case a’ is not possible.

a") Let a(t, + 8) = B(t, + ). Forz € (0, n/3) there holds 0 < tgz < 2=z
and to an arbitrary &€ (0, z/3) there exists d € (0, §) such that 0 <
< a(t) — B(t) < ¢ for t e[ty + 6, t, + 8). Hence, for t €[ty + 0, t, + 6)
one has «'(t) = 2a'%(t) cotg [a(t) — B(t)] > 0; «'(f) is an increasing
function in [t, + d, ¢, +- d), that is to say, in this case &'(f, + ) = o’ (f).
Furthermore, in [¢, + 6, £, + &), there holds

B B'(t) M
(0) 1‘ =0 T =T re !
and therefore
4 '
1 o« 1’

. M bl
=P = sem—per 2 2= p) '[“'(to+6> * l] =

5 _
M -1
2 2(a — B) '[a'(to +.4) + 1] :
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-1
Set k = [ . M + 1] . Evidently 0 < k < 1. We get cotg (x —
o' (to ,—{— o) _
L ,
E o 13

Y N A A

ﬂ)=2,a g Ths =L =% + o,
f&) =20 or a'(t) = C [a(t) — B()]* . exp F(t ), c belng a convenient
constant, F(t) = f f(0) do. The constant C is positive because o'(t, +

to+0
6) > 0. The function F(t) is non-decreasing and therefore «'(t) =

2 C . [alt) — B()] ™ . exp F(ty + 6) = C . [x(t) — PB(t)]*. Choose m,
alty + 6) — Pty + 6) > m > 0so that C ., m* > M. Set g(t) = «(t) —
— B(t) for tefty+ 06, t,+ 0). Evidently gty + 0) = alty + 6) —
— Bty +6) > m > 0 and also g(t) € C[Ito+3,to+o)- Moreover, lim g(t) =
. t—rty+0_
= 0. As g(t) is continuous on [t, + &, £, + 6], there exists ¢ € (t, + 6,
to + 0) such that g(t) = m. Denote the smallest of these numbers
(the existence of the smallest number is guaranteed because these
numbers form a non-empty, closed set) by ¢,. Thus g(t) > m for
t ety + 0, t,) and g(t,) = m. There holdsw < Oforte(ty 4

- 1
+ 6, ;) and because there exists g'(f,), one has g'(¢,) < 0. Consequently,
o'(¢,) < B'(t,). But, according to what we said before, one has o'(f;) =
2 0. [alty) — &)1 = O.m~* > M = f'(t)), hence «'(t) > B(4),
which is a contradiction. For this reason, neither the case a” can occur.
The only possible case is the case a.

b) Weare toshowthat lim o(f)existsand that this limit is positive.
t-rtg+0_.

Let us distinguish the following cases:

b1) There exists an interval [f, + s, to + 0) in which there holds
BE®) + = > aft) > B¢) + =/2.

b2) There exists an interval [t, + 3, ty + 8) in which there holds
B(t) < alt) < Bt) + m/2.

b3) There exists, in the interval [, + 3, ty + 0), an increasing sequence

of numbers {t,}7 , converging to the number ¢, + & and such that
alt,) = B(t,) + =/2.

It is obvious that just one of these three cases occurs. Consider each’
case separately.

b1) In this case there exists an interval [t, 4 3, to + 6) in which
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a(t) € (B(t) + =/2, B(t) + m). According to (15), «”(t) is—in this interval —
negative_and therefore «'(f) decreases. And, as one has o'(f) > 0 for

tefty+ 0, b + d), there exists lim «'(f) which is non-negative. It
b tobd_

‘remains to show that this limit is positive. Suppose it is not so and

let lim o(t) = 0. Then there exists an interval [t, + 6, t, + 0),6 < 5< 9,
bty +0_
in which 0 < &'(t) < ¢ < f’(t) and hence §’'(t) — o«'(f) > 0. Furthermore,

there holds 7/2 < «(t) — B(t) < zmfort e [t, + 3, t, + 0). Consequently,
in the interval [f, + 0, t, + 0), the function cotg [«(t) — B(t)] < 0 is

increasing, hence 4 = cotg [x(t, + 0) — B(t, + 0)] < cotg [a(t) —

— B(t)] < 0. Write this inequality in the form a”(¢)/o'%(t) = 2 cotg [«(t) —

— B(t)] = —f(t) where —24 = f(t) > 0. We get the relation a'(t) =
¢

= [c + f_f(a) do] ! for t e[ty + 5, ty + 0), where c¢ is a convenient
t,+6

¢
constant; ¢ > 0 because a'(ty + 6) > 0. The function f flo)do is
to+0
increasing and therefore there holds
c + f f(o)da ©—=9
to+o

Hence, in the interval [¢, + :5 to + 8), there holds o'(t) 2 B > 0 ,
which is a contradiction with regard to the assumption that lim o'(f) =0
tety+-0-
b2) In this case there is, with respect to the relation (15), «” > 0 in
[ty + 0, ty + ) and, consequently, «'(¢) is increasing, and a'(t, + &) > 0.

It is sufficient, both for the existence and the positivity of lim «'(f),
trtyt0-

to show that o'(t) is bounded in some left neighbourhood of the number
5, + 0.

Since we have extended the function «(t) up to the number ¢, + &
8o as to be continuous from theleft, wecanset 4 = max [B(f) + 7/2 —

te[tyrd,te+0]

— «(t)], and evidently 4 > 0. Then B=tg 4 2 tg[f(t) + 7/2 —
— a(t)] = cotg [a(t) — B(t)] > O for te[ty, + 6, t, + 6) and, with
respect to the relation (15), &"/a’ < 2Ba’ or "/oz = 2Boc — f(¢t), where

J@#) = 0. Hence one has o'(t) = exp {2Bo — f f(o) do + ¢}, where ¢ is
to+0
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a convenient constant. As f(t) = 0, exp {— f f(o) do} is a non-increasing

to+0
function and consequently o'(t) £ exp {2Ba(f) + c¢}. In the interval
[to + 6, ty -+ O) there is o(t) > 0, so that «(t) is increasing, while there

exists lim «f(t) = «(ty, + J). For this reason o(t) < exp {2Ba(t, + 0) +
t—>tg+d-

+e

b3) Let {¢,}*., be a decreasing zero-sequence. Then there exists
an increasing sequence {3,}2,, 4, < 0 converging to 6 such that, for
te[ty + 0,, ty + 0), there holds | cotg [«(t) — f(t)] | < &, and, at the
same time, |o(t) — a(t, + 6) | < 1/4. Since oc"/oz' = 2o cotg [w(t) —

— B(t)], we can write In o’(t) — In &'(t, + 6,) = 2 f g) cotg [a(0) —

tot0n
— B(o)] do. According to the mean-value theorem there exists 4, €
€[d,, 0) such that Ina'(t) — Ina'(t, + J,) = 2 cotg [a(t, + P) w) —
t .

— Bt + 5,;)] . f «'(6) do = 2 cotg [a(t, + Bn) — Bty + (_5,,] . [a@) —

o+ 0n .

— afty + 6,)). Thus [Ina'(t) — Ina'(ty + 8,) | < ¢&,/2 for te [ty + 6,
to+ 0), or Ina'(ty + 6,) — €,/2 < Ind'(t) £ Inda'(ty, + 9,) + €,/2.
Denote I, = [In o'(ty + 6,) — &,/2, Inoa'(ty, + 9,) + €,/2). The system
of closed intervals I, has the property that the lengths of the intervals
converge to zero and every finite subsystem has a non-empty intersection
(because this intersection also contains the number In «'(x) where
x €[ty + d;, ty + 9), i denotes the greatest of the indices of the intervals
of the finite subsystem). Therefore the intersection of this system of
intervals is one single number, which we denote by In 4, (4 > 0).
¥ we now choose, arbitrarily, ¢ € (0, 4), then there exists » such that
& Smin{|In(l —¢/d)|, |In(1 + ¢/4) |}. As Ina'(t) for ¢ €[ty + 5,
ty + 0) as the number In 4 lie in the interval I,; hence, there holds
|Ina'(t)y —InA4| £ ¢,. Consequently exp{—e¢,} < &'(f)/4 =< expe,
and, all the more, 1 — ¢/4 < &'(t)/4 £ 1 + e/A ie. |ad'(t) — 4| £ ein
the interval [ty + 0, , ¢, + ). Therefore lim &'(t) = A > 0 exists.

t->ty+d_
We have shown that any solution of the differential equatlon (15),

defined in the interval [¢,, ¢ + 0) and satisfying the initial conditions
indicated in the theorem, can be extended on the whole interval [¢,, ),
this extended solution meeting—on [f,, o00)—the postulates stated .
in the theorem. Now, we shall show that this solution can be extended
even on the interval (—oo, ) the statement of the theorem being
-complied with.

Consider, therefore, the following equation: -

) d" = 24’2 cotg [4 — B(1)]
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where .
B) = —B(—t) —m,
d("to) = —afty) = —ay,
a'(—ty) = o'(t) = “(')

Evidently d(—ty) = —ay € (—B(t) — 7 —B(t) = (B(—tg), B(—to) + 7).
@'(—ty) = &0 > 0. Thus, there exists just one solutlon d(t) defined on
the interval [—¢,, oo) for which there holds d(t) e C'[__to w)s B(—ty) =
= —oy, d( ty) = cx . For this solution one then has, on the interval
[—t,, 00) :d'(t) > 0, a(t)e (B(t), B(t) + 7). Then the function a(t) =
= —@(—t) is just the only solution of the differential equation (15)
on the interval (— t,) for which «(t) € C(__gO 1,1 o(tg) = &g, &'(tg) =
= qy. For this solutlon there holds «'(t) > 0, a(t) € (B(t), B(t) + n)
for t € (— o0, t,].

If we bind the solution of the differential equation (14) defined on
the interval [t,, c0) with the solution defined on the interval (—co, ¢}
and complying with the same initial conditions indicated in the theorem,
we get the solution meeting the statement of the theorem on the interval
(—o0, o) and the theorem is proved.

" Setting, now, —ad(t) = «(t) and —p(t) = f(t) we can also state the:
following:

Let f(t) e C1, B'(t) << O for every t. Let, moreover, there be given t,€
€ (—o0, ) and the numbers ay € (B(t,) + knt, B(t) + k + 1 7), ¢g<O0;:
E=0,41, &2, ... Then the differential equation (14) (0 < arccotg ¢ <
< 7), has just one solution w(t) € C® satisfying a(ty) = o, o'(fy) = og-
For this solution aft) there then holds o'(t) < 0, B(t) 4+ kn < a(t) <

< Bt) + k + 1 & for every t.

III. APPLICATIONS OF THE PRECEDING RESULTS
TO CONSTRUCTIONS OF SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH SOLUTIONS;

OF, PRESCRIBED PROPERTIES

It is interesting to note how far a function may arbitrary be chosen:
so that there exist a differential equation to which the function in
question would be some phase or dispersion, and what number of such
differential equations (1) there exists. Or, what properties the solution.
of a differential equation (1) may be required to have so that such
a differential equation  exists whose solutions have the required
properties, or even, what number of such equations there exists.

From the mentioned results of prof. O. Borivka it follows that.
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by the choice of an arbitrary function «(t) complying with (x) and required
to be first phase of some differential equation (1) the latter is uniquely
determined by the relation (2).

E. Barvinek in [1] has shown that if we choose an arbitrary function
@(t) complying with (@) and required to be the basic central dispersion
of the 1*t kind of some differential equation (1), then there exists an
infinite number of 1°* phases satisfying the relation (4). Namely, except
for meeting certain conditions at the ends of the interval [t,, @(t,)],
one can arbitrarily choose the 1** phase on this interval. After this
choice, the 1% phase is uniquely determined and thus, according to (2),
even the differential equation (1) is uniquely determined. From the
relation (2) it is easy to see that by the 1%t phase the equation (1) is
determined but the opposite does not hold. There remains the interesting
question of how many different differential equations (1) have the
same b.c. dispersion of the first kind because the results of E. Barvinek
only informs us that there exists an infinite number of different 1%
phases. Employing a result of F. Neuman’s (see [11]), Prof. O. Bo-
rtuvka has shown (see [5]) that the cardinal number of the set of all
Egs. (1) having the same b.c. dispersion of the 1** kind is equal to N.

J. Chrastina [7] has dealt with the case when one chooses
a function p(t) meeting (y) and required to be the b.c. dispersion of
the 2" kind of some Eq. (1*). He has shown that it is possible, except
for certain conditions at the end-points, to choose the 2" phase arbitrarily
even on the interval [t,, w(ty)].

For completness it remains to show, what is to. be expected in the
case we choose a function A(t) satisfying (f) and required to be the
2" phase of the differential equation (1*); or: a function x(t) complying
with (x) and required to be the b.c. dispersion of the 3¢ kind of Eq. (1*);
or: a function w(f) meeting (w) and required to be the b.c. dispersion
of the 4 kind of Eq. (1*).

The immediate consequence of the theorems of the second part are,
with regard to the relation (3), the following statements solving the
given problem for the 2" phase of Eq. (1*):

Let there be given an arbitrary function B(t) complying with (8) and the
numbers t,, ay€ (B(ty) + km, Bty + k + 1m) and op # 0; sign ay =
= sign f'(t). Then there exists just one function aft) meeting o(ty) = o,
o' (tg) = oty and such that a(t) and B(t) are, respectively, the 15 and the 204
phase of some pair (u, v) of independent solutions of the differential
equation (1).

Or, with respect to the relation (2), we may formulate:

Let there be given an arbitrary function B(t) satisfying (B8) and numbers

to, g€ (Blte) + km, P(to) + k + 1) and o # 0; sign o« = sign f'(¢).
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Then there exists just one differential equation (1) such that «(t) and B(t)
are, respectively, the I°* and the 2" phase of some pair (u, v) of independent
solutions of this equation and a(ty) = oy, &'(t)) = «,. Or, somewhat less
restrictive:

To an arbitrary function B(t) satisfying (B) there exists a differential
equation (1) such that B(t) is its 2" phase.

In what follows, let confine our considerations, for a while, to the
case of &'(t) > 0 and f’(t) > 0. Formally we can express this additional
postulate so that all the increasing functions meeting (x) or () have
the property («*) or (B*), resp. Analogously to the considerations of
M. Kuczma [8] and E. Barvinek [1] the following lemma can easily
be derived:

Let y(t) be a function satisfying (y). Then the equation B(yp(f)) =
= f(t) + d, d > 0, has an infinite number of solutions §(¢) complying
with (8+). These solutions can be got by choosing f(t) on the interval
[to, (to)] in such a way that f(t) + d = B(y(to)), B'(t) = B'(y(t)) -y'(t),
fe C[lzo,w(to)] ,B'(t) > Ofort € [t, p(t)]- Then S(¢) is uniquely determined
on (—oo, 00).

Now, if we consider an arbitrary function y(t) satisfying (y) then,
according to the lemma, there exist infinitely many functions pf(t)
satisfying the equation (5) and complying with (8t). If we choose
g(t) < O on the interval [¢;, ¥(f,)] so that some 27 phase 8(t) of Eq. (1*)
(considered for £, < t < p(ty)) meets S(y(t,)) = Blto) + 7 B (w(t)) -
. ¥'(t) = B'(%,), then S(¢) is uniquely determined on the interval (— oo, co).
Consequently, even, the differential equation (1*) is determined on
the interval (—oo, o0). Thus we have obtained the result of
J. Chrastina.

Let us now choose, arbitrarily, x(f) on an interval [¢{,, oo) so as to
satisfy (y). Choose, furthermore, 84(t) on the interval [t,, x(t,)] in order
to meet (8+) and Bo(x(ts)) < Bolte) + 7. Let ft) for t € [ty, x(to)] be
a solution of the differential®equation (14) satisfying the conditions
ag(to) = Igo(x(to)) — 7, aglty), = .Bé(X(to)) -2 (to) (compare the relation (6))
while setting, in (14), 8, instead of §. That is possible because «,(t,) &
€ (lgo(to) — @, folty) and x(t) > 0. Let () = “o(x'_l(t)) + n for
t € [1(t), 12(t0)]. Evidently B (x(t0)) = Bo(x(to)) and B} (x(tg) = xg(1(9)) x
X (70 L = Bilx(te). At the same time g,(y2(t) = aqly(ty) +
+ 7 < Bolx(te)) + 7 = Bi(x(t) + @. Denote by oy(t) for t e [x(t,),
%*(t)] the solution of the equation (14) complying with a(y(t,)) =
= Bu(x2te) — 7 ai(xte)) = [Bulx(t)) lyt» B standing for B. In
general, we determine «,(f) on the interval [2"(t,), 2™+1(t,)] as the solution

of the equation (14) satisfying a, (x"(to)) = o, (x"(te), «(yn(ts) =
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= “;;-1(X"(to)); B, stands for f in the equation (14). The function B, (t)
on the interval [y™(t,), x"+1(t,)] is again determined by the relation (6),
ie. B,(t) = o, o(x71(t)) + 7. If we set a(t) = «,(t) and B(t) = B,(t) for
te[x"(t), 1" )], » =0,1,2, ..., then the function «(t) has the
property («*) and f(¢) has the property (8+), they satisfy the equation (3)
and, together with the function yx(t), coply with the relation (6), all
on the interval [ty, c0). Therefore we may summarize the preceding
considerations:

Let y(t) be a function defined on an interval [t,, 00) on which it satisfies ().
Choose (t) on [ty, %(te)] so that it meets (B+) and ﬂ’o(x(to)) < Bolty) + =.
Then there exists just one differential equation (1*) on the interval [t,, o0}
such that x(t) is its b.c. dispersion of the 3% kind and Py(t) coincides, on
the interval [t,, x(t,)], with some 27! phase of this differential equation.
Or in other words: ’

Let y(t) be a function defined on [t,, 0) and satisfying (x). Let q(t) << O
be given on the interval [ty, x(t,)} so that the I° phase a(t) and the second
phase B(t) of some pair of independent solutions of the differential equation
(1%) satisfy afty) = Blx(to)) — 7 < Blto), o' (to) = B'(x(t0)) - '(t6)>0. Then
the function q(t) can be extended on the interval [t,, 00) just in one way so
that ¢ < 0 and x(t) is the b.c. dispersion of the 3'4 kind of the differential
equation y" = q(t) y. )

Choose, in a similar way, an arbitrary function (f) on an interval
(—o0, ty] and satisfying (w). Furthermore, choose B,(t) on [t,, w(y)]
so that it meets (ft) and fyt) > Bolw(ty) — 7. Let o(t) for
te[ty, w(t,)] be a solution of the differential equation (14) satisfying
the conditions a(w(ty)) = Bolte)s e(@(ts)) . w'(ts) = Bi(ts) (compare
the relation (7)), having set, in (14), B, instead of B. It is possible, be-

canse ao(w(ty)) € (Bo(w(to) — 7 Bol(to)) Jand ag(e(te) > 0. Let f_y(t) =
= ag(o(t)) for t e [w(t,), t,]. Evidently B_,(t,) = Bolt,) and BLi(ty) =
= fo(to). Simultaneously ﬁ‘l(wnl(to)) = (tg) > Polte) — 7w = B-1(to) — 7.
Denote by a_,(t), for ¢t € [w™(fy), %], the solution of the equation (14)
satisfying a_,(f) = a,(t) and a’,(t,)) = «(t,), having set f-, for . In
general, we determine «_,,(f) on the interval [w—"(t,), w—"+'(t,)] as the
solution of the differential equation (14) satisfying a_n(w‘"“(t,,)) =
= o_piz(@1(t)) and ol (0="+(t) = a2 1 (0 ™*1(t,)), B, Standing
for B. The function B_, on the interval [w="(f,), w—n+l(fy)] is again
determined by the relation (7), i.e. B_,(f) = d—piq(w(t)). If we set
a(t) = @, (t) and B(t) = B_,(1) for t € [w~"{ty), " 1tp)], n=0,1,2, ...,
then the function a(f) has the property («*) and B(¢) has the property
(8*); «(t), B(t) satisfy the equation (3) and, together with the function



244

o(t), they comply with the relation a(t) = f(w=1(f)), all on the interval
(—o0, w(ty)]. With regard to the relation (7) we may summarize our
considerations:

- Let w(t) be a function defined on an interval (— oo, t)] and meeting (w).
Let us choose Byt) on [ty, w(t,)] so that it satisfies (B+) and By(t,) >
> Bolw(ty) — 7. Then there exists just one differential equation (1*) on
the interval (— o0, w(ty)] such that w(t) 18 its b.c. dispersion of the 4" kind
and By(t) coincides, on the interval [ty, w(ty)], with some 2" phase of this
differential equation.

Or to put it differently:

Let w(t) be a function defined on (—oo,t)] and satisfying (w). Let
q(t) < O be given on the interval [t,, w(ty)] in such a way that the first phase
«(t) and the second phase B(t) of some pair of independent solutions of the
differential equation (1*) fulfil a(w(ty) = B(te) > Blo(ty)) — 7, a'(w(ty)) X
X @'(ty) = B'(t) > 0. Then it i3 possible to extend the function q(t) on the
whole interval (— oo, w(ty)] just in one way so that ¢ < 0 and w(t) may
be the b.c. dispersion of the 42 kind of the differential equation y" = q(t) y.

Now, let us consider the case when x(t) is defined on the interval
(—o0, c0) and meets (y). Let us choose an arbitrary number ¢, and,
furthermore, on the interval [t,, x(t,)], & function f4(t) complying with
(8*) and Bo(x(t)) < Bolte) + 7. We want to find «_,(f) as an extension
of the first phase o(t) on the interval [y~(%,), ¢,] of the studied differen-
tial equation (1*). The b.c. dispersion of the 3™ kind y(t) of (1*) is given.
Then there ought to be valid, with regard to (6), a_,(t) = Bolx(t)) — 7.
But in general it is not possxble to state that «_,(¢) meets the condition
(act) on [x7(t), to]. We only know, for example, that the functions fy(t)
and x(t) belong to C: We should be obliged to suppose f(t) to be chosen
in such a way that Bo(x(t)) — = satisfies (a*) on [x7(t,), f,]. And,
moreover, there would have to exist, in the number fy, a continuous
derivative of the 3™ order of the function a_,(t) extended in this manner.-
Hence, if x(f) or. w(t) are defined on the whole interval (—oo, c0) we
can only state:

Let x(t) be a function defined on the interval (— oo, 00) and complying
with (x). Let us choose an arbitrary number t, and a function q(t) < O
on the interval [ty, x(to)] so that the I** phase «(t) and the 2" phase f(t)
of some pair of independent solutions of the differential equation (1%*)
fulﬁl alte) = Blx(te) — = < Blty), ' (t) = B'(x(t)) . 2 (te) > 0. Then there
18 just one pos.szble way of extending the function g(t) on the interval [t,, 00) so
that q(t) < O and x(¢) is the b.c. dispersion of the 3" kind of the dz_[ferentml
equation y" = q(t) y on the interval [t,, o0).

Or, less restrictive:
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Let y(t) be a function defined on (—oo, o0) and meeting (), t, being
an arbitrary number. Then there exists a differential equation (1*) such
that y(t) ts its b.c. dispersion of the 3¢ kind on the interval [ty, Q).

An analogous statement can be got for a b.c. dispersion of the 4'» kind:

Let w(t) be a function defined on the interval (— o0, o) and satisfying (w).
Let us choose an arbitrary number t, and a function q(t) < O on the interval
[£05 @(to)] S0 that the 15 phase a(t) and the 29 phase B(t) of some pair of
independent solutions of the differential equation (1*) meet a(w(ty)) =
= Blto) > Blw(ty)) — 7, &'(w(ty)). ' (ts) = B'(t;) > 0. Then there is just
one possible way of extending q(t) on the interval (—oo, w(ty)] so that
g < 0 and w(t) may be the b.c. dispersion of the 41 kind of the differential
equation y" = q(t) y on the interval (——oo, o(te)]-

Or, less restrictive:

Let w(t) be a function defined on (— o0, 00) and meeting (w), t, being
an arbitrary number. Then there exists a differential equation (1*) such
that o(t) is its b.c. dispersion of the 4™ kind on the interval (— oo, t,].

We have restricted our considerations by the postulate «'(t) > 0 and
B'(¢) > 0. Analogous theorems could be derived even for «'(t) < 0 and
B'(t) < 0 because, if «(t) and S(t) are the 1** and the 2"® phase, respecti-
vely, of some pair of linear independent solutions of a differential
equation (1*), then —a«(t) and —pf(¢) are again the 1%t and the 27 phase,
respectively, of some pair of linear independent solutions of the same
differential equation (1*). Then one employs, instead of the functional
equations (6) and (7), the relations (12) and (13).
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