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MIXED PROBLEMS FORHYPERBOLIC EQUATIONS
WITH A SMALL PARAMETER

JosEF NEDOMA, BRNO

Received June 6, 1966

We seek the connection between solutions of mixed problems for the hyperbolic
equation gu,, + B(t) u, — Lu = F(z, t) and for the parabolic equation B(¢) U, —
n

a ou
— LU = F(z, t). Here Lu is an elliptic operator 2-55— (a,, (z) -5—;) — a(x) u,
.4 ‘ 1

L )= y
z = (%y, 4, ..., «,) denotes a point from E,, B(t) > 0 for ¢t = 0 and ¢ is a positive
parameter. .

1. We consider the equation

02u ou .
where
NE. ou
(2) Lu = 27975 (a‘j(z) Ta:,) — a(x)u.
i, j=1
z = (%, T3, ... x,) denotes a point from E,, ¢ is a positive parameter,

the coefficients a,;(x), a(x) are defined in a bounded ‘domain QckE,,
the right-hand side F(x, f) is defined in the cylinder @ = 2 x <0, T
and the coefficient S(t) in the interval (0, T>. We assume that it holds

{2, x = komst > 0,
1

(3) a’(x) 20, a’ij(x) = aji(x)g zafiC;Ci = a

1, )=

T M

1
(4) B(t) > 0.
We shall deal with the following mixed problems:

4, : The first mixed problem when there are given the initial conditiomi

(6) wz, 0) = f(a). %’:— =g zeD

and the homogeneous!) boundary condition of the Dirichlet type
(6) u(z, t) |g=10, S=FQ) x (0, T.

1) A nonhomogeneous condition can be transformed to the homogeneous one’
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A,: The second mixed problem when besides the initial conditions (5)
there is given a boundary condition of the Neumann type

du

du
—d; = 0, where —

- Z ou v, 7) )
dp g ai’ —3-51—005 v, xi N

i, j=1 S

(7

N

the numbers cos (v, x;) are the direction cosines of the inward normal.
Ajg: The third boundary value problem when besides the initial conditi-
ons (5) there is given the boundary condition

® | %% — b,

S

=0,
S

where h(z, t) is a positive function defined on S.

We shall look for the connection between the solution?) u(z, t) of these
problems and the solution U(x, t) of the analogous problem for the
reduced equation

9) ﬁm%?~LU=an

The boundary conditions remain the same whereas only one initial
condition can be prescribed:

(10) : U(x, 0) = f().

These problems will be denoted by A7 A3, A; respectively.

Zlamal dealt with this problem in the case of the first mixed problem
(see [1], [2], [3]). His reasoning was the following: If ¢ = 0 then, it is
true, the order of the equation (1) does not change but the equation
changes its type. From this reason it is not possible to expect that
u(z, t) is an analytic function of the parameter ¢ in the point & = 0.
What can be expected is the appearance of the so called boundary
layer terms in the asymptotic formula for u(z, ) (see [4], p. 7 and 8).
With respect to the fact that the parameter ¢ appears at the second
derivative u,, only and that u(x, 0) = U(z, 0), Zldmal sought the solution
u(z, t) in the form

%
w(z, t) = Uz, t) + eH(z, t)[l —e ]—i- ez(z, t, €).

3) Under the solution of a partial differential equation in a domain A we always
understand & function which belongs to C! in the closed domain A, to C? in the
open domain A, satisfies the given boundary condition and the given differential
equation in A. Such solutions are sometimes called biregular.
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He chose the functions H(z, t) and »(¢) in such a manner that the function
z(z, t, ¢) satisfies the homogeneous initial conditions and that it holds

a1 + B9 — Lz = 0(D).

atz

By means of the Fourier method he managed to get the estimates of the
function z(z, t, ).
In this paper we use the energy method for getting the estimates
and we get the results for all three mixed problems mentioned above.
As in Zlamal’s papers we seek the solution u(z, t) of the problem
A,(k =1, 2, 3) in the form

e
(12) u(z, t) = Uz, t) + ek(x) [l —e °© ] + ez(z, t, &),

where U(z, t) is the solution of the problem A; and the functions k(z)
and »(t) will be chosen in such a way that (11) holds and that the function
z(z, t. ¢) satisfies the homogeneous initial conditions

(13) z(z, 0, &) = g: =0
and the boundary conditions
(14) 2z, t, e)|g=0 in the case of problem 4,,
(15) —di =0 in the case of problem A4,,
dp | g
dz ) .
(16) rriP h(z, t)z| s = 0 in the case of problem A4;.
s .

(11) is required from the reason that if it is true we can expect z(z, ¢, &
to be also 0(1) in a suitable norm. By an easy calculation we ﬁnd ou
that the requirements are fulfilled if we choose

- _ BO)yg(x) — Lf — F(=,0)
a7) k(z) = 70
. t
(18) () = (')/ﬁ(S) ds.

The function z(z, t, ¢) satisfies the equation

0%z 0z
(19) s + B(t) . Lz = P(z,t, ¢),
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where
¥(t) v(2)
o*U R e

(20) Pz, t, &) = -——atT——ﬂ'(l)k(:v)c + 11 —e Lk.
Further it must hold
1) kx) =0, xeFQ) in the case of the problem A, .

dk | . o .
(22) —_— =10 in the case of the problem 4,,

dp | r)

== () in the case of the problem 4,.
s

{23) [-3—;% — h(z,t) k(x)]

The fulfilment of these relations will be ensured by suitable assumptions
about the functions f(), g(x) and F(z, ¢).

If we suppose that k(z) € Ly(Q) and (2. t, ) € Ly(Q) we get from (12)

MO B

(24) [lulz, t) — Ux, )P dedt £ 2¢2 !/ k() [] e ] dz dt +
Q (@
]

4 J22 (.t 8) da dti .
Q

If we manage to prove that the integral
S 2%, b &) de dt
Q
is bounded by a constant independent on ¢ we have from (24)
|| u(z, t) — Uz, t) || £, = 0 (¢),

what is the desired result. As a by-product we shall get similar results
for the first derivatives. To prove k(z)€ Ly(f2) is a matter of some
assumptions about the functions f(z), g(x) and F(z, f). The only rema-
ining question is to prove

(25) [ 22, t,e)dxdt £ M,
Q

where the constant M does not depend on &. We shall estimate the

integral by means of the energy method usmg the fact that z(z, ¢, €)
satisfies (19).
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2. In deriving the energy estimates we shall often use the well known
Green’s formula in a slightly more general formulation (see [5], p. 134):

Lemma 1 (Green’s formula)

1. Let E be a closed bounded domain from Ep4, with the boundary F(E)
which is a surface of the class C1.3)

2. Let {Q}(j= 1.2, ....n + 1) be functions continuous in E and belonging
to C* in E.
3. Let the integral (possibly as an unproper)

n+1 '
26 %,
(26). y ax,
‘ =
E

exist.
Then it holds

"+laQ n+1
@7 ax’ dz + ZQ, cos (v, 7;) do = 0,

i=1 ! j=1

F(E)

where the numbers cos (v, z;) are the direction cosines of the inward. normal
to the boundary F(E) in the point (x,, x,, ..., Ty1q).
We now begin with deriving the energy estimates.

Lemma 2: Let the following assupmtions be satisfied.

L. (=, t, &) belongs to C? in the cylinder Q = 2 X (0, T'), to C* in @,
it satisfies (19), (13) and one of the bounda.ry conditions ( 14) (15),
(16). The boundary of the domain 2 belongs to C} o

2. The coefficients ay(x) and a(x) belong to C* in 2, B(t) is continuous
in 0, T'), the function h(z, t) is positive and belongs to C* on S and (3)
and (4) are fulfilled.

3. The right-hand stde P(z, t, €) is continuous in Q

Then it holds

- (28) Sz, t, e)dadt £ M, [Pz, t, ) dz dt,
Q Q

%) The definition of the class O is introduced, i.e., in [5], p. 132. We only point
out that a circular cylinder belongs to C}.
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(29) f(g:)dxd‘<MfP2dxdt (=12 ...,1n),
: 3

o [(EF) s [ ra
[ Q

Q
where the constant M, does not depend on &.

Proof. We multiply (19) by e-r¢ %:—where r is & nonnegative constant

which will be determined later. We have

o corfy Greeron (8 [+ Sl ) -

) 4,9=1 o
- 0z - S 0z

A straightforward calculation yields

). 0z 0% 0z
32) e "s_ﬂfﬁi 263: (d o, )+az 5

o.1=1
1 o - - 0z 02 1. 0z \?
=7 ) 2"395 a,+“’ ta
t, =1
oz & 9 | s ( )’
—2—( M ox; )+ "ax 6,+ te\a
§j=1 §,j=1

(Affer putting into (31) we get

n
9z 02 0 Jo-r Z 0z 0z
33) - z ( —rt Qj En 'a;;) + —2—-5-{ ‘[ (] oz, axi +

'.,'-l ‘l"’l

0.
+az? + ¢ (%)’] -_—e—"{P—%—?— B®) (7:7 $



99

n
r 0z 0z 0z \?
—_—— 1
) 2 i By 0z, T +6(8t)
ij=1

The left-hand side of (33) has a form of the divergence and the right-hand
side is continuous in ¢. We can perform the integration over the cylinder
Q: =02 %<0, &, 02 £ T and apply the Green’s formula to the

left-hand side. If we denote S; = F(R2) X (0, §) and Q, = @N {t = &}
then taking into account (13) we get

, 0z dz 0z 0z
o= < 3 —rt
(34) e at dp do + e~r Zan £ ax dz +
' 1,i=1

SE QE
_1_ ~rt 2 az )’ f -t 2 2
+2fe [az +s(—5t— dz + [e ﬂ(t)(at, dz dt +
Q @
n

LA 0z 0z . 0z \? _
+2 e 2"6x6,+az +s—ét— dz dt =
i,j=1

9%
oz
. -rtpP .
= f e~ P % dz d¢.
0

If we leave out the third and the fifth integral on the left-hand side of
the equation (34) (they are nonnegative with respect.to (3)) and if we
majorize the right-hand side we get, using (3) and (4),

0z dz
—ré | -
35) M dp do © 'Z(ax,)

+ﬁofe"‘(g ) dzdt < lf e-rp 2 dxdtl
Q;

where §, = min f(¢).
t
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In the case that z(z. t. ¢) fulfils the boundary condition (14) or (15)

the first integral on the left-hand side of (35) is equal to zero. Choosing
r -= () we obtain '

" 62 0z i
Z (  Bo ( d:r dt £ ; P —ai-da, dt

9

36)

oy R

Consider now the case when 2(z, . ¢) satisfies the boundary condition
(16). We have

, 0z dz 0z 1 0
e TR, D)7 —, = - 2 —_— sl hayd
ﬁl ip e " h(a. t)z n T (e hz?) + 2 e rthz? -
1 . Oh 22
B at '

Hence we get. with respect to (13).

(37) »lfe " —(-9—‘—:—%?—;~(|41 = L e htdw + %fé"‘ hz* do —

3 F(Q;) 5;

Denote
h
hg — min h(x. t). h; = max —g——
‘After setting from (37) into (35) we have
/ h,
(38) i:’— eriz2dm + ’—59~ er2do + "Z( )

i=1

Feug) §§

2
- 52\ O
+ ﬂo] 6"’”(—3:—) drdt £ l fe*"P%dx de| + —,—;—l»f( r2ido.
| % 5

Choose
(39) P = ——

IA

Qi

w
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Leaving out the first integral on the left-hand side of (38) (it is non-

negative) we obtain

(40) __. e 22 do + = ] _,,2( az

$=1
E

+ ﬂofe"‘ :‘ dedt < \ fe"‘P d dt\
e
where 7 is defined by (39).

Again leaving out the first integral on the left-hand side of (40) (it is
nonnegative) we get, with respect to the inequality e~ < e S 1,

te 0, T),

2 - 2h,T
4 = Z( a") (%j—) dzdt <o re| | PLdzar|.

ot

i=1

% Q: Q

Comparing (36), (41) and using Schwartz inequality we have in all cases

an inequality of the energy type

42) fZ(ax,) dw+ﬁof(%"—)zdxdt§
< K(fpzdxdt (f(a") dz dt)%

where the constant K is mdependent on &.
Hence

(43) f( a”) dedt < P de dt.

From this inequality it follows (30). From (42) and (43) it follows

(44) f z(gxi)’dx < 2:;2 f Prdzdt.
13 0 \
Qg i1 ' Q.

Q:
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Integrating this inequality over the interval <0, §) we get the inequality
(29). It remains to prove (28). For an arbitrary s it holds

0wy 5,2 | el 0z
(45) 5 (e7%22) = —se~32% | 2e z-a—t .

Hence and from (13) it follows

. . .
fe"‘z2 dx + s—/ e 2 dxr dt £ fe""z2 dz dt +j e““(%i-) dz dtf.

Y 65 Q& - Q@

Choosing s = 2 we obtain

0z \?
2 25
fz dedt £ o f(at) dz dt.
4 3

9

From this inequality and from (43) it follows (28) and Lemma 2 is proved.
3. Now we can easily find the connection between the solution u(z, t)
of the mixed problem A4,(k =1, 2. 3) and the solution U(z, t) of the
corresponding problem 4;.
Theorem. Let the following assumptions be satisfied:
1. u(z, t) is the solution®) of one the problems A, (k = 1, 2, 3) in the domain
Q = Q X (0, T') and the boundary F(£2) belongs to the class C.
2. Uz, t) is the solution of the corresponding proble.n Ay and belongs to
Q). . _
3. ayx) e C”(.Q)_,_a(x) € C¥(£2), B(t) € CYK0, T), F(x. t) is continuous in Q,
F(z, 0) € C¥Q) and (3) and (4) are fulfilled.
4. f(z) € CXQ), g(z) € C¥Q).
5. In the case of the problem A, it holds
dg  df | dF(z.0)

ﬁ(o)-a';'—: dp + ap

and in the case of the problem A, the function h(x. t} is positive, belongs

to CY(8S) and it holds

dL 1F(z, O .
T e 0 (B0 — 1 — P 01

, € F(2) (see the condition (22))

dg
p(0) I
z e N (see (23)).

4) See the footnote 2).
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Then we haved)

46) || ulx, t) — Uz, 1) || @ = Ofe),
ou ou .
(47) Bz, o @ 0e) (1=12,...,m),
»(¢
ou U e = 0(e).
(48) o a POke) e L@

Proof. From (20) it follows

or?

27 \ 2
fl’z(a:, {, e)dzdt < 3[(8 u dz df 4 3fﬁ'“(t)k’(z) dz dt 4
Q Q ¢
+ 3 (Lk)? dz dt.
Q
By means of Lemma 2 we get

lzz(z. t.e)dedt = M,.

Q

0z \2
_[(W) dzdt < M,.
Q

0z \2
x <
f(—a'r) dedt = M,.

6 1
where the constant #, is independent of £. Hence from (12) the assertions
(46), (47), (48) follow immediately.
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