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CONSTRUCTION OF SECOND ORDER LINEAR 
DIFFERENTIAL EQUATIONS WITH SOLUTIONS 

OF PRESCRIBED PROPERTIES 

F . NEUMAN, BRNO 

Received March 12, 1965 

I . I N T R O D U C T I O N 

We shall deal with the second-order linear differential equation 

(1) or (1*) y" = q(t) y 

where q(t) or q(t) < 0 is a continuous function and such that the dif. 
equation (1) or (1*) is oscillatory in the whole interval (—00,00), re­
spectively. By solutions of this equation we understand such functions 
only that are continuous, their second derivative included, in the whole 
interval ( — 00, 00), in which they satisfy the equation (1) or (1*) and 
are not identically equal to zero. The condition q(t) < 0 implies that 
every solution of (1*) has just one extremant between its every two 
neighbouring zeros. If we consider the differential equation (1) or (1*) 
on the interval j only, then we require the function q, or q < 0, respecti­
vely, to be continuous on j . If the interval j is unbounded from the 
left or from the right, then the considered equation is required to be 
oscillatory from the left or from the right as well. 

In what follows, (a, b) denotes an open interval, [a, b] a closed in­
terval. Analogously we denote, e.g., an interval open from the left and 
closed from the right. Furthermore, by the continuity or derivative of 
a function at the right end-point of a closed interval we understand 
the continuity or the derivative of the function at this point from the 
left. Analogously, for the left end-point of an interval closed on the left. 
A function belongs to the class Cr, when it has continuous derivatives 
up to the order n (the latter included) on the interval I. The derivative 
of the order zero of a function f(t) is the function f(t). Furthermore, 
to be brief, denote Cn_a!3tO0) by Cn. 

If we are interested in some special properties of the solution of Eq. (I), 
e.g., in the position of the zeros or extremants, it is convenient to study 
the disperisions of Eq. (1) which O. Boruvka, in [2] and [4], defines as 
follows: 
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Let t0 be an arbitrary number; u, v are solutions of Eq. (1) or (1*) 
such that u(t0) = v'(t0) = 0. Then 

<p(t0) is the first zero of the solution u(t) of Eq. (1) lying on the right 
off0, 

y)(t0) is the first zero of the function v'(t) of Eq, (1*) lying on the right 
of*0> 

X(t0) is the first zero of the function u'(t) of Eq. (1*) lying on the right 
of*0, 

co(t0) is the first zero of the solution v(t) of Eq. (1*) lying on the right 
oft0. 

The functions cp, rp, x, <# a r e called basic central dispersions of the 
1st, 2nd, 3 rd, 4 th kind, respectively, with respect to the differential 
equation (1) or (1*) (further more concisely: b .c dispersions of the 
p t ? 2nd> 3rdj 4 t h k i n d ) 

In the same paper it has been proved that for the b .c dispersion 
of the 1st kind cp(t) of Eq. (1) there holds 

(cp) cp G C3, cp'(t) > 0, lim cp(t) = ±co, cp(t) > t, 
t->±00 

for the b.c. dispersion of the 2nd kind \p(t) of Eq. (1*) there holds 

(%p) ipeC1, ip'(t)> 0, lim \p(t) = ±oo, \p(t) > t, 
t-»-±oo 

for the b.c dispersion of^the 3 rd kind #(£) of Eq. (1*) there holds 

(X) X^O1, X'(t) > 0, lim x(*) = ±«)i zW > *> * 
<->±oo 

for the b.c dispersion of the 4 th kind co(t) of Eq. (1*) there holds 

(co) coeC1, co'(t) > 0, lim co(t) = ±oo, co(t) > t. 
t->±00 

When dealing with the transformations of the solutions of the dif­
ferential equation (1) on the solutions of the differential equation 
y" = qt(t) y (where the cases qx(t) = q(t) or qx(t) = —-1 are of special 
interest), it is useful to notice the so called phases, defined by O. Boruvka 
[4] for the pair (u, v) of independent solutions of the differential equation 
(I) in the following way: 

u(t) n u'(t) 

tg a (<)=JA, t g / W ^ , 
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where the continuous solutions a, /?, defined by these relations are 
called the 1st or the 2nd phase of the ordered pair (u, v) of independent 
solutions of the differential equation (1), respectively. If, in what 
follows, it is not essential to which pair of solutions of Eq. (1) the 1st or 
the 2nd phase belongs, then we shall not mention it explicitly. In the 
same paper, on p. 237, O. Boruvka has derived the relation 

(2) -^0-^=-|(^)'+j(^)2-^=^). 

Further on, in [2] and [4], he has shown that for any 1st phase oc(t) of 
Eq. (1) and any 2nd phase /3(f) of Eq. (1*) there holds: 

(a) a e C3, a' ^ 0, lim oc(t) . sign ocf(t) = ±00, 
t->±co 

(/?) fi e C\ p ̂  0, lim p(t) . sign /?'(*) = ±oo, 
t->±oo 

(the condition q < 0 being essential). 

When we say, in what follows, that a certain function has the property 
(a) or (/3), . . . , or (co), we mean that this function satisfies the conditions 
mentioned above and denoted by (a) or (/?), . . . , or (co). If we require 
the function to have some of these properties on a certain interval j only, 
it means that this function permits of an extension on the whole interval 
(— co, 00) so as to have this property in the whole interval (— 00, 00). 

In his seminar on differential equations held at the university of 
Brno, Prof. O. Bo ruvka has proved a number of relations between 
the just defined functions.1 Let me introduce only those I shall need: 

"Two functions oc(t) or fi(t) in an interval j , oce Cf, /3 e Cj, a' -7= 0 
mj (and ifj is unbounded from the left or from the right the same goes 
for oc(t)) are then, only then, the 1st or the 2nd phase, respectively, 
of some pair (u, v) of independent solutions of the equation (1), if for 
every t ej there holds 

(3) 0(0 = x(t) + Arccotg | i ( - L y ) . 

Arccotg denotes an arbitrary, convenient, branch of this function-

1 Detailed studies of the differential equation (1) and the new results prof. 
O. B o r ü v k a has arrived a t will form the contents of his book on linear 2fnd order 
differential equations which will be published by the Deutscher Verlag der Wissen­
schaften, Berlin. 
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If the relation (3) applies, then the functions 
t 

u(t) = sin oc(t) . exp { / a'(a) cotg [fi(a) — a(a)] da}, 
'• 

t 

v(t) = cos oc(t). exp { / a (a) cotg [(5(a) — a(a)] da}, 
h 

where tQ e j , possess the above mentioned properties and the function q(t) 
in the equation (1) is determined by the relation (2)." 

"Let a(t) be an arbitrary 1 s t phase of Eq. (1). Then, for the b.c. 
dispersion of the l 8 t kind cp(t) of Eq. (1) in (— oo, oo), there holds 

<4) oc(cp(t)) = a(t) + 7i sign a'." 

"Let p(t) be an arbitrary 2n d phase of Eq. (1*). Then, for the b.c. 
dispersion of the 2n d kind ip(t) of Eq. (1*) in (— oo, oo), there holds 

<5) p(rp(t))=p(t) + 7tsignp\" 

"Let a(t) and p(t) be the 1 s t and the 2n d phase, respectively, of Eq. (1*) 
•corresponding to the same pair (u, v) of linear independent solutions 
of Eq . (1*). Let x(t) and co(t) be the b.c. dispersions of the 3 r d and the 4 t h 

kind respectively with regard to Eq. (1*). Since q(t) < 0, there holds 
a'(t) . P'(t) > 0 in the whole interval (— oo, oo). Moreover, for 

there holds 
0 < ß(t) - a(ł) < тt, oc' > 0, ß' > 0, 

(6) and (7) fi(x(t)) -= a(t) + n and a(co(t)) = p(t), 

for 
0 < p(t) - a(t) < 7i, CK' < 0, 0' < 0, 

there holds 

<8) and (9) /%(*))' = oc(t) and a(co(̂ )) = P(t) - TZ, 

for 
0 < a(t) - p{t) < 7i, ex' > 0, p* > 0, 

there holds 

<10) and (11) P(x(t)) = a(t) and a(co(t)) = p(t) + TZ, 

for 
0 < a(t) - P(t) < TZ, *' < 0, P' < 0, 

there holds 

<l2)and(13) P(x(t)) - ot(t) - n and a(co(t)) = p(t)." 



233 

"The b. c. dispersions are uniquely characterised by the relations 
(4) - (13)." 

In the second part of the present paper our considerations will be 
directed to prove the existence and uniqueness of a solution of the 
non-linear differential equation (3), possessing convenient properties 
in the whole interval (— oo, oo) and in the following third part, we 
shall use this result together with the relations (3)—-(13) to construct 
differential equations (1) with solutions of certain prescribed properties. 
The constructions of differential equations (1) whose solutions have 
certain prescribed properties have already been dealt with by many 
authors: E. Ba rv inek [1], J. Chras t i na [6], [7], M. L a i t o c h [9], 
F. N e u m a n [10], [11], in the complex domain, e.g., V. Seda [12]. 
Some of their results will be arrived at again in the present systematic 
study of the problem in question. 

II. THE E X I S T E N C E AND UNIQUENESS THEOREM 
CONCERNING THE SOLUTION OF THE D I F F E R E N T I A L 

E Q U A T I O N £ (t) = (X (t) -f arccotg (^ (~^-\ J. 

Let fi(t) e C1, /3'(t) > 0 for every t and suppose, furthermore, there is 
given t0e (— oo, GO)] and numbers oc0 e (j3(t0) + kn, p(t0) + k + In), 
OCQ > 0; k = 0, ± 1 , . . . . Then the differential equation 

(14) 0(t) = x(t) + arccotg ( i (±\ \ - k + l n, 

(0 < arccotg t < n), has just one solution oc(t) e C73, satisfying oc(t0) = a0, 
oc'(t0) -= oc'0. For this solution oc(t) there applies oc'(t) > 0, fl(t) + kn < 
< oc(t) < fi(t) + k + In for every t. 

Proof. Suppose that in the theorem above k — 0. If we prove that 
under this additional assumption there exists a solution oc(t) of the 
differential equation (14) satisfying the statement of the theorem, 
then the function oc(t) + kn will be the solution of the differential 
equation (14), complying with the statement of the theorem even 
for k =5* 0. , 

Every solution oc(t) of the differential equation (14) in an interval 1 
satisfies even the differential equation 

(15) oc" = 2a'2 cotg [oc(t) - fi(t)]. 

At the same time every solution oc(t) of the differencial equation (15) 
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in J, for which oc'(t) > 0, p(t) < oc(t) < p(t) + n in I, satisfies the 
differential equation (14). Thus, if we show that every solution of the 
differential equation (15), for which aeO f , oc(t0) = oc0, oc'(t0) = ot0, 
necessarily satisfies oc'(t) > 0 and f}(t) < oc(t) < fi(t) + n in I , then 
such a solution is always the solution of the differential equation (14) 
in I as well. In this case, with respect to the initial conditions indicated 
in the theorem, the set of the solutions of the differential equation (14) 
would be identical with the set of the solutions of the differential 
equation (15). 

Let us, therefore, deal with the differential equation (15). Since 
a(£0) e ((3(t0), fi(t0) + n), there exists just one solution of the differential 
equation (15) in a certain neighbourhood (t0 — d, t0 + d), d > 0, of 
the number t0, complying with the prescribed initial conditions oc(t0) = 
= a0 , oc'(t0) = aQ. The function fi(t) e C1 and therefore oc(t) e C(to—d, t0+6) • 
Because oc'(t0) > 0, there exists <5* > 0, <5* ^ c5 such that, in the interval 
(t0 — <5*, t0 + (5*), there is oc'(t) > 0 as well. Thus, it is possible to find 
such a neighbourhood / of the number t0 and such a solution oc(t) 
of the differential equation (15) meeting the initial conditions in the 
number t0, that oc(t)eC^, oc'(t) > 0 and also oc(t)e(f}(t), f$(t) + n) 
in / . Let (£0 — r5, t0 + d) be an arbitrary neighbourhood of the point t0 

in which the relations are satisfied, a(£) being the corresponding solution 
of the differential equation (15) in this neighbourhood. The theo­
rem will be proved if we show that this neighbourhood is the interval 
(— oo, oo), or that the definition of the function oc(t) may be extended 
up to the end-points of the neighbourhood (t0 — d, t0 + d) so that 
the extended function is a solution of the differential equation (15) 
and meets the mentioned relations even on this closed interval. 

One has (}(t) e C1 and also /?'(£) > 0. On the closed interval [t0 — d, 
t0 + d] the function ft'(t) reaches its minimum p, which is necessarily 
positive, and its maximum M as well. Consequently, 0 < [x ^ fi'(t) ^ M, 
for t e \t0 •— <5, t0 + <5]. For the function oc(t), extended up to the end-
points of the interval (t0 — <5, t0 + d), to be of class C^to_dtto+d^, we 
must set 

lim oc(t) = oc(t0 ± 6), lim oc'(t) = oc'(t0 ± d). 
t-+t0±d^: t-^t0±d^: 

If we sum up the preceding considerations, it is easy to see that 
for the proof ot the theorem it is necessary and sufficient to show that 

a ) there exists 

lim oc(t) =-=. a(*0 + d) and a(*0 + d) e (fi(t0 + d), P(t0 + 6) + n), 
t-+tQ+d-
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b) there exists 

lim oc'(t) = oc'(t0 + d) and a'(*0 + 6) > 0, 

c) there exists 

lim oc(t) = oc(t0 - d) and a(*0 - 6) e (0(*o - (3), (/% - 5 ) +rc), 

*->t*0—d_j. 

d) there exists 

lim oc'(t) = a'(£0 — d) and oc'(t0 — 6) > 0. 

Let us now consider the single cases: 
a ) In the interval [*0, t0 + d) there is oc'(t) > 0, consequently oc(t) 
is an increasing function. Moreover, in this interval there holds oc(t) < 
< fi(t) + 7t. Therefore there exists lim oc(t) and we define oc(t0+d) = 

tw 0 +<5„ 

= lim oc(t). I t remains to show that there cannot occur: 
t-+t0+d__ 

a') a(*0 + 6) = 0(to + d) + 7t, a") a(*0 + d) = p(tQ+d). 

a') Let oc(t0 + 6) = lim oc(t) = @{t0 + 6) + n. Since, in the whole 
t->t0+d_ 

interval [t0, t0 + d), there holds /?(£) < oc(t) < (}(t) + n, there exists, 
for an arbitrary e > 0, 6,0 < d < 6 such that in the interval (t0 + d, 
t0 + 6) one has 0 < fi(t) + n — oc(t) < e. Furthermore, for x £ (0, 7i/3) 
there holds 2x ^ tg x > 0. If we choose 0 < e < TZ/3 then, in the 

interval [t0 + 6, t0 + d), there holds — ^ cotg[a(0 — 
2[oc(t) — p(t) — 7l] 

— p(t)]. Since oc'(t) > 0, and even p'(t) > 0 in (£0 — d, t0 + d), all 
the more in [t0 + d, t0 + 6), there holds 

™ >0. 
2a'(*)[a(0 - /8(f) - rc] 

Therefore 

i - | l , 

W^T=^) > 2(a - ^ - ») * C ° t g [" ~ ^ 
For t e [t0 + <5, t0 + d) there accordingly holds 

- j ^ - = 2cotg [ a(0-^)]< a ( ( ) _^ ) _ 7 r , 



236 

and because of ct(t) > 0 one gets 

a"/a> = 2a' cotg [a - 0] < [a' - /3']/[a - p - n]. 

Consequently a"/a' = [a' - j8']/[a - 0 - n] + /(*) where /(*) < 0. 
Therefore a' = G . (p + n — a ) . expF(t) ^ G. [p(t) + n — a(t)] where 

jF(£) = J f(a) d<r, Oisa convenient positive constant; for F(t) decreasing 

and hence even exp F(t). At the same time, however,_there is oc(t) > 0 
in the interval [t0 + <5, t0 + <5). Choose, now, <50 ^ <5 so that, in the 

interval,[t0 + <50, t0 + <5), there holds p(t) + n — a(J) < ^ - - . Then, in 

the interval p0 + <50, t0 + <5), there also holds 0 < oc'(t) < fi\2. At the 
same time p'(t) ^ /* and therefore p'(t) — a'(f) ^ /*/2. Moreover, there 
is P(t0 + d0) + n > oc(t0 + <50) and consequently x = /3(f0 + <50) + 
+ n — a(*0 + <50) > 0. Let us set g(t) = p(t) + n — oc(t). Evidently 

9(*) eC[ i , + W l +. ) . 0('o + *Q) = * > 0 and g'(t) £ p/2 for * e p0 + <50, 
J0 + d). Hence g(t) ^ a: and, because lim g(t) exists and is equal to 

«-**0-f<3— 

P(t0 + <5) + JZ —- a(£0 + <5) ;> «, one necessarily gets p(t0 + <5) + ?r > 
> a(J0 + <5). But this is a contradiction, as we have assumed oc(t0 + <5) = 
= fi(t0 + <5) + n. Consequently the case a' is not possible. 
a") Let a(<0 + <5) = P(t0 + <5). For x e (0, rc/3) there holds 0 < tg x ^ 2a: 
and to an arbitrary e e (0, nfi) there exists <5 e (0, d) such that 0 < 
< <*(*) - P(t) < e forte [t0 + 5, t0 + 5). Hence, for * e p0 + 3, *0 + <5) 
one has oc (t) =_2oc'2(t) cotg [oc(t) — /?(*)] > 0; oc'(t) is an increasing 
function in [t0 + <5, *0 + <5), that is to say, in this case ocf(t0 + <5) ^ a'(0-
Furthermore, in [t0 + <5, £0 + <5), there holds 

m 
«'w 

and therefore 

< Æ + i < _ J L _ + 1 
- a'(ť) ^ ~ «'(í0 + å) ^ 

ß' ,1 ' 
cotg (a — ß) ž 

, - 2[a(í) - S(í)] " 2 ( 0 . - 0 ) 

£-1 ' 
q' Г Лf l - i 

" 2(a-/?) '[ a'((0 +J) + * 

[«'(<o + ( * ) ^ J 
1 £ 



237* 

Set k = \ , M—fr + l l . Evidently 0 < k < 1. We get cotg (a -
I a (e0 + 8) J 

- jff) ^ A , --? . Thus, we can write -^- = i-£ ~ + f(t), 
z oc — p a a — p 

f(t) ^ 0 or a'(£) = C . [a(0 — fi(t)]~k . exp F(£), C being a convenient 

constant, F(t) = J f(a) da. The constant C is positive because oc'(t0 + 
t0+~d 

+ 8) > 0. The function F(t) is non-decreasing and therefore oc'(t) § 
^ 0 . [a(0 - p(t)]~k • exp F(*0 + 6) = C . [ot(t) - p(t)]~k. Choose m, 
a(*o + *) — j8ft0 + 3) > m > 0 so that C ; m-* > if. Set g(t) = a(t) -
-P(t) for * e p 0 + 3. *0 + <5). Evidently g(t0 + 8) = a(*0 + 8) -
— P(t0 + S) > m> 0 and also g(t) e C^+^+d)- Moreover, lim gr(̂ ) = 
-= 0. As gr(£) is continuous on [t0 + 8, t0 + 8], there exists t e (t0 + 8, 
t0 + 8) such that g(t) = m. Denote the smallest of these numbers 
(the existence of the smallest number is guaranteed because these 
numbers form a non-empty, closed set) by tx. Thus g(t) > m for 

t e[t0 + 8, tx) and g(tx) = m. There holds g® ~~ 9™ < 0 forte[t0 + 
— t — tx 

+ 8, tx) and because there exists g'(tx), one has g'(tx) !g 0. Consequently, 
oc'(tx) ^ P'(tx). But, according to what we said before, one has oc'(tx) ^ 
§. G . [oc(tx) - fi(tx)]~k = C .m~k > M ^ p'(tx), hence oc'(tx) > p'(tx), 
which is a contradiction. For this reason, neither the case a" can occur. 
The only possible case is the case a. 

b) We are to show that lim oc(t) exists and that this limit is positive. 
«->t*0+d_ 

Let us distinguish the following cases: 

b l ) There exists an interval [t0 + 8, t0 + 8) in which there holds 
fi(t) + n > oc(t) > 0(t) + n\2. 

b2) There exists an interval p0 + 6, t0 + 8) in which there holds 
P(t) < oc(t) < p(t) + n\2. 

b3) There exists, in the interval p0 + 8, t0 + 8), an increasing sequence 
of numbers {£n}#Li converging to the number t0+ 8 and such that 
<*(tn)-= P(tn) + n/2. 

I t is obvious that just one of these three cases occurs. Consider each 
case separately. 

b l ) In this case there exists an interval p0 + 8, t0 + 8) in which 
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oc(t) G ((i(t) + 7t\2, (3(t) + n). According to (15), oc"(t) is—in this interval—-
negative jand therefore oc (t) decreases. And, as one has oc'(t) > 0 for 
*> e [to + >̂ *o + )̂» t n e r e exists lim oc'(t) which is non-negative. I t 

*- to+<3— 

remains to show that this limit is positive. Suppose it is not so and 
let lim oc'(t) = 0. Then there exists an interval [t0 + <5, t0 + 6), d ;_= d < <5, 

t-+t0+d_ 

in which 0 < oc'(t) < ju ^ /3'(l) and hence ft'(t) —jz'(t) > 0. Furthermore, 
there holds n\2 < oc(t)^~ fi(t) < n for t e [t0 + d, t0 + d). Consequently, 
in the interval [t0 + <5, t0 + <5), the function cotgJa(J) — fi(t)] < 0 is 
increasing, hence A = cotg [oc(t0 + d) — fi(t0 + 6)] ^ cotg [a(0 — 
— /?($)] < 0. Write this inequality in the form oc"(t)joc2(t) = 2 cotg [oc(t) — 
_ £(£)] =-. _y(#/) where —2.4 ^ /(*) > 0. We get the relation oc'(t) = 

t 

= [c + / f(a) day1 for £ e [t0 + d, t0 + d), where c is a convenient 
*o+^ 

constant; c > 0 because a'(f0 + 5) > 0. The function J f(a) da is 
to+<3 

increasing and therefore there holds 

i> ; a i - = s > o . 
• " . + tM*» " - " " - " 

*o+<3 

Hence, in the interval [t0 + d , t0 + <5), there holds a'(£) ^ B > 0, 
which is a contradiction with regard to the assumption that lim oc'(t) = 0. 

tet0+d-

b2)_In this case there is, with respect to the relation (15), a"_> 0 in 
{t0 + <$, t0 + <5) and, consequently, oc'(t) is increasing, and oc'(t0 + <5) > 0. 
I t is sufficient, bot̂ h for the existence and the positivity of lim oc'(t), 

t-+t0+d-
to show that oc(t) is bounded in some left neighbourhood of the number 
*o + *• 

Since we have extended the function oc(t) up to the number t0 + <3 
so as to be continuous from the left, we can set A = max [(}(t) + n\2 — 

^+1,^+6} * 

— oc(t)\ and evidently A > 0. Then B = tg A ^ tg \fi(t) + TT/2 — 
— a(0]*=cotg[a(0- j8(0] > 0 for te[t0 + 3, *0 + d) and, with 
respect to the relation (15), oc"joc' < 2Boc' or a"/a' = 2Boc' — f(t), where 

t 

J(t) g. 0. Hence one has oc'(t) = exp{22?a — //( tf) d<r + c}, where c is 
*o+<> 
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a convenient constant. As f(t) ^ 0, exp {— J f(a) da} is a non-increasing 
to + rt 

function and consequently oc'(t) S exp{2Ha(l) + c}. In the interval 
[t0 + d, t0 + 6) there is oc'(t) > 0, so that oc(t) is increasing, while there 
exists lim oc(t) = oc(t0 + d). For this reason a'(f) ^ exp{2Ha(£0 + d) + 

«->t0+(5-

+ c}. 
b3) Let {en}n

cL1 be a decreasing zero-sequence. Then there exists 
an increasing sequence {dn}n=1, dn < d converging to 6 such that, for 
t e[t0 + dn, t0 + d), there holds | cotg [oc(t) — fi(t)] \ < en and, at the 
same time, | oc(t) — oc(t0 + d) | < 1/4. Since a"/a' = 2a' cotg [oc(t) — 

t 

— ft(t)], we can write In a'(t) — In oc'(t0 + dn) — 2 J oc'(a) cotg [oc(a) — 
t0+dn 

— ft(a)] da. According to the mean-value theorem there exists dn e 
e[dn, 6) such that In oc'(t) - In a'(*0 + dn) = 2 cotg [oc(t0 + dn) -

t ' _ 

- P(t0 + «»")] • / a'(o-) dor = 2 cotg [a(l0 + <5J - j8(*0 + dn] . [a(t) -
t0 + <3» 

- oc(t0 + dn)]. Thus | In oc'(t) - In oc'(t0 + dn) \ £ eJ2 for ^G [t0 + dn, 
t0 + d), or In a'(*0 + dn) - eJ2 ^ In oc'(t) S In a'(«0 + dn) + eJ2. 
Denote Jw = [In a'(l0 + dn) - eJ2, In a'(^0 + dn) + eJ2). The system 
of closed intervals In has the property that the lengths of the intervals 
converge to zero and every finite subsystem has a non-empty intersection 
(because this intersection also contains the number In a'(#) where 
x e [t0 + d{, t0 + d), i denotes the greatest of the indices 6f the intervals 
of the finite subsystem). Therefore the intersection of this system of 
intervals is one single number, which we denote by In A, (A > 0). 
If we now choose, arbitrarily, e e (0, A), then there exists n such that 
en S min{ | In (1 - ejA) |, | In (1 + ejA) | }. As In oc'(t) for te [t0 + dn, 
t0 + d) as the number In A lie in the interval In; hence, there holds 
| In oc'(t) -- In A \ <; en. Consequently exp{—en} S oc'(t)/A g exp en 

and, all the more, 1 — ejA ^ oc'(t)/A ^ 1 + e/A i.e. | oc'(t) — A | g e in 
the interval [t0 + on, t0 + d). Therefore lim oc'(t) — A > 0 exists. 

t—t0+d_ 

We have shown that any solution of the differential equation (15), 
defined in the interval \t0, t0 + d) and satisfying the initial conditions 
indicated in the theorem, can be extended on the whole interval [t0, co), 
this extended solution meeting—on [t0/ co)—the postulates stated 
in the theorem. Now, we shall show that this solution can be extended 
even on the interval ( -co , co) the statement of the theorem being 
complied with. 

Consider, therefore, the following equation: 

(15') , a" = 2d'2 cotg [d - /3(f)] 
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where 
fat) = -p(-t) -n, 

&(—t0) = —oc(t0) = —a0, 
#(—t0) = oc'(t0) = a0. 

Evidently &(-t0) = - a 0 e (~p(t0) - n, -p(t0)) = (fa~t0), p(-t0) + n)y 

d'(—t0) = oco > 0. Thus, there exists just one solution d(t) defined on 
the interval [—10, oo) for which there holds d(t) e Or_-*0,oo), <£(—*0) = 
= —-a0, #'(—^o) — ao- ^ o r *n*s solution one then has, on the interval 
[~~e0, oo) : d'(t) > 0, d(t) e (J3(t), $(t) + n). Then the function oc(t) = 
= —d(—t) is just the only solution of the differential equation (15) 
on the interval (—• oo, t0) for which oc(t) e O(_oo,t0]> oc(t0) = a0, oc'(t0) = 
= a0. For this solution there holds oc'(t) > 0, oc(t) e ({l(t), fi(t) + n) 
for te (— oo, y . 

If we bind the solution of the differential equation (14) defined OIL 
the interval [t0, oo) with the solution defined on the interval ( —oo, £0J 
and complying with the same initial conditions indicated in the theorem, 
we get the solution meeting the statement of the theorem on the interval 
(—oo, oo) and the theorem is proved. 

Setting, now,,—a(£) = oc(t) and —-]5(t) = (}(t) we can also state the 
following: 

Let /3(t) G C1, fi'(t) < 0 for every t. Let, moreover, there be given t0 e 
6 (—oo, oo) and the numbers a0 e ((i(t0) + kit, (}(t0) + k + 1 n), oc'0< 0;: 
k = 0, _ 1, + 2 , . . . Then the differential equation (14) (0 < arccotg t < 
< n), lias just one solution oc(t) e Cz satisfying oc(t0) = oc0, oc'(t0) = ot0.. 
For this solution oc(t) there then holds oc'(t) < 0, fl(t) +.kjt < oc(t) < 
< P(t) + k + 1 it for every t. 

III. APPLICATIONS OF THE PRECEDING RESULTS 
TO CONSTRUCTIONS OF SECOND ORDER L I N E A R 
D I F F E R E N T I A L EQUATIONS W I T H SOLUTIONS] 

OF, P R E S C R I B E D P R O P E R T I E S 

I t is interesting to note how far a function may arbitrary be chosen: 
so that there exist a differential equation to which the function in. 
question would be some phase or dispersion, and what number of such 
differential equations (1) there exists. Or, what properties the solution 
of a differential equation (1) may be required to have so that such 
a differential equation exists whose solutions have the required 
properties, or even, what number of such equations there exists. 

From the mentioned results of prof. O. B o r u v k a it follows that 
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by the choice of an arbitrary function oc(t) complying with (nc) and! required 
to be first phase of some differential equation (1) the latter is uniquely 
determined by the relation (2). 

E. B a r v i n e k i n [1] has shown that if we choose an arbitrary function 
cp(t) complying with (cp) and required to be the basic central dispersion 
of the 1st kind of some differential equation (1), then there exists an 
infinite number of 1st phases satisfying the relation (4). Namely, except 
for meeting certain conditions at the ends of the interval [£0, (p(t0)]> 
one can arbitrarily choose the l8t phase on this interval. After this 
choice, the 1st phase is uniquely determined and thus, according to (2), 
even the differential equation (1) is uniquely determined. From the 
relation (2) it is easy to see that by the 1st phase the equation (1) is 
•determined but the opposite does not hold. There remains the interesting 
question of how many different differential equations (1) have the 
same b.c. dispersion of the first kind because the results of E. Ba rv inek 
only informs us that there exists an infinite number of different l8t 

phases. Employing a result of F. Neuman 's (see [11]), Prof. O. Bo-
r u v k a has shown (see [5]) that the cardinal number of the set of all 
Eqs. (1) having the same b.c. dispersion of the l8t kind is equal to K. 

J. Chras t i na [7] has dealt with the case when one chooses 
a function %p(t) meeting (\p) and required to be the b.c. dispersion of 
the 2nd kind of some Eq. (1*). He has shown that it is possible, except 
for certain conditions at the end-points, to choose the 2nd phase arbitrarily 
even on the interval [t0, ip(t0)]. 

For completness it remains to show, what is to be expected in the 
case we choose a function @(t) satisfying (/?) and required to be the 
2nd phase of the differential equation (1*); or: a function fyt) complying 
with (%) and required to be the b.c. dispersion of the 3 rd kind of Eq. (1*); 
or: a function co(t) meeting (co) and required to be the b.c. dispersion 
of the 4th kind of Eq. (1*). 

The immediate consequence of the theorems of the second part are, 
with regard to the relation (3), the following statements solving the 
given problem for the 2nd phase of Eq. (1*): 

Let there be given an arbitrary function fi(t) complying with (/?) and the 
numbers t0, oc0 e (fi(t0) + kit, p(t0) + k +'ln) and oc0 =£0; sign oc'0 = 
= sign fi'(t). Then there exists just one function oc(t) meeting oc(t0) = a0, 
ocr(t0) = oc0 and such that oc(t) and (}(t) are, respectively, the 1st and the 2nd 

phase of some pair (u, v) of independent solutions of the differential 
equation (1). 

Or, with respect to the relation (2), we may formulate: 
Let there be given an arbitrary function ^(t) satisfying (fi) and numbers 

t0, oc0 e (fi(t0) + kn, fi(t0) + k + ln) and OQ # 0; sign oc0 = sign f(t). 
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Then there exists just one differential equation (1) such that oc(t) and ft(t) 
are, respectively, the 1st and the 2nd phase of some pair (u, v) of independent 
solutions of this equation and oc(t0) = a0, a'(l0) = oc0. Or, somewhat less 
restrictive: 

To an arbitrary function f$(t) satisfying (ft) there exists a differential 
equation (1) such that ft(t) is its 2nd phase. 

In what follows, let confine our considerations, for a while, to the 
case of oc'(t) > 0 and ft'(t) > 0. Formally we can express this additional 
postulate so that all the increasing functions meeting (a) or (ft) have 
the property (a+) or (/3+), resp. Analogously to the considerations of 
M. Kuczma [8] and E . B a r v i n e k [1] the following lemma can easily 
be derived: 

Let y)(t) be a function satisfying (y)). Then the equation ft(y)(t)) = 
= ft(t) + d, d > 0, has an infinite number of solutions ft(t) complying 
with (ft+). These solutions can be got by choosing ft(t) on the interval 
fto > # o ) l i n s"-ch a w a y t h a t Wo) + ^ = p(y)(t0)), ft\t0) = p'(y)(t0)) y (y, 
P e C[toM*o)]> 0'(O > ®f°T t e Po> Wo)]- Then ft(t) is uniquely determined 
on ( -co , oo). 

Now, if we consider an arbitrary function f(t) satisfying (y)) then, 
according to the lemma, there exist infinitely many functions ft(t) 
satisfying the equation (5) and complying with (ft+). If we choose 
q(t) < 0 on the interval [t0, y>(t0)] so that some 2nd phase ft(t) of Eq. (1*) 

(considered for t0 ^ t S Wo)) meets P(Wo)) = Wo) + ^ P'{Wo)) • 
. ^ ' ( g = P'(t0), then P(t) is uniquely determined on the interval (—oo, oo). 
Consequently, even, the differential equation (1*) is determined on 
the interval (---co, oo). Thus we have obtained the result of 
J. Chras t ina . 
Let us now choose, arbitrarily, %(t) on an interval p0 , oo) so as to 
satisfy (%). Choose, furthermore, P0(t) on the interval [t0, %(t0)] in order 
to meet (p+) and po(%(t0)) < p0(t0) + n. Let oc0(t) for te[t0, %(t0)] be 
a solution of the differential* equation (14) satisfying the conditions 
<*o(*o) = Po{x(to)) ~ 3T, oc'0(t0), = f}'0(%(t0)) .%'(t0) (compare the relation (6)) 
while setting, in (14), po instead of ft. That is possible because oc0(t0) e 
e (ftoM - n, ft0(t0)) and oc'0(t) > 0. Let ftx(t) = oc0(%~l(t)) + n for 
* 6 fc(U, X2(*o)l Evidently ^ ( % ( g ) - ft0(%(t0)) and#(Z(*0) = oc'0(%~Ht)) X 
X (r1®)' U ) = Po(x(*o))- A t t h e s a m e time ftXtftto)) - a0(*(*o)) + 
+ n < p0(x(tQ)) + n = Px(x(h)) + n. Denote by oc^t) for t e [%(t0), 
%2(t0)] the solution of the equation (14) complying with a1(^(«0)) = 
= Pi(Xz(h)) - n> oc[(%(t0)) = [Pi(%(t))Y \ m , px standing for p. In 
general, we determine ocn(t) on the interval [%n(t0), %

n+1(t0)] as the solution 
of the equation (14) satisfying ocn (%n(t0)) = ocn^(%n(t0)), oc'n(%

n(t0)) = 
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= ^n-x(xn(to))\ fin stands for /} in the equation (14). The function 0n(t) 
on the interval [#»(y, Xn+1(t0)] is again determined by the relation (6), 
i.e. 0n(t) = ccn-x(x~\t)) + 7i. If we set oc(t) = ocn(t) and 0(t) = 0n(t) for 
telXn(to)y Zn+1(*o)L n = 0,l,2, ..., then the function oc(t) has the 
property (a+) and ft(t) has the property (/?+), they satisfy the equation (3) 
and, together with the function x(t), coply with the relation (6), all 
on the interval [t0, oo). Therefore we may summarize the preceding 
considerations: 

Let x(t) be a function defined on an interval [t0, oo) On which it satisfies (x). 
Choose fi0(t) on [t0, x(to)] so that it meets ((}+) and /30(#(y) < A>(*o) + 7l-
Then there exists just one differential equation %(1*) on the interval [t0, oo) 
such that x(t) is its b.c. dispersion of the 3nd kind and fi0(t) coincides, on 
the interval [t0, x(to)]> with some 2nd phase of this differential equation. 
Or in other words: 

Let x(t) be a function defined on [t0, oo) and satisfying (x). Let q(t) < 0 
be given on the interval [t0, x(to)] so that the J8t phase oc(t) and the second 
phase (3(t) of some pair of independent solutions of the differential equation 
(1*) satisfy oc(t0) = p(x(t0j) -n< 0(to), ocf(t0) = P'(X(t0)) • *'(*o)>0. Then 
the function q(t) can be extended on the interval [t0, oo) just in one way so 
that q < 0 and x(t) is the b.c. dispersion of the 3rd kind of the differential 
equation y" = q(t) y. 

Choose, in a similar way, an arbitrary function co(t) on an interval 
(—oo, y and satisfying (co). Furthermore, choose fi0(t) on [t0, co(t0)] 
so that it meets (fi+) and p0(t0) > p0(co(t0)) — n. Let oc0(t) for 
te[t0,co(t0)] be a solution of the differential equation (14) satisfying 
the conditions a0(co(y) = (30(t0), ao(co(y) . cof(t0) = f}'0(t0) (compare 
the relation (7)), having set, in (14), po instead of p. I t is possible, be­
cause a0(co(y) G (po(co(t0)) - 7i, p0(co(t0)))a,nd oc0(co(t0)) > 0. Let p^(t) = 
= oc0(co(t)) for t e [co-1^), t0]. Evidently p^(t0) = po(t0) and p'_x(t0) = 

= #>W- Simultaneously/S.^co-1^)) = <*o(*o) > A(*o) — rc =* P-i(t0) — n. 
Denote by oc-x(t), for t e [co'1^), t0], the solution of the equation (14) 
satisfying a_1(^0) = a 0(y and a l ^ y = ao(y, having set /?-i for /?. In 
general, we determine oc_n(t) on the interval [co~n(t0), co~n+1(y] as the 
solution of the differential equation (14) satisfying oc-n(co"n+1(t0)) = 

*= a_n+1(aY-*+1(y) and a l n (co^ + 1 (g) = «--n+i(^"n+1(y), P-n standing 
for ($• The function /Ln on the interval [co~n(t0), co~n+^(t0)] is again 
determined by the relation (7), i.e. p-n(t) = oc-n+1(co(t))> If we set 
ot(0 = oc-n(t) and p(t) = p-n(t) for t e [co-n(t0), a>-*+1<«], n ^ 0,1,2, . . . , 
then the function oc(t) has the property (a+) and P(t) has the property 
(/}+); oc(t), P(t) satisfy the equation (3) and, together with the function 
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<o(t), they comply with the relation <x(t) = ^(co-1^)), all on the interval 
(—00, co(t0)]. With regard to the relation (7) we may summarize our 
considerations: 
- Let co(t) be a function defined on an interval (—oo, t0] and meeting (co). 
Let us choose ft0(t) on [t0, co(t0)] so that it satisfies (f}+) and fi0(t0) > 
> /3o(a>(̂ d)) ~ n- Then there exists just one differential equation (1*) on 
the interval ( -co , co(t0)] such that co(t) is its b.c. dispersion of the 4th kind 
and f30(t) coincides, on the interval [t0, co(t0)]y with some 2nd phase of this 
differential equation. 
Or to put it differently: 

Let co(t) be a function defined on (—- oo, t0] and satisfying (co). Let 
q(t) < 0 be given on the interval [t0, co(t0)] in such a way that the first phase 
<x(t) and the second phase f}(t) of some pair of independent solutions of the 
differential equation (I*) fulfil <x(co(t0)) = fi(t0) > (i(co(t0)) — jr, a'(ct>(£0)) X 
X cof(t0) = (3'(t0) > 0. Then it is possible to extend the function q(t) on the 
whole interval (— co, co(t0)] just in one way so that q < 0 and co(t) may 
be the b.c. dispersion of the 4th kind of the differential equation y" = q(t) y. 

Now, let us consider the case when %(t) is defined on the interval 
( -co , oo) and meets (%). Let us choose an arbitrary number t0 and, 
furthermore, on the interval [t0, %(t0)], a function /}0(t) complying with 
(/?+) and fi0(%(t0)) < fi0(t0) + n. We want to find <x_x(t) as an extension 
of the first phase <x0(t) on the interval [̂ ~1(̂ 0)> *ol °fthe studied differen­
tial equation (1*), The b.c dispersion of the 3 rd kind %(t) of (1*) is given. 
Then there ought to be valid, with regard to (6), a_2(0 = ft0(%(t)) — n. 
But in general it is not possible to state that <x_x(t) meets the condition 
(a+) on [%_1(̂ o)> t0]. We only know, for example, that the functions fi0(t) 
and %(t) belong to 01. We should be obliged to suppose fl0(t) to be chosen 
in such a way that ft0(%(t)) — n satisfies (a+) on [%~x(t0), t0]. And, 
moreover, there would have to exist, in the number t0, a continuous 
derivative of the 3 rd order of the function <x-x(t) extended in this manner.' 
Hence, if %(t) or. co(t) are defined on the whole interval (—oo, oo) we 
can only state: 

Let %(t) be a function defined on the interval ( -co , oo) and complying 
with (%). Let us choose an arbitrary number t0 and a function q(t) < 0 
on the interval [t0, %(t0)] so that the lBt phase <x(t) and the 2nd phase /?•(£) 
of some pair of independent solutions of the differential equation (1*) 
fulfil oc(t0) = P(%(t0j) - n < p(t0), <xf(t0) = £ ' ( * ( y ) . %'(t0) > 0. Then there 
is just one possible way of extending the function q(t) on the interval [t0, oo) so 
that q(t) < 0 and %(t) is the b.c, dispersion of the 3rd kind of the differential 
equation y" = q(t) y on the interval [t0, co). 
Or, less restrictive: 
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Let %(t) be a function defined on ( — 00, 00) and meeting (#), tQ being 
an arbitrary number. Then there exists a differential equation (1*) such 
that %(t) is its b.c. dispersion of the 3rd kind on the interval [tQ) 00). 
An analogous statement can be got for a b.c. dispersion of the 4 t h kind: 

Let co(t) be a function defined on the interval (—00, 00) and satisfying (co). 
Let us choose an arbitrary number tQ and a function q(t) < 0 on the interval 
[tQi co(tQ)] so that the 1st phase ot(t) and the 2nd phase fi(t) of some pair of 
independent solutions of the differential equation (1*) meet oc(co(tQ)) = 
= PQo) > 0(G>(*O)) — rc> oc'(co(tQ)). co'(tQ) = fi'(tQ) > 0. Then there is just 
one possible way of extending q(t) on the interval ( — 00, co(tQ)] so that 
q < 0 and co(t) may be the b.c. dispersion of the 4th kind of the differential 
equation y" — q(t) y on the interval ( — 00, co(tQ)]. 
Or, less restrictive: 

Let co(t) be a function defined on ( — 00. 00) and meeting (co),tQ being 
an arbitrary number. Then there exists a differential equation (1*) such 
that co(t) is its b.c. dispersion of the 4th kind on the interval ( — 00, tQ]. 

We have restricted our considerations by the postulate oi'(t) > 0 and 
P'(t) > 0. Analogous theorems could be derived even for ot'(t) < 0 and 
P'(t) < 0 because, if oc(t) and fi(t) are the 1 s t and the 2n d phase, respecti­
vely, of some pair of linear independent solutions of a differential 
equation (1*), then — ot(t) and —fi(t) are again the 1 s t and the 2n d phase, 
respectively, of some pair of linear independent solutions of the same 
differential equation (1*). Then one employs, instead of the functional 
equations (6) and (7), the relations (12) and (13). 
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