
Archivum Mathematicum

Felix M. Arscott; Graham P. Wright
Floquet theory for doubly-periodic differential equations

Archivum Mathematicum, Vol. 5 (1969), No. 3, 111--124

Persistent URL: http://dml.cz/dmlcz/104689

Terms of use:
© Masaryk University, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/104689
http://project.dml.cz


111 

FLOQUET THEORY FOR DOUBLY-PERIODIC 
D I F F E R E N T I A L EQUATIONS 

F. M. Arscot t and G. P. Wright 

To Professor Otakar Boruvka at his Seventieth Birthday 

Received April 24, 1969 

1. I N T R O D U C T O R Y 

The Floquet theory of ordinary differential equations with periodic 
coefficients is one of the basic elements in the study of such equations, 
not only in the abstract theory but in applications also. In essence, the 
Floquet theory states that if the coefficients of an ordinary linear 
differential equation 

(1.1) Lz(iv) = 0 

are periodic functions of z with period TC, then under very mild restric­
tions there always exists at least one multiplicative solution, that is, one 
solution u(z) with the property that 

(1.2) u(z + TT) == su(z), 

for an appropriately chosen constant s, in general complex. It follows 
immediately, if s = efla, that u(z) can be put into the form 

(1.3) u(z) =e"zP(z) 

where P(z) is periodic with period iz. 
A natural question is to ask how far this theory may be extended to 

differential equations whose coefficients are doubly-periodic functions, 
with periods a>, a>', say. As long ago as 1877 Hermite [3] established 
the remarkable result that, if the general solution of the differential 
equation is uniform in the complex plane, then there exists at least one 
doubly-multiplicative solution u(z) such that 

(1.4) u(z + co) = su(z), u(z + eo') ^ s'u(z) 

for appropriate s, s'. Such a solution can be put into the form 



112 

where 0(z) is the Jacobian theta function, fx and a are suitably chosen 
constants, and P(z) is doubly periodic with periods co, a/. 

Up till the present, this appears to be the sole published result with 
a direct bearing on the problem of extending the Floquet theory, though 
some of the results in Arscott and Sleeman [2] were obtained with the 
application to such equations in mind. 

The essential difficulty in extending the Floquet theory lies in the 
following fact: an equation with singly-periodic coefficients can normally 
be put into a form in Avhich the equation has no singularities in a strip 
of the complex 2-plane which includes all the real axis; consequently, 
there is no difficulty in continuing any solution analytically throughout 
this strip, and the complete analytic function so obtained is single 
valued there. Many equations of practical importance have, indeed, no 
finite singularities at all. 

The situation is, however, quite different in the case of doubly-
periodic equations. In the first place, a doubly-periodic function with 
no singularities is merely a constant, so that any doubly-periodic equa­
tion which is not completely trivial must have an infinite number of 
singularities in the finite part of the plane. Moreover, these singularities 
cannot in any sense be by-passed because double periodicity is essentially 
a property which involves the whole complex plane. 

In order to make progress, therefore, the equations in this paper are 
restricted to have only one singularity in each fundamental period-
parallelogram, and a fundamental part is played by a certain para­
meter, v, which we call the "exponent" of the equation. The Hermite 
theory applies essentially to the case when v is an integer, and this 
paper considers the extensions which can be made to certain rational 
values of v. It is in the nature of a preliminary study, indicating the kind 
of results which can be expected to hold for general rational values of v. 
The work is of a fairly intricate character, as might be expected from 
the fact that no advances in this direction have been made for nearly 
a century, and although this present study does not take its origin 
directly from the work of Professor Boruvka, it is offered as a tribute 
to the brilliance of his researches in the field of linear differential equa­
tions. 

2. THE CHARACTERISTIC E X P O N E N T 

I t is convenient to use the notation of Jacobian elliptic functions. 
We consider the equation 

(2-1) ^ + <Z>(2)u,- = 0 , 
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where 0(z) is an even function of z, periodic with periods 2K, 2 iK', and 
analytic except at points congruent to iK' mod. (2K, 2 iK'). It follows 
that 0(z) is an integral function of sn2 z, say 

(2-2) . 0(z) = £ Am sn2™ z 
?»=o 

the series being absolutely and uniformly convergent for all finite sn z. 
Special cases are the Lame equation, which we here write as 

d2w 
(2.3) -j— + (h — v(v + 1) k2 sn2 z) w = 0 

and the ellipsoidal wave equation 

d2w 
(2.4) — (a + 6k2 sn2 z + gk4 sn4 z) w = 0. 

dz2 

I t may be noted that (2.1) can be put into algebraic form, and indeed 
it seems possible that an alternative attack on this problem could be 
made by considering the equation in such a form and applying the 
methods of [2]. If we set sn z = t we have 

d2w dw 
(2.5) (1 - *2)(1 - k2*2) — - t(l + k2 - 2k2l2) — + 

+ {ZAmt2™} w = 0, 

which has four regular singularities, at t = + 1 , +&"1. and a singularity 
at infinity, generally irregular. If we set u = t2 = sn2 z, we have an 
alternative form 

< 2.6) 4^(1 — *0(1 — h2u) ^ + 2(3k2^2 — 2(1 + k2) u + 1) - ^ + 

+ {SAmu^} w =0, 

which has three regular singularities at u = 0, 1, k~2 and a singularity 
at infinity, generally irregular. 

Returning now to (2.1) we apply a standard type of argument (e.g. [1], 
p . 162) to show that there exists at least one solution of the differential 
equation in the neighbourhood of iK' (more precisely, in | z — iK' | < 
< R = min (2K, 2K')) which on making a negative half-circuit about 
iK' is multiplied by an appropriate constant, say a. Symbolically, this 
property may be expressed by the assertion that there is a solution w(z) 
such that 

(2.7) w(\K' + (z— iK') e-<") = aw(z). 
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Clearly, the solution w(z) is determined only up to a multiplicative 
constant. 

The constant a is determined as a root of a quadratic equation of 
the form 

'(2.8) a2 — 2Aa — 1 = 0 , 

so that —a~l is also a root; that is to say, there is also a solution w(z) 
(say) such that 

(2.9) w(iK' + (z— iK') e-*n) = —a~hv(z). 

Now we introduce the exponent v by the relation 

(2A0) a = e™*, 

with the consequence that 

(2.11) —a"1 = e-<vf->"«. 

Then the solutions w(z), tv(z) of (2.7), (2.9) can be expressed in the 
circle C : \z — IK' | < R as Laurent series 

00 

(2.12a) w(z) = (z—iK')~v £ cn(z — iK')2™, 
00 

•00 

(2.12b) w(z) = {z—iK')v+i £ c»(z — iX')2*, 
•—00 

and these are clearly independent if 2v is not an odd integer. 
We have thus defined v, in effect, as any number such that there 

exists a solution of (2A) with the property of being multiplied by 
exp (vn i) on making a negative half-circuit about iK '. This definition 
is imprecise, because from (2.8), (2.9), (2.10) it is clear that all the 
numbers 
(2.13) v + 2k, — v — 1 + 2k, 

where k is any integer, also satisfy the definition. We therefore make 
our specification of v precise by the condition 

(2.14) _ ! < „ < £ ; 

it is easily seen that precisely one of the numbers in (2.13) satisfies this 
condition. 

The exponent v, thus defined, is determined uniquely by the function 
0(z) of equation (2.1) and is thus inherent in the equation; in general, 
however, it does not appear explicitly in the equation. The case of 
Lame's equation (2.3) is exceptional, because there is a close connection 
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between v and v; we have 

(2.15) v = v (mod. 2) or v = —v — 1 (mod. 2); 

that is, r is that number in the range (—J, \] which differs from v 
o r —v — 1 by a multiple of 2. 

I t should be remarked also that v, as we have defined it, is one of 
the exponents of the algebraic differential equation (2.5) at the singularity 
t == oo, in the usual sense of that term (see, e.g. [3], p. 60). 

The case v = \ is somewhat exceptional, since then (and only then) 
the solutions w(z), w(z) may not be independent, and the complete 
solution near z = iK' may involve a logarithm. 

3. THE H E R M I T E THEORY: GENERAL SOLUTION UNIFORM [4] 

I t is easily seen that the general solution of (2.1) will be uniform in 
the entire 2-plane if and only if v = 0. Hermite's argument, which we 
repeat here partly for completeness but more particularly because it 
can be applied with modifications in other cases, is simple and elegant. 

By the ordinary Floquet theory for singly-periodic equations (re­
garding (2.1) for the moment as a singly-periodic equation with real 
period 2K), there always exists a multiplicative solution u(z) analytic 
throughout the strip | Im z | < K', i.e. such that 

(3.1) u(z + 2K) =su(z). 

for some appropriately chosen constant s. Let u*(z) be defined by 

(3.2) u*(z) =u(z + 2 iK') 

If u*(z) is a constant multiple of u(z), say, u*(z) = s'u(z) then u(z) is 
a doubly-multiplicative solution, and there is nothing more to prove. 
If, however, u*(z) is not a constant multiple of u(z), it is then linearly 
independent of u(z), and the general solution of (2.1) is of the form 

(3.3) v(z) = cu(z) + c*u*(z). 

Now consider v(z + 2K). We have 

v(z + 2K) = cu(z + 2K) + cu*(z + 2K), 
= csu(z) + c*u(z +2K + 2 iK '), 
= csu(z) + c*u(z + 2 iK' -f 2K), 

(since u(z) is uniform) 

= csu(z) + c*su*(z). 
(3.4) = sv(z). 
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Now since &(z + 2 iK') = &(z)9 u*(z + 2 iK') is a solution of the 
differential equation, and hence expressible as a linear combination of 
u(z), u*(z) say 

(3.5) u*(z + 2 iK') = ocu(z) + oc*u*(z). 

Then 

v(z + 2 iK') = cu(z + 2 iK') + c*u*(z + 2 iK'), 
(3.6) = c*a^(z) + (c + c*a*) w*(z). 

Thus we shall have v(z + 2 iK') = s'v(z) if and only if 

s'c = c*oc, s'c* = c + c*a*, 
i.e. 

(3.7a) s'c — occ* = 0, 

(3.7b) c + (oc*—s')c* =0 

and it will be possible to choose c, c* non-trivially to satisfy these 
equations if and only if 

s'(oc*—s') + a = 0 
i.e. 
(3.8) s'2 — a V — a = 0. 

If sf is chosen as a root of this equation, then the solution v(z) can be 
constructed so that 

v(z + 2 iK') = s'v(z) 

and from this and (3.4) it is clear that v(z) is doubly-multiplicative. 
I t is worth noting that since (2.1) is a special case of Hill's equation 

we can show that the equation to determine s is of the form s2 — 2As + 
+ 1 = 0. so that if s is a root, so is s -1. Similarly the equation to deter­
mine s' is of the form s'2 — 2A's' + 1 = 0. 

4. OUTLINE OF RESULTS 

If v 7-= 0, the general solution of (2.1) will not be uniform throughout 
the z-plane. When v is rational, however, say v = Ijm we cut the z-plane 
in an appropriate manner, making cuts which join chains of precisely m 
singularities. One might expect that the general solution would then be 
uniform in the cut plane, but such is not the case. However, we shall 
show that in certain circumstances the general solution is indeed uniform 
in the out plane, and then the Hermite theory can be extended. 

The simplest non-integral value of v, namely i , is exceptional in tha 
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logarithmic terms may then appear in the general solution; consideration 
of this case has therefore been excluded. 

The values of v which have been studied are: ± 1 / 3 , ± 1/4, -£- 1/5, 
i 2/5, + 1/6. In each case, appropriate cuts are made in the 2-plane; 
more precisely, if v = Ijm, we make a cut from iK' to (2m — 1) iK' 
and similar cuts through all congruent points mod . (2K, 2m iK '); each 
cut thus covers a chain of precisely m singularities parallel to the imagi­
nary axis. Then we ask: in what circumstances is the general solution 
uniform in the cut plane ? The answer is expressible in terms of a certain 
matrix T, introduced in § 6; we find that for the general solution to be 
uniform, T must have one of a small number of particular forms. The 
details vary slightly according as m is even or odd. 

When m is odd, every matrix T is found to be diagonal; this carries 
the implication that each of the solutions w, w is multiplicative for the 
period 2 iK', but the periodicity factors (i.e. the constants by which 
they are multiplied) are different, being -J-- a~x, ± a respectively. The solu­
tions are, of course, also multiplicative for the period 2m iK ', and the 
periodicity factors are the same, being + 1 . Consequently, the general 
solution has period 4m iK' (it may have period 2m iK '). In this case, 
either ^v or w is a doubly-multiplicative solution (with pseudo-periods 
2K, 2 iK '); it is even or odd in z, and has the real period 4K (possibly 2K). 

When m is even, the same diagonal forms for T appear, giving cor­
responding results, but there is also one non-diagonal form, yielding 
quite different results which will be described in § 8. 

5. N O T A T I O N 

Throughout the remainder of this paper, we use the following nota­
tion: 

(5.1) v = l\m(— \ < v <L -|), <7 = er™. 

Defining w(z), w(z) as in (2.12) we write further 

(5.2) w(z — 2m iK') = wm(z), w(z — 2m iK') = wm(z), 

so that Wo(z) = w(z), tv0(z) = iv(z); thus ivm(z), ^vm(z) are valid in 
| z _ (2m + 1) iK' | < R = min (2K, 2K'). We further write W(z) for 
the solution column vector 

(5.3) W(z) = {w(z)9 w(z)} 

and similarly for Wm(z). 
I t should be noted that wm(z), ^vm(z) are each indeterminate to the 

extent of an arbitrary constant multiple, so that W(z) is indeterminate 
to the extent of pre-multiplication by an arbitrary diagonal matrix. 
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Finally, we write M for the matrix 

/a 0 \ /evni 0 \ 

< 5 - 4 > M = (0 - a - H o e-(^)-)-

6. T H E S H I F T MATRIX T 

The solution vector Wm(z), valid near (2m + 1) iK', is generally not 
periodic and so is not the same as Wm+t(z), valid near (2m + 3) iK'. 
Nevertheless, these solution vectors have a common region of validity, 
so there will be a constant "shift matrix" T, such that 

(6.1) Wm+1=TWm; 

because of the periodic character of @(z), the matrix T is clearly inde­
pendent of m. To a large extent, our investigation depends on the nature 
of the matrix T. 

Now, because of the symmetry of the points +iK ' with respect to 
the origin, and the fact that @(z) is even, W(—z) = {w(—z), w(—z)} is 
a solution column vector valid near —iK'. But from (2.12) 

,,(_*) = (_г__LйГ/)-* -Г Cni—z — ÌK') 2n 

= e-vnt(z + iK')~v £ cn(z + iK')2n 

CO 

== e~vniw__i(z) 
and similarly 

w(—z) = e<*+D*«tiU(z), 

and consequently (see (5.4)) 

W (—z) = M-iW^z). 

But by the definition of T, 

(6.2) W(z) = TW„i(z) = TMW(—z). 

Writing —z for z we have, immediately, 

W(—z) = TMW(z) = (TMfW(—z), 
so 

(6.3) , (TMY = I, 

I being the unit matrix. 
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From this, we can deduce that T must have, basically, one of two 
possible forms. 

Write 

(6.4) '-{;'*) 
then a brief calculation shows that (6.3) holds if and only if 

(6.5a) <r2a2 — 0y = a~2d2 — $y = 1, 

(6.5b) /3(o-2a —d)= y(a2oc — d) = 0. 

We must now distinguish two cases. 
Case I : a 2a — <5 ^ 0. Then from (6.5b), /? = y = 0 and the only possible 
forms for T are found to be (but see note on p. 124) 

(6.6) T = ±Лf-i = ± 
\o —»/ 

Case I I : o*2a — d = 0. In this case T has the form 

(6.7) T = I (T2<x2—1 

ß oгoc 

This apparently involves two parameters, a and /?, but one of these may 
be removed. We recall that the solution vector W(z) is indeterminate 
to the extent of pre-multiplication by an arbitrary n on-singular diagonal 
matrix D. If we put 

(6.8) W*(z) = DW(z), Wl(z) =DWm(z), 

then (6.1) becomes W*+1 = T*Wm, where T* = DTD~*, and, as before, 
(jf*M)2 = /. Thus without loss of generality T can be replaced by 
DTD-1 with an arbitrary diagonal matrix D. To put T into a standard 
form we choose D so that DTD'1 is symmetric; this yields the form 

/ a (o2oc2—1)*\ 
(6.9) T = 

\(o-2a2—1)* <r2a / 

which is unique except for the two possible values of (cr2a2—1)4. and 
depends on the single parameter a. 

Clearly, the form of T obtained in Case I, being diagonal, is unaffected 
by a transformation such as DTD-1 = T*. 

However, the form obtained in Case I turns out to be inadmissible. 
For, if T = M-1, then TM = I, and then, by (6.2), W(z) = W(—z), 
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so that w(z) = w(—z), w(z) — w(—z). That is to say, both iv and w 
are even functions of z; similarly, if T = —M~x, w and w are both odd. 
But since &(z) is even in z, and z = 0 is an ordinary point of equation 
•(2.1), the usual theory of linear differential equations shows that there 
cannot be two even or two odd independent non-trivial solutions. Thus 
T = ±:M~l, while a formal solution of (6.3), is not admissible as a shift 
matrix . 

7. UNIFORM SOLUTIONS IN THE CUT PLANE 

Now we determine the possible forms which the shift matrix T can 
have if the general solution is uniform in the cut plane. 

7 1 Case v = ±1/3 

We make cuts in the 2-plane from iK' to 5 iK' and congruent points 
mod. (2K, 6iK)', and determine the conditions on T for the general 
solution to be uniform in the cut plane. This will be the case if and only 
if the solution vector W(z), when continued analytically along a circuit 
about the cut from iK' to 5iK ' , returns to its starting-point unchanged. 
We therefore continue W(z) analytically along the path ABCDEFGA 
shown, which has been deformed to consist of shifts of 2 iK' and simple 
circuits about singularities. We observe first that the solution vector 
Wm(z), on making a circuit about (2m-\-\) iK', is multiplied by 

v } \0 e2v™J \0 a2) 

Starting with W(z) =- W0(z) at A, its analytic continuation at B 
is T~lW\ (using1 (6.1)), and at C is T~2Wi- By the remark above the 
same solution vector becomes T~2M~2W2 at D? T-2M~2TWX at E, 
T~2M-2TM~2Wi at F, T~2M~2T M~2TW 0 at G, and finally returns 
to A with the value T-2M~2TM~2TM~2Wo = T-2(M~2T)2M~2W0. Thus 
the general solution will be uniform in the cut plane if and only if 
T~2 (M~2T)2 M~2 = I, that is 

(7.L2) T2M2 = (M~2T)2. 

We now ask whether T, as given by (6.9), can satisfy (7.1.2) and find 
that this is so only for particular values of a. After tedious working, 
we obtain 
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/ a4a2 + cr2a2 — o-2 (cr2a2—1)* (cr~2 + 1) a \ 
(7.1.3) T2M2 = I - I 

\ (cr2a2—l)t(cr2 + a4) oc a2oc2 — a~2 + a2 / 
and 

/o -4 a 2 _|_ o-2a2_l ( c r2 a2_l)i( c r-4 + a2) a \ 
(7.1.4) (M"2T)2 = 

\(a2oc2—l)i(a6+l) oc a2oc2—l + <x8a2 J 

so the four equations 

(7.1.5a) a4oc2 + a2oc2—a2 = a~4 + cr2a2—1, 

(7.1.5b) a(cr2a2—l)*(cr-2+l) = a(cr2a2—l)i(cr-4+cr2), 

(7.1.5c) cr2a(cr2a2—l)*(cr2+l) = oc(a2oc2—1)*(^+1), 

(7.1.5d) a2a2—(J"2 + a2 = cr2a2—1 + cr8a2 

must all hold. 
I t is easy to see that (7.1.5b) holds if and only if a = 0 or a = +a~x, 

but if a = 0 then (7.1.5a) is not satisfied (since cr2 =f= 1). But if a = +a~l, 
then all the equations (7.1.5) hold, and we have thus obtained all the 
possible forms of T, namely 

If we write 

(7.1.7) C-î) 
then these two forms of T can conveniently be expressed as 

(7.1.8) T = ±M- iJ ; 

it is simple to verify that these satisfy (7.L2), but the above calculation 
shows the more important and less obvious faGt that these are the only 
forms of T satisfying (7.1.2) (but see note on p. 124). 

Clearly, w and w are both multipliative solutions for the period 2 iK' 
the periodicity factors being + cr-1, + a respectively. For the period 6 iK', 
they are also, of course, multiplicative, but their periodicity factors 
are the same, being + 1 according as T = +M~XJ. Consequently, the 
general solution is multiplicative for the period 6iK', and indeed is 
periodic with period 12 iK', possibly with period 6 IK'. 

The doubly-multiplicative solutions will be considered in § 8. 
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7.2 Case v = ±1/4 

In this case the cuts are made from iK' to 7 iK' and congruently mod. 
(2K, 8 iK'), each cut covering 4 singularities. By a similar process to 
that of §7.1 we find the condition for the general solution to be uniform 
to be 

(7.2.1) T*M2 = (M-2T)\ 

An analysis similar to that of §7.1, but longer because of the extra 
multiplication, shows that if T has the form (6.9), then <x = ±a~l 

or a = 0 . Consequently, as in the case v = 1/3 we have the two possible 
forms of T 

(7.2.2) T = ±M~iJ, 

but we have also the possibility 

(7.2.3) T = ±K, where K П 
Again, it is quite easy to verify that each of the values in (7.2.2) and 
(7.2.3) satisfy (7.2.1); the interesting feature of the analysis is that these 
are the only possible values of T (but see note on p. 124). 

Analogously to the case v = 1/3, if T has one of the diagonal forms 
(7.2.2), then w, w are both multiplicative for 2iK' with different perio­
dicity factors; they are also multiplicative for period 8 iK' with the same 
periodicity factor which has the value ± 1 , so the general solution is also 
multiplicative with the same factor, and is periodic with period 16 iK' 
(possibly with period 8iK '). 

If T = ± K , however, w and w are not multiplicative for period.2 iK', 
but they are both multiplicative for period 4iK', with the same factor —1 
(since K2 = — I ) . Consequently, the general solution is multiplicative 
for 4iK ' with factor — 1 , and is periodic with period 8iK'. 

7.3 v = l/5? v =7/6 a n d f u r t h e r cases 

For a general value v = Ijm, m > 2, we easily establish that the 
condition for the general solution to be uniform in the cut plane is 

Tm-iM2 = {M~2T)™~\ (7.31) 

and can verify without difficulty that T = ±M~lJ satisfies this for 
all m, while T = ± K satisfies it only when m is even. For the cases 
m = 5, m = 6 it has been verified, by long and tedious analysis involving 
the multiplication of the various matrices, that these are in fact the only 
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solutions, and it is reasonable to conjecture that this is true in general, 
but no way has yet been found of confirming this fact. 

The periodic properties of w, w with respect to the periods 2 \K\ 
2miK ' are entirely analogous to those described in §§7.1,7.2, and will 
not be detailed here. 

8. DOUBLY-MULTIPLICATIVE SOLUTIONS IN THE CUT PLANE 

Let v be rational, v = l\m, let the z-plane be cut as described in §4, 
and let T be such that the general solution is uniform in the cut plane. 
I t then becomes relevant to ask whether the Hermite theory of doubly-
multiplicative solutions (§ 3) can be extended to the cut plane. 

In considering this, it is necessary to stress the meaning attached 
to the idea of addition of a period. If u(z) is a solution, valid in a certain 
region including the point z, then u(z + 2K), for instance, must be inter­
preted as the analytic continuation of u(z) to a region including the 
point z + 2K, by a path which avoids the cuts. Because of the uniformity 
of the general solution, which we have imposed, this analytic continu­
ation is unique and does not depend on the particular path followed, so 
long as it does not cross a cut. 

The analysis of § 3 applies virtually unchanged to show the existence 
of at least one doubly-multiplicative solution with pseudo-periods 2K, 
2 iK '—that is to say, a solution u(z) and constants s, s' such that 

(8.1) u(z + 2K) = su(z), u(z + 2iK ') = sfu(z). 

Consider now the case when T = +M~XJ, where a very interesting 
feature occurs. We have seen that w, w are both multiplicative for the 
period 2iK ' but with different periodicity factors +er_1, +cr, so no linear 
combination of them can be multiplicative for this period. The only 
possible doubly-multiplicative solutions are, therefore, w and w. Now, 
if T = M-W, then (see (6.2)) W(z) = JW(—z), so that w is even and w 
is odd; similarly, if T = —M~XJ then w is odd and w even. But we 
now show that w, w can not both bemultiplicative for period 2K, with­
out being identically zero. For, let us suppose that T = M~XJ for 
definiteness, and 

(8.2a, b) w(z + 2K) = sw(z), w(z + 2K) = sw(z); 

then, putting z = —2K in (8.2a) we have w(0) = sw(—2K) = sw(2K) = 
= s2w(0). Similarly, differentiating (8.2b) and putting z = —2K gives 
w'(0) = s2w'(0). Now z = 0 is an ordinary point of (2.1), so no non-
trivial solution can have a double zero; hence 

w(0) ^ 0, w'(0) -7= 0, s2 = 1, & = 1. 
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The function w(z), therefore, has the properties 

w(z) = w(—z), w(z + 2K) = sw(z) (s = ±1), w(z + 2iK') = s'w(z), 
(s' = o-i). Then 

w(K + iK') = siv(—K + iK') = ss'w(—K — iK') = ss'w(K + iK'), 
so w(K + iK') = 0. 

Similar working shows that w(K + iK') = 0, but this is impossible 
since K + iK' is an ordinary point of (21) and the general solution 
cannot vanish there. The same holds if T = —M~lJ. 

Thus one, but only one, of w, w is doubly-multiplicative for pseudo-
periods 2K, 2iK'5 it is even or odd, with s = + 1 , s' = icr*1 . 

It is interesting to consider also the possibility of doubly-multiplic­
ative solutions with pseudo-periods 2K, 2miK'; the reasoning of § 3 
applies again, to show the existence of at least one doubly-multiplicative 
solution. When T = +M - 1J , the general solution is multiplicative for 
2miK ', with periodicity factor + 1 , so that the doubly-multiplicative 
solution is not necessarily w or w but may be a linear combination of 
these and the restriction s = + 1 no longer holds. 

Finally, we consider the case when m is even and T = +K . HT — Ky 

then we easily find that the multiplicative solutions for 2 iK' are w + tr, 
with periodicity factors + i , while if T = —K, the periodicity factors 
are + i . There seems no reason, in this case, for the solutions to have any 
particular properties of being even or odd, nor to have any special 
values of s; there could, indeed, be two doubly-multiplicative solutions. 

Note (added in proof). Closer examination shows tha t for all m, even or odd, 
there exist two further forms of T, namely the unsymmetric matrices 

T^(±°-1 °) and T ^ f *) 
\ y ±of \ 0 ±af 

***' TM = (±l *) and TM ^ (±l - ^ 
\ yo -F l / \ 0 =F1 / 

In the first case w(z), and in the second place w(z) is doubly-multiplicative and 
either even or odd, while the other solution in each case has no special properties. 
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