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NOTE ON THE SECOND PHASE 
OF THE DIFFERENTIAL EQUATION 

y" - q(t) y 

F. N E U M A N , B R N O 

(Received March 29, 1966) 

1. We shall deal with the differential equation v 

(i) y" = q(t) y, 

where the function q(t) is defined in a certain interval j and continuous 
on the latter (more concisely q(t) e C°(j)). The class Cn(i), where i is some 
interval, stands for a set of all functions defined on the interval i and 
having, on the latter, continuous derivatives up to and including the 
order n. By a solution of the differential equation (1) on the interval i, 
i a jf we understand every function y(t) e C2(i) satisfying the equation 
(1). When we speak only about solutions of the differential equation (1), 
we mean solutions defined on the entire interval j . The identically zero 
solution will be excluded from our considerations. 

With regard to the two linearly independent solutions u,v of the 
differential equation (1), Prof. 0. BORUVKA [1], [2] has defined the first 
and the second phase, respectively, as a continuous function on the 
interval j and complying with the relation 

(•) * « » - ^ ™P- *<W-J$f-
For the existence of the 1st phase, the postulates concerning the function 
q(t) are obviously sufficient, since 

—W 
(3) *'(t) = 

u2 + v2' 

where W is the Wronskian of the pair u, v. For the existence of the 2nd 

phase, /?(£), the continuity of q(t) only would not be sufficient, since the 
zeros of the function v'(t) would not necessarily be isolated. Therefore 
one generally requires q(t) -^ 0 for tej. A number of properties ef-the 
2nd phase have been derived under the additional assumption that there 
exists a continuous 1st derivative of the function q(t). Let us therefore 
introduce a definition of the 2nd phase so that the latter exist for every 
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continuous function q(t) and every two independent solutions of the 
equation (1) and that, at the same time, the 2 n d phase, thus defined, 
coincide with the above definition of the case q(t) ^ 0. We shall also 
show that a number of properties derived by 0. BORUVKA for the 2 n d 

phase remain valid even if only q(t) e C°(j) is required. Let us, moreover, 
note the basic central dispersions of the differential equation (1) for the 
definition of which one assumes, with the exception of the basic central 
dispersion of the l8fc kind, that q(t) ^ 0. We shall see that there it will 
not be possible to introduce definitions of basic central dispersions of 
the 2 n d , 3 r d and 48 h kind so that the properties of the basic central dis­
persions be, on the whole, maintained. But analogous functions may, 
at the same time, be defined so that the so called Abelian relations re­
main valid and that the mentioned functions coincide with the basic 
central dispersions for the case q(t) ^ 0. 

2. Let u, v be two independent solutions of the differential equation (1), 
q 6 C°(j). The second phase of the differential equation (1) with regard 
to the pair (u, v) is every function (}(t) satisfying the relation 

t 

(4) p(t) = / Wq(o)l(u'*(o) + *'«(*)) da + M, 

where t0ej and 

м = 
arctg^I forv'(t0)^0, 

*r/2 for v'(t0) = 0. 

Obviously, for q(t) ^ 0, this definition coincides with the original one, 
particularly, as there need not be only one 2 n d phase of that kind. There 
holds (}(t) e OH j). Since 0'(t) = Wq(t)[(u'*{t) + v'*(t)), the 2 n d phase of the 
equation (1) need not be a monotone function. 

Let oc(t) and ji(t) be the 1 s t and the 2 n d phase of the same pair of 
independent solutions (u, v) of the differential equation (1), respectively„ 
There always holds oc(t) — fi(t) -^ hn, h integer. If v(t) f 0 and v'(t) g 0, 

then oc(t) 7 -- n + hxn and fi(t) ± --- n + . h%n. If v(t) ^L 0, v'(t) ^ 0 and 

oc(t) =- 0(t) + hn, then u(t)jv(t) = u'{t)lv'(t)9 so that W = u(t) v'(t) — 
— uf(t) v(t) = 0, which contradicts the linear independence of the solu­
tions u(t) and v(t). In other words: 

Let oc(t) and (}(t) be the 1 s t and the 2n d phase of the samepair of independent 
solutions u(t) and v(t) of the differential equation (1), respectively. Then 
there exists an integer h such that 

(б) <x(í) + kn< ß(t) < a(ť) + k + lтr. 
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Let us now define, with 0. BokuvKA, the 1st and the 2nd amplitude 
of the independent solutions u, v of the differential equation (1) by tjhe 
relation * 

r(t) = yu2(t) + v2(t) and s(t) = j/V2(*) + v'2(t). 

According to [2], every solution y(t) of the differential equation (1) may 

be written in the form y(t) = kx — . — , where kx and k2 are 
Vl«'WI 

suitable constants. If v'(t) -7-= 0, then tg /?(£) = —77-r , or u'(t) = 
t; (£) 

= e . s(t) . sin f$(t), v'(t) = e . s(t) .cos /3(£), where e = + 1 or — 1 . 
If v'(t) = 0, then fi(t) = TT/2 + kn, or 

tt'(0 = I u'(t) I . sign u'(t) = £ l j/V2(J) + v'2(t) . sin /?(*), 

0 = v'(t) = £ . s(t) . cos a(£), where, with regard to the continuity 
of u'(t), one has e = ex. Hence we may write: 

(6) u'(t) = e . s(t) . sin ft(t), v'(t) = e . s(t) . cos fi(t). 

Therefore: 

Let oc(t) and fi(t) be the 1st and the 2nd phase of the same pair of indepen­
dent solutions of the differential equation (1) with the Wronskian W(ifc 0), 
respectively. Then the derivative of the solution 

m uit) -k s i n N * ) - f c 2 ] 

of the differential equation (I) is 

{8) y'«) = ±h ym 
Proof. Let us, first, write the solution in the form 

y(t) = icx
 S m J f f Z l ^ ] = kx cos k2. sin 0L(t)i\/\VW\ -

y \ <x'(t) 1 ^ 

— kx sin k2 . cos a(0/Vl oc'(t) I = ,... 1 I cos k2 . ]/ . sin oc(t) ~~ 
n y\ w\ L r «'w 

— sin &2 . l / _ L _ . cos cx(t) I = ' * [cos fc2. u(t)—sin k2. v(t)]t 

v oc'w W J y \ w \ 
where 

g' = + 1 or — 1 . 
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Therefore 

y'(t) = e ' . - , A . _ [cos fc2.u'(t) — sin ft.. v'(t)] = 
]/\W\ 

= ee'^Jh==T.s(t).sin[p(t)-^, 
y\ w I 

which was to be proved. 
With regard to the relations (3), (7) and (8), there holds: 

(9) '• W = uv' — u'v = se'. s(t). r(t). sin [oc(t) — fi(t)]. 

Employing />"(<) = Wq(t)js2(t) and the relation (3), we obtain: 

do) 9W = — r - - = — a W ^ . 

" W W = r^M2W = " ^ ' Sin2W° ~ m' 
hence 

(.1) M . " ' " ' « 
sin2[aW — /»(0]" 

Thus all the relations derived on the assumption that g(£) e O°( j) 
and q(t) 7-- 0 (see, e. g., [3]) and employing only relations derived in the 
present section remain valid even if only q(t) e C°(j) is required. 

3. In the previous section we have seen that a number of statements 
concerning the 2nd phase fl(t) of the differential equation (1) do not need 
the assumption that q(t) =£ 0 as long as they do not require the function 
inverse to fi(t). Still, this is not absolutely true for basic central dispersions 
of the 2nd, 3 r d or 4 t h kind. 

If only q(t) e C°(j) is required, then the solution u(t) of the differential 
equation (1) need not have a zero between the two zeros of its first 
derivative. Let us therefore consider, for a while, the differential equa­
tion (1) oscillatory in (—00, 00) and for which q(t) e C°((—00, 00)). 
According to [1] we may always define the basic central dispersion of 
the 1s t kind of this equation as the function <p(t)\ <p(t) is the first zero 
lying to the right of t of an arbitrary solution of the differential equation 
(1) which vanishes at t. There holds: <p(t) e O3((—00, 00)), <p'(t) > 0. 
In case of q(t) =5-= 0, the b. c. dispersion of the 2nd kind is defined as 
a function %p(t); \p(t) is the first zero lying to the right of t of the derivative 
u'(t) of an arbitrary solution u(t) of the differential equation (1) such 
that u'(t) = 0. Without the requirement q(t) ^ 0, however, this defini­
tion cannot be generally applied, since the function u' could be zero 
either on some entire interval, or the number t could be an accumulation 
point of the zeros of u'. Furthermore, the b. c. dispersion of the 3 d kind 
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is defined as x(t)\ x(t) *s ^ n e ^r8^ z e r o lying ^° ^n e right of t of the deriva­
tive u' of an arbitrary solution u(t) such that u(t) = 0. In the oscillatory 
case, this definition may always be applied. I t would seem that the b. c. 
dispersion of the 2nd kind could, in analogy with the properties of the 
b.c. dispersion of the 2nd kind in case of q(t) ^= 0, be defined as a function 
w(t) = v[rHt)l 

Let then q(t) e C°(j). Let t' ej and z(t) be a solution of the differential 
equation (1) such that z(t') = 0. Suppose there exists t > t' such that 
z'(t) = 0. Define x(t') = min {t : t > t' and z'(t) = 0}. (In case of q(t) # 0, 
the function x(t) obviously coincides with the b.c. dispersion of the 3 r d 

kind.) The general solution of the differential equation (1) may be written 
in the form: 

7 sin [oc(t) — k2] 
(12) y(t; h, h) = h )J^- . 

y\oc(t)\ 

The derivative of the solution y(t; kx, k2) is, by (8), given by the relation 

y'(t; kx, k2) = ± kx ^±- sin [fi(t) — i j . 
where oc(t) and f}(t) are the 1s t and the 2nd phase of the differential 
equation (1), respectively, with regard to the solutions u, v, whose 
Wronskian is equal to W. The function s(t) = fu'2 + v'% -^ 0. Let, 
for example, oc'(t) > 0 and 0 < j$(t) — a(t) < JZ. Choose t0 in the interval 
of definition of the function #(£). Set k2 = a(^0). According to (5), there 
is always f}(t) > oc(t) > oc(t0) for t > t0. Therefore #(£0) is the least of the 
numbers t e (t0, oo) for which fi(t) — oc(t0) = n. Hence there holds: 

(13) $(x(t)) = *(t) + n 
for those of the t, for which the corresponding functions are defined. 
From this relation it can also be seen that the function x(t) need not be 
continuous. Neither can we, on the other hand, state that every function 
X*(t) complying with the Abelian relation (13) will be the function x(t) 
we have defined. 

Suppose, again, q e C°(j), t' ej. Let z(t) be a solution of the differen­
tial equation (1) such that z'(t') = 0 and that there exists a t > t' such 
thatz(*) = 0. Set 

w(t') = min {t : t > t' and z(t) = 0}. 

(Obviously, in case of q ^ 0, the function a>(t) coincides with the b.c. 
dispersion of the 4 t h kind of the differential equation (1).) If a(£) and fi(t) 
stand for the 1s t and the 2nd phase of the same pair of independent 
solutions of the differential equation (1), respectively, and there holds 
oc'(t) > 0 as well as 0 < fi(t) — <x(£) < n, then 
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(14) a(a>W) = Pit)-
The relation (14) applies for all the t for which the above functions are 
defined. For such t we can already write a)(t) = or1^^))- Hence the 
function co(t) is continuous, its 1st derivative included, but it need not 
be generally increasing. 

Analogously as in the case of q ^ 0, we may employ the functions %(t) 
and co(t) to define the function 

*>W = zM0) 
for those of the t, for which the function %(co(£)) applies. (It is again 
obvious that the function xp(t) coincides, in the case q -^ 0, with the b.c. 
dispersion of the 2nd kind.) But, generally, the function ip(t) need be 
neither continuous nor increasing. For the 1st phase oc(t) and the 2nd 

phase f}(t) of the same pair of independent solutions of the differential 
equation (1) for which oc'(t) > 0 as well as 0 < /?(£) — oc(t) < n, and 
for those of the t for which the functions are defined, there holds 

(15) P(y>(t)) = P[X((o(t))] = a(co(t)) + n = p(t) + n. 

But it may not be stated, generally, that every function ip*(t) satisfying 
the relation (15) is the above defined function ip(t). 

To sum up: 
The functions xp, % and co may be defined, for every differential equation (I) 

with q(t) e G°(j), so that they: 
1. coincide, in case of q(t) ^ 0, with the b.c. dispersions of the 2ad, 3rd 

and 4th kind of the differential equation (1), 
2. satisfy the Abelian relations in those intervals in which the functions 

in (13), (14) and (15) are defined. 
Nevertheless: 
1. the functions ip and x need not be uniquely determined by these 

Abelian relations, 
2. the function x -** increasing, but it need not be continuous; the 

function co is continuous, its 1st derivative included, but it need not be 
increasing; the function tp need be neither increasing nor continuous. 
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