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SIMULTANEOUS NONDETERMINISTIC GAMES (II)*)

JAN HANAK, BrNO

(Received February 28, 1969. Final version received May 19, 1970)

§4. BASIC “GLOBAL” NOTIONS

a) The operations —, ’, ~, +, — for collections

1. In this part a @ will be a fixedly chosen set, ¥ < @ its subset,
A, B, Wy, A will be (Q)-collections, (Wy)ses will be a system of (Q)-col-
lections.

2. On the set exp exp @ (of all (@)-collections) we define three im-
portant unary operations —, ’, ~ in the following way:

A :={B|B<Q, Q— Be(expQ) — A},
A = A)H,
9= A
There holds a trivial

3.1. Lemma. For arbitrary (@)-collections W, , W, the following assertions
are equivalent:

4) A0 A2=Q A AdnA,=90=>
b(Alth A A2¢Q[z) \% (A1¢QI1 /\‘AzEQIz)
(©) A, = A,
3.2. Clearly there holds:

(1) A is regular <= Qe U,

2) A=A

3) N<B<A>\B,
Uy =Ny,

) T (for I #9)
n =,
jed jed

*) The first part appeared in Spisy pi#irodov. fak. Univ. J. E. Purkyné (Brno),
fada 2 (Archivum mathematicum), T § (1969), 29—64.
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B:epr, &E:ﬂ,
exp @ — {0} = {Q}, {Q} = exp@ — {0}.

3.3. Lemma. Let A be an M-collection. Then W is an M-collection,
and if W n{Y} < A, then A N {¥} < Q.

Proof. f B 0 <@, C¢, then Q —CeA, Q —C <Q — B,
hence @ — Be A, B ¢ ; thus N is an M-collection. Further let A m
n{Y} <A If Ay (Q—Y)eA, then (@ —A4)n Y¢A hence
Q — A ¢A, AeU; therefore A satisfies the condition (v) of §2.17.5,
and hence % m {¥Y} < . Q.E.D.

3.4. From Lemma 3.3 and (2) it follows that the assertions “2 is
an M-collection (and A M {¥Y} < A)”, “U is an M-collection (and
A N {Y} < A)” are equivalent.

Let us note that A ~ B does not imply N ~B, as the following
simple example shows: if @ = {0, 1}, A = {{0}}, B = {{0}, {1}, {0, 1}},
then [Alg = [Ble =B, A ~ B, but A = {0, {0},{0, 1}}, B = {{0, 1}},
[U]e = exp @ # {Q} = [Ble, A #B.

The operation — has a certain relation to conjugate systems of
M-collections:

3.5. Theorem. Let (Uj)jes be a system of M-collections, let card J = 2.
Then the following assertions are equivalent:

(5)

(A) For each jo € J (*) holds.
(B) " There exists Jo € J such that (*) holds.
©) (Wy)jes s a conjugate system.

where (*) denotes the inclusion
A\, > (1. .
Jed
J#7o
Proof.
1. (A) implies (B).
2. Let (*) hold for some jo € J (i.e. let (B) be valid). Let (A4)jes € X A

If Q A; = 0, then 4; < Q — r} Ay, hence Q — 0 A;e Uy, (QI,O

an M-collection), but r) 4;e i_l QI; DIFR accordmg to the supposition,

J#Jo .?#]o
and now @ — 0 4; ¢ Uy, gives a contradiction. Thus () 4; # 0. Therefore
J€ jed
J#do

(C) holds.
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3. Let (C) be valid. Let joeJ, 4 €[] ;. Then there exist sets

]EJ
Aje Wy for jeJ — {jo} such that 4 = n A; If Q 4 e, , then we
jEJ
put 4; := @ — 4, and now 8 = ) 4; e ﬂ QIj, which is a contradiction.
jed
Thus Q@ — A ¢ y,, 4 € 2y,. Therefore (A) holds.

Q.E.D.

3.6. Corollaries. If A, B are M-collections, then the pair (A, B)
is conjugate (ie. A MB ¢0) iff A > B (or iff B > A). This can be
expressed in this form (see §2 (20))

If A is an M-collection, then U is the greatest of the collections B such
that (A, B) is a conjugate pair.

From this there follows

(6) A is an M-collection = A = {B| B < Q, {B} 1 A 3 0}.

4.1. Now let us mention several properties of the operation ’:

(7 AW =A<=QeY,
A =0 <Q¢,
(8) 0'=40, (exp@) =

((exp @) — {8})" = {Q}*,
{Q} = (expQ) — {9},
(see (1), (5); §2.10). By means of Lemma 3.3 we obtain

9) A is an M-collection = A’ is an RM -eollection
4.2. Lemma. Let W be an RM-collection. Then
A=A
and
|9 = 9.
W= { A =0 if { AP

Proof. If 9 — @, then A’ =@ (see (7)), A’ = = A. If A £ 0,

then Qe WA, W = A (see (7)), A" = A) = () = AH = 9, and
WA # 0 (A = 0 implies A = exp @ 3 0, but A is regular). Q.E.D.
4.3. Corollary. The following assertions are equivalent:

(A) Ay, A, are RM-collections A A; = Az,



118

(B) Ay, N, are M-collections A [Wy =W =0 v
V(A8 FE WA U= W)

4.4. Let us note that from 4.2 and (9) it follows that if A is an
M-collection, then A” = A’'.

4.5. Lemma. Let A be a Y-generable RM-collection. Then W 1is a
Y-generable RM-collection.

Proof. A’ is an RM-collection (see (9)). If A’ = @, then A = B = W’
(4.2), ¥ = 0 (§2.17.2). Let 9’ @, then A’ = A (4.2), A A {¥} < A
(§2.17.2), A M {¥Y} < A (Lemma 3.3). Hence always A — {¥Y} < A".
Therefore A’ is Y-generable (§2.17.2). Q.E.D.

4.6. Lemma. Let (U;, Ay) be a pair of M-collections. Then the following
assertions are equivalent:

4) ' W) = Wy A (A)’ © Uy,
(B) (Ur, Wy) is a regular pair.

Proof. In both the cases (A), (B) there holds either A; = 0 = A,,
but then (A) and (B) hold, or A; # @ % A, then Q € Ay, (Ay) = Ay
for j = 1, 2 (see (7)), and now by means of 3.6 we conclude that (A), (B)
are equivalent. Q.E.D.

4.7. If the operation ’ is considered only as a mapping of the set
of all RM-collections into itself, then it is an involution (i.e. it is inverse
to itself). Let A, B be RM-collections; we say that U is dual to B iff

" = $B; thus the relation “to be dual to ...” is symmetric, and we
may say that A, B are (mutually) dual iff A’ = B. Further, we say
that the pair A, B (of RM-correspondences) is complete iff A, B are
dual. From Lemma 4.6 it follows that every complete pair is regular,
moreover there holds (see 4.6, §2 (46))

(10) A is an RM-collection = A’ is the greategt of all collections
' B such that (A, B) is regular.

4.8. We say that a pair (U, B) of R-collections is weakly complete iff
([Alg, [Ble) is complete (i.e. iff the natural representatives of the
classes of the M-.decomposition — see §2.14 — which contain A, B
form a complete pair). Clearly, every weakly complete pair is conjugate.

5. And now we characterize the operation ~: if A 5 @, then A = A
(see (7)), hence 9 = A = A = A, if A3Q, then A =0, A =6 =
= exp @:

(11) 9 — { A if { Qed,
exp @ Q¢ U
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Thus

(12) o = 9,

(13) 9 is an M-collection = 91 is an M-collection,
(14) A is an RM-collection = 9 = U,

(see (11), (5), Lemma 4.2, etc.).

6.1. We define two mappings +, —: exp @ —expexp @ (for the
fixedly chosen @) in such a way:

Y+:={A|A<Q B£YcAd)(={4|Ycdc@m),
Y-:={d4|A<Q 40 Y£6}
Thus
(15) Y-=[{{y}|ye Y}le @ [{Y}¥lo = ([Y}]o)¥ = Y+,

hence
(16) Y-, Y+ are Y-generable RM-collections,

a7 #r=0-=0, @Q'={QF @ = (expQ) — {0}).
Clearly

(18) (Y+) =Y+ = Y-,

especially

(18" (Y+, Y-) is a complete pair
Further, it can be easily proved (for ¥;, ¥, < @):

(19) YWw=Y, =Y =YY =Y,

(20) Yi=Y;,<=Y =Y, Acard Y, £ 1.

6.2. If A is a Y-generable RM-collection, then clearly the pair
(W, Y+)is regular (A m Y+ 2 (A n{YHnY+=An{Y}n ¥+) =
=AN{Y} > Ap B — see §2.17.2; ete.), hence from Lemma 4.6 we
get W< Y-, Y* < WA; but A' is a Y-generable RM-collection

(Lemma 4.5), too, therefore also A’ < Y-, Y+ < A" = A:
(21) A is a Y-generable RM-collection = Y+ < A < Y-,

6.3. If A is an RM-collection, Y+ < 9 < Y-, then A need not be
Y-generable, as an example shows: let Q@ = {1, 2, 3}, A = [{{1, 2},
{1, 3}}le, Y = {1, 2}, then Y*+=[{{l, 2}}]o < A < [{{1}, {2}}le =
= Y-, but A {Y}=[{{1}}]le ¢ A, hence A is not Y-generable
(§2.17.2).
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6.4. Let us put
Yo ={{y}lye ¥}
YO = {Y}*

Thus for §e{+, —} Y(")H =Y, and Y% is generated by Y(")
(see (15)); moreover, clearly Y is the smallest (under <) collection
generating Y°.

b) The corresponding operations for correspondences

7. In this part b (excluding Lemma 10) let P, @ be fixedly chosen
sets, 4 < Q, u, v, w, Uy, u, € Corr (P, exp Q). (u;)jes will be a system
of elements of Corr (P, exp @), I' € Corr (@, P). Now the operations
—, ', ~, and related notions defined by means of them can be considered
as induced by the corresponding operations or notions of the part a
in the sense given in §2.7. Results of §4a can be immediately trans-
formed to correspondences, especially there hold 8.1 —8.4:

8.1.

(22) . U= u,

(23) U< v=au D0,
Uw=nw

(24) S (J +9),
n uj U u
jeJ ies

(25) wisan  M-correspondence = @ is the greatest of all » such
that (u, v) is conjugate,

(26) w is an M-correspondence = @, % are JM-correspondences,

’

w' is an RM-correspondence,
(27)  wis an RM-correspondence = %" = u
(28) u is an RM-correspondence = u’ is the greatest of all v such
that (u,v) is regular,
(29) @ = @
8.2. Lemma. The following assertions are equivalent:
(A) AU d=Q A dind=0=
= wd1 U w24, = P A w1 d1 0 w4, = 9,
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(B) Uy = Uz,
(C) Uy = Uy.

8.3. Lemma. The following assertions are equivalent:
(A) uy, uyare RM-correspondences and (uy)’ = uy (t.e. (41, u2) 18 @ complete
pair of correspondences).

B) u1, uz are M-correspondences and there holds: -

AU A, =Q A A n A, =0 =
= u1A1U uzA;_:ulQ:uzQ A ulAlﬂ uzAzzﬂ.

8.4. Lemma. Let u be a I'-generable RM-correspondence. Then w’ is a

I'-generable R M-correspondence.
. 8.5. We shall introduce several phrases for shortness of expressions.
Instead of “‘a partition of @ with {1, 2} as the set of all indices” we shall
use the term ‘‘a complementary pair’. Let (41, A,) denote a complementary
pair.

Let % = (u;, uz) be an RM-pair. We say that % is complete on (A, A,)
iff wd; U upds = wiQ = uQ). We say that % is complete in z (€ P)
iff (2w, zu,) is complete. (Thus % is complete iff it is complete on every
complementary pair, or iff it is complete in all € P.) We say that %
is absolutely incomplete iff there exists a complementary pair (4, 4,)
such that wu;4; U %24, = 0 # w;Q (then evidently % is incomplete
in all xew;@, 7 = 1, 2).

8.6. Lemma. Let (uy, u,), (v1, v2) be RM-pairs of the same type, let
(A1, A2) be a complementary pair. If (uy, uz) 18 complete on (A1, 4,),
and if wiA; < v;A; for i =1, 2, then (vy, v;) ts complete on (4,, Az),
and wid; = vid; for 1 =1, 2.

Proof. In fact, v;,Q 2 v, 4, U v245 D u 4, U uds = w;Q = v for
t=1,2(§2(15)), urdy n uzd, = 0, therefore u;d; = v;4¢. Q.E.D.

9. From Lemma 8.2 there follows

(30) wd = P — u(Q — A),

and hence 1 = P — u@Q, w'd = @)#d =04 —af = (P — uw(@ — 4)) —
— P —uQ) =uQ — uw(Q — A), 44 = wA =P —w(@Q — A) =P —
— uQ — ud) = ud U (P — uQ) (see §2,5.3, §2(9)):

(31) wA = uQ —u(@ — A4),
(32) i =uU P —u@,
(where _ is defined in § 2.11), especially
(33) uQ = P.
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From (30), (31) we get

(34) ud =0 = uQ = u'Q,
(35) wQ=P=>a=u,
(36) ud < u@ forall Ac@Q=>a=uUP—uQ.

The condition “ud < uQ for all 4 < @’ can be written shortly as
“uw < u@”. According to (34), (36), (35)

(37) uﬂ:ﬂAuch$u=J’,
(38) wW=0AuQ=P=>a=u =u.

10. Lemma. Let E, G be sets, u € Corr (B, exp Q), v € Corr (G, exp E) -
Then

v.u=9.%,

where the operation ~—  is taken in Corr (G, exp Q); Corr (G, exp E);
Corr (E, exp Q) in the expression v . u; ¥; @, respectively.

Proof. In fact, ‘(9.a) 4 =o@ 4) =0(F — w(@ — 4) = G —
—ou@ —A4) =G — (v.u)(Q — 4) = (v.u) 4. QE.D.

11. Now to the operations ¢, © introduced in §4a (6 € {4, —})
which map exp @ into exp exp @ we shall construct in a natural way
the “induced”. operations °, (», which will map Corr (@, P) into

Corr (P, exp Q): for I e Corr (@, P), 6 € {+, —} we define IV, T ¢
€ Corr (P, exp @) by the conditions

20 = (Fx)d x]:‘(d) —_ (Fx)(d)

(for all z € P). The statements of §2.6 can be easily transformed to
the induced operations, especially

(39) - (I't, I'") is a complete pair of I'-generable correspondences,
(40) I'® is the smallest (under <) correspondence generating

I'%; T is the graph of I'®),

(41) (I, T'G) is a weakly complete pair.
Clearly -
(42) Md ={z|zeP, 0 #TI'c < 4},

={x|zeP, An 'z # 0},

therefore the denotations T'z, T'+A, T'-A have the same sense as in Berge’s
book [1].
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12. We say that u is a simple correspondence iff there exists I' such
that zu e {«I'+, 2"~} for all x € P. Clearly every simple correspondence
is an RM-correspondence. We shall understand under a simple pair

such a pair (of correspondences) whose each member is simple. There
holds

(43) u is simple = u’ is simple,
(see (18)), i.e. if a member of a complete pair of correspondences is

simple, then the pair is simple.

¢) The case P = Q.

13. In this part ¢ we suppose the same as in part b (see 7), and
moreover P = Q. Let (P, P,) be a type.

14. There holds

(44) = (—1).u.(—1),

(45) 1 is an RM-correspondence,

(46) lcu=u=ac<l,

(47) I=1=1 (-)=(-1), (=1)=g,
(48) QUuw =1Vu=1na 1onu=1Ua,

(see (30), (31), (35), (23)).

15.1. In §4.15 let & = (P, P3) be a fixedly chosen partition of the
set P. For (a given & and for) ¢ = 1, 2 let B; € Corr (P, exp P) be defined

by

Bi:=1n Py,
ie. BiA = A n P;for A = P. Let us mention trivial properties:
(49) B; . B; = By, B;. B3 ;= s
B: U 4; = U Bi4;.
jedJ jeJ
(50)

B 4= Bdy (J#0)
JE

jeJ
where (4;)jes is a system of subsets of P,

15.2. For an arbitrary pair (u,, uz) (and for the given &) we define
u € Corr (P, exp P) by
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U .[xeP
(+) xu:{xu: lf{xeP:’
and we denote u < (u;, uz).

15.3. For u < (u1, u), v < (42, w1) there hold the following simple
statements:

(561) uy, u have a property V = u, v have the property V,

where V is some of the properties:
“to be an M-correspondence’
“to be an R-correspondence’
“to have the type (P, Po)”’
““to be a game correspondence’
“to be a I'-generable correspondence’
“to be a simple correspondence”

(52) (w1, u2) has a property V = (u, v) has the property V,

where V is some of the properties:
“to be a conjugate pair”
“to be a regular pair”
“to be a weakly complete pair”
“to be a complete pair”’

(53) : w < (u,v), U< (v, u).

15.4. The condition (+) of 15.2 is equivalent to the condition zu =
= 2(B;. %) U x(B2.uz) (= x(By.u; U B;.up)) for all ze P, i.e.

(54) w< (U1, Up) << u = By.uy U By. uy.
15.5. In 15.5 let w be a game correspomlence? Then
w=B;.4uUB,. u>B;.u.B,U B,.u.B;.
Let us introduce the condition
* w=B8,.u.B,U By.u.B,

(which is equivalent to w < By.% .B, U By. % . By). If (*) holds, then
according to (49), (50) there holds

(**) Bi.u=B;.u.Bs_¢=u.Bsg (for 1 = 1, 2),
and especially

(***) Bi.u < u.Bsy (for s =1, 2).
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But (from (***) there follows B; .y B,y B,.w.B;y @ By.By.u U
U B2.B;.u = u, ie. (*) holds iff (***) holds. Thus

(85) (*) = (**) <> (¥*).
Let us note that especially
(66) (*) = u = uB; U uB;,

but here the implication “<=" is not valid, as there shows

15.6. Example. Let P := {1 2} x {1, 2}, Py := {(1, 9), (2, 0)},
L(k, 1) := {(8 — k, i)} for k, 5 € {1, 2}. Then I'- = TI'+ (see 11; (20)),
P := (P, P,) is a partition of P. We put = I'- = I't thus u is
a I'-generable game correspondence, u = u’ (see (39)). It is clear that
w=1u.B U u.B,,althoughu.B; < Py, B;.u.By¢ < By.Pyy=80
# By . u, i.e. (**) does not hold.

15.7. We say that I' is P-alternative iff
z e Py, t1e{l,2} = I'r © P3y,
i.e. iff Py n T'x = 0 whenever z € Py, ¢ € {1, 2}. Thus
(67) T is P-alternative < P = (P, — '"Py) U (P> — ['-Py).
Let I'(s) be the graph defined by

P, P, — P,
Pgz:=4, 0 if ze Py ;
P, P, — P,

clearly I'(s) is the greatest (under <) P-alternative Po-ended graph
(of Corr (P, P)).
Evidently (for I'y € Corr (P, P))

(58) [y = T, T is P-alternative = [y is P-alternative.

15.8. We say that u € Corr (P, exp P) is P-alternative iff u is
I'-generable for some P-alternative graph I'. According to § 4.8.4

(69) wu is a P-alternative game correspondence = u’ is Z-alternative.
Further there holds for each 3¢ {4, —}

(60) I' is P-alternative <= I'? is P-alternative (= : (39); < : (40), (58)).

15.9. Lemma. Let u be a game correspondence of the type (P Py).
Then the following statements are equivalent:



126

(A) u 18 P-alternative.
(B) u is I'()-generable.
© (*) (of 15.5) holds.

Proof. (B) and (A) are equivalent — see 15.7, § 2(27). The condition
(*) can be written in the form

zuA = [zu(A N Ps_¢) whenever z € Py],

but zud = z ¢ Py = P — uP, and hence (*) holds iff u is I'p-generable
(§2: (15), (26)). Q.E.D.

15.10. Lemma. Let u,, u; be P-alternative game correspondences, let
U < (uy, uz). Then

u=81.u1UBz.uzzul.B2Uu2.31=
=Bl.u1.BZU Bz.uz.BlzBl.u.BzU Bz.u.Bl =
:u.BIUu.Bz,

and w is a P-alternative game correspondence.

Proof. See (54), 15.9, 15.5 (namely, B;.u .Bs_; = B;.(B;.u U
U Bz . ’uz) . B3wi = Bi UG B3_,r,j — 8ee (49), (50) - etc.), (51) QED.

d) Complete games. Games with perfect information

We suppose the same as in part ¢ (13).

16.1. Let u, v be game correspondences. Then the assertion “(u, v)
is a regular pair”’ is equivalent to the assertion ‘‘there exists an
(R)SN-game such that «, v are the game correspondences of some two
distinet players of this game’ (see §2.29—30); for an arbitrary fixed
game correspondence u there is the greatest (ufider <) of v such that
(u, ») is regular, namely v := ' (see (28)), therefore, if u is the game
correspondence of a player of a game, then the dual correspondence u’
gives the greatest possibilities for another player.

We say that an (R)SN-game is complete iff it is a two-player game
and the pair of the game correspondences of its players is complete.

According to the above, every game correspondence w is the game
correspondence of some player of a suitable complete game (and, of course,
u' 18 the game correspondence of the other player of such a game).

16.2. Now it is clear the meaning of regular weakly complete pairs of
correspondences: if ¥ = (%, (fj)js) is a complete RSN-game, J =
= {Jj1,Jz2}, then (ug 10 Uty ) is a regular weakly complete pair (§ 2.28 etc.).
It is easy to see that every regular weakly complete pair can be obtainep
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in such @ way. Further, if w is an R-correspondence, then there is v such
that (u, v) is regular weakly complete (it is sufficient to put zv :=
;= ([wulp) [l ).

17.1. Now let us consider the formalizing of game structures with
perfect information (and without chance moves) as certain (R)SN-game
structures.

Let P be the set of all positions of a game (structure) with perfect
information, let J be the set of all players (P # (J # J); without loss
of generality we can assume 0 ¢ J. Further let P, (< P) be the set of
all final positions, I' be the graph of this game (for € P 'z is the set
of all positions which may immediately follow after x); let (P;)jes be the
partition of P such that P; is the set of all positions in which the player j
“nominatively” moves (namely, at a final position it is irrelevant who
moves). The corresponding SN-game structure will be a certain
J-automaton # = (P, R, g) with the pseudocomponents #; = (P, Ry, g5)
defined in the following way:

Ryx): =0 for z € Py, jed,
Ryzx): =Tz  for x e P; — P, jed;
for xe Py — Py, keJ — {j} we put e.g. Ri(x):= {0} (here we can
choose an arbitrary non-empty set, too), further

o(z, r) : = {pryr} for xzeP;— Py, re R(x) (: = X Ry(x))
jeJ
The interpretation is clear: the player j moving at a nonfinal position
x(e P; — Po) chooses some position y € 'z, and the position y will follow
itmmediately after x, since y(x, r) = y for all r € R(x) such that pryr = ¥;
the other players “play emptily”’ at the position x. Thus

_[{ _ k=j
\ gk(x,y)—{rx for xeP; — Py, ye€ Ry(x), ked — ()

ie.

') h [ il
LUz, = e whenever xe 1 P—_ Pj s

Hence, if u; denotes the game correspondence of the player j (i.e. uy =
= [ug,]p), then

Uy = =L- if Py
7=\ oI+ “S\pP-p;
ie.
uw =B, .-y BL.T+
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where
Bi:=1n Py,

Bi:=1n P — P,
(see 15.2, 15.4). Further, if (Pj)jes satisfies the condition
(*) zeP;j=>P;n I'e =0,

(this is supposed in Berge’s book [1]), then according to Lemma 15.10,
(60), (39) there holds especially

’u;:F".Bj_U P+B7+

17.2. Passage 17.1 shows that in an arbitrary game with perfect infor-
mation each player’s game correspondence is simple. (Moreover, if card J =
= 1in 17.1, then u; = I'-, where {j} = J.)

On the other hand, if v is a simple game correspondence and if J s
a set, card J > 2, j € J, then there exists a game with perfect tnformation
such that J is its set of players and v is equal to the game correspondence of j
(clearly, it is sufficient to choose some ke J — {j}, and to put P; :=
={x|zeP, a2v =20}, Pp:=P — P;, P;:=0 for ieJ — {j, k},
where I' is some graph such that zu € {«['+, '~} for all x € P, etc.).

17.3. Now let us consider the case of two-player game with perfect
information. We may put J := {1, 2} in 17.1; then for i e J

Bi = By, Bi = B;_;.
Using the denotations of 15.2 we get
Uy < (F_, F+), Uy <— (F+, P"),

i.e. (w1, uz) is a simple complete pair of game correspondences ((39),
(52), 12).

On the other hand, if (v, v;) is a simple complete pair of game cor-
respondences, then there holds v, < (', I'+), v, < (I'+, I'~) for a suitable
graph I' at a suitable partition (P;, P,) (see 12, 15.2).

Therefore simple complete pairs of game correspondences and only
they are the pairs of game correspondences of two-player games with perfect
information. We shall call these pairs pairs with perfect information.

Let us note that a pair with perfect information need not determine
the partition (P;, P;) uniquely, although the graph I' is determined
by this pair (see (20), etec.): if card I'z < 1, then it is irrelevant who
moves at the position z.

Let us note that the Berge’s condition (*) of 17.1 means the Z-alter-
nativeness of I' in the case J = {1, 2}.
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e) On the “strategic completeness”. Principal examples

We suppose the same as in part e.

18. In some sense, a game correspondence u determines the possibilities
of a player at a game (see § 2.26.3 etc.); we may say that u describes the
local possibilities of the player, and ~ u (or ~ U) describes his global
(= strategic) possibilities if his memory is characterized by ~ (see § 3a).
In §3a it was mentioned how some properties of u induce the
corresponding properties of ~ u (or of ~ U), and conversely; that
means, connections between certain global properties and corresponding
local properties for isolated player were considered there. Analogous
questions for properties related to two (sometimes many) players will
be investigated in the following.

19. Lemma. Let (u;)je; be a regular system of the type (P, Po) Let
(4 )jEJ be a system of memory relations of the type (P, Po). Then ( ]uj)jEJ,
(% 'Vies are RM-systems.

Proof. The assertion immediately follows from §3 (3), (5), (12),
§2.21.3—4. Q.E.D.

20.0 “Technical” note. Besides somewhat unusual denoting indexed
memory relations, I had to modify other denotations: in (upper) index
position, every expression of the type “(E)” (where E may consist of
several elementary symbols) is to be read “E”. (The printing house
has not some symbols which would have to occur in & standing in
index position.)

20.1. Let I" € Corr (P, P) be a graph of the type (P, Po); to I' we
have defined the generalized graph I' € Corr (P, P) (of the type (P, 9),
see §3.0), and the correspondences I'*, I'~ (by §4.11 with @ := P,
I' :=T). We can define the ~-strategic correspondences ~ IX(,
~ IX® (where § € {4, —}, and ~ is a memory relation of the type
(P, Pg)) to the regular correspondences I'®) and to the game cor-
respondences I'Y; clearly ~ IO = ~ T (see (39), (40), §3 (9)).
There is a near relationship between I'Y and I¥9: there holds

S(I'9) = X {{z} | z€ T'x(z)},
zeZ
S(Ke) = X {3},
(where Z is the set of all segments to Z := P — P,), consequently

61) 2l = [{s(z,0) |o € STO)p = [{{x} | xe T}]p =
= [#TOp = 2T,
2T = [{8(z, 6) |6 € S(TH)}]p = [{Tz}lp = 2T+,
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l(.(:32.) 7@ — o) = I Oe{+, =}
Thus from (62), (39) we get

(63) (I<+, T¥=) is a complete pair
Further S(I'Y) = S(I'©) (card S(I'M) = 1), hence
(64) ~ T = T,

But it may happen I'-> £ o, eg:if P:={1,2}, Tl1:=T72.=P

(Po = 0), then {(1, 2, 1, 1, 1, ...)} e 1T¥> — 1%,
Let us note that there holds

(65) U = F“’ v = F+ = 9[ = x_y V = x+,
where X := Xp.

21.1. Lemma. Let (u,, u,) be a regular pair of the type (P, Py), let§ ,2
be memory relations of this type. Then there holds:

(1) (11U, 3Up)is complete = (Uy, W), (T w1, 7 u2) are complete,

(2) (Tur, 2uy) is complete = (w1, ug) is complete, (u1, uz) is weakly
. complete.

Proof.

1. Let (7 Uy, 3Uz) be complete. Then (1, Uz) is complete: 2 Uy =
— fliyc iy c Uz cilly(see §3(12), § 4: (7), 19, 4.6, (3)), Uy = 1.
Let (A, A;) be a complementary pair (@ := P), z € P, then A; €7 U; for
some? € {1, 2},but 7 U; < x(7 u;), hence x( 7 u;) A;; therefore, (1 w1, 3 uy)
is complete.

2. Let (1 w1, 2 ug) be complete. Then (uy, ug) is.complete (Lemma 8.6).
Let (41, A;) be a complementary pair (@ := P), let A;:= {x|x &P,
Ux) =1, & € A;} for ¢ =1, 2; then zuw;A; iff x[u;]pA; (compare § 3.2),
hence ([u,]p, [%2]p) is complete, (u;, u;) is weakly complete. Q. E.D.

21.2. Let us note that if (in the situation of Lemma 21.1) (1 u1,2 u,)
(1 Uy, 2 Up) is complete, then7 u; = u; (7 U; = ;) for ¢ = 1,2, a8 there
follows from the above.

21.3. Example. P := {1, 2} x {0, 1}, Po:= {1, 2} x {0}, P :=
i= {i} x {0, 1}, T'eCorr (P, P), I'(1, 1) := I'@, 1) := Py, T'(1, 0) :=
=12, 0) = 0, u; « (I'O), T'W), up « (IHTO) (at P := (P1, £)).
Thus (%1, u,) is a weakly complete regular pair ((41), (52)). Let A, :=
= {((1, 1), (2,0)), ((2,1), (1,0))}, Az := P — A,. Then A, ¢ Uy, Az ¢ ;.
Nevertheless, it is clear that even (i, i3) is complete.
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21.4. It may happen (for a suitable weakly complete regular pair
(u1, uz)), that (u1, up) is complete, but u; # u; for some ¢, and thus
(w1, @) is not complete (see 20.0, 21.1).

21.5. After 21.1—4 there is a natural question: if (41, u,) is a regular
weakly complete pair, is (w1, uz) complete? (The converse implication
holds, see 21.1.) It is known that in general the answer is negative,
namely, this follows from results of the theory of two-player games
with perfect information: Gale and Stewart [14] have proved this in
a non-constructive way, using the possibility of well ordering of the
continuum. In the following we give several examples based on the
same principle; as we shall show they are only special cases of a certain
more general example. First of all we prove three lemmata (22.1—3).

22.0. We say that an aim A has the property (t) iff A is a non-empty
set of infinite variants such that for each x € A and for each k£ > 0
there exists y € A with the properties (zo, ..., &) = (¥o, ..., ¥x), y # X.

Let us note that the following lemma is clear, especially if one uses
the concepts of §7a; nevertheless we shall present the proof in the
usual style. No (N) denotes the cardinality of the set of all natural
numbers (of the continuum).

22.1. Lemma. Let an aim A have the property (t). Then card A > N.

Proof. To an arbitrary segment z = (2o, ..., z,) (at given P, Z) we put
A(z) := {x | x € P, there exists x € A such that (%o, ..., Zs) = (20, ..., 2a),
Zni1 = x}

We say that z is essential iff card A(z) > 2. Let some mapping y, of A(z)
onto {1, 2} be given for every essential segment z. Now we define the
mapping ¢ of Ainto {1, 2}¥ (where N := {1, 2, ...}) in the following way:
let x € A; then there exists (exactly one) increasing sequence (kn)nen
0< ky <ks<..., such that {kn|neN} = {k|keN, (x, ..., Zk)
is essential }(this is implied by the property (t) of A); and we put

P(X) 1= (Yiao, ..., 24) (Thy+1)s Vi, ..., 2) Fhey +1)--2)-
It can be easily proved that ¢ is a mapping of A onto {1, 2}¥. Hence
card A > card {1, 2}V = 280 = N. Q.E.D.

22.2. Lemma. Let card P < No. Then card S < N.

Proof. In fact, here card Zy < No for the set Zi of all segments of
the length %, hence card Z < No. Thus card S = card (exp P — {#}); <
< (2N0) No = Q.E.D.

22.3. Lemma. Let m be an infinite cardinal number, let J be a non-empty

set such that card J < m. Let W be a collection in a set M, let card U < m,
card U > m for all U e ..
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Then there exists a partition (Mj)jes of M such that U n M; +# 0
forall Uel, jed.

Proof. Let w° be the smallest ordinal number having the cardinality
card M. There exists a transfinite sequence (U5)0g¢<a,o such that {U? [0 <
< & < 0°} = U. Let us define a system (m$osec,°, jes Of elements
of M by the transfinite induction in the followmg way:

let 0 < & < w° let mY be defined for ally < &, j € J, then evidently
card {m"[0<n<§, jedJ} <card U.card J S m2 =m <
card U§, and thus we (may) define a system (mf),eJ of mutually
distinct elements of the set Uf — {m?|0 <7 < &, jeJ} (hence
now the elements m? are defined for < £ 41, jeJ).

Clearly there holds (for 0 < &, &1, & < ®°, j, j1, j2€J):
@) mit = mt = &1 = £ A ji = ja,

(ii) m$ e U,

Thus there exists a partition (My)je; of M such that
(iii) m§ € Mj,

holds for 0 < & < ®° , j€J. From (ii), (iii) we conclude that if U e 1,
jedJ, then U n M;e mb where £ is such an ordinal number that U =
= U¢. Q.E.D.

23.0. Now we shall give two simple but interesting examples of the
“strategic absolute incompleteness”. Let us note that the absolute in-
completeness of (u;, ug) in them follows immediately from the (rather
more complicated) example 24.1, too.

23.1. Example. Let P := {1, 2, 3}, W:= {{1, 2}, {1, 3}, {2, 3}}.
It is easy to see that (2, A) is a regular weakly complete pair (with
equal members!). Let u = u; = u, € Corr (P, exp_P) be such that xu = A
for each z € P. Then (u,;, u,) is a regular weakly complete pair of cor-
respondences of the type (P, #). Clearly, s(z, 6) has the property (t) for
all '@ € S(u), xe P. Thus, if we put U:= {s(z,6) |zeP, o S(u)},
M := P, J := {1, 2}, then according to 22.1—3 there exists a partition
(A, Az) of M(= P)such that U n A; # @ forall Ue U, ¢ = {1, 2}, i.e.
s(z, 6) < A; for each zeP, ie{l, 2}, e S(u) = S(us). Therefore,
uiA U ugA; = 0, hence (u1, ug) is absolutely incomplete.

23.2. Example. Let P be a set, 0 < card P < No, I' € Corr (P, P),
card I'z > 2 for all x € P. Let & = (P1, P;) be a partition of P such
that ' is P-alternative. We define u; < (I'7), TM), uy < (F'H, T)
(at &), then (u;, u,) is a weakly complete regular pair, and ([u;]p, [u2]p)
is the pair of game correspondences of some Bergean two-player game
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with perfect information (see 17.3); we can prove that (uy, We) is absolutely
incomplete in a similar way as in example 23.1, namely, we put U :=
:= {s(z,0) |z € P,i e {1,2},6 € S(w;)} etc. The case card P; = card P, =
= 2 can be considered as a certain classic example (compare [14] and [16]).

24.0. On the other hand, if card P =1 and (u;, %) is a regular
pair of correspondences, then clearly (uy, ue) is complete. Thus there
is a natural question: does there exist a regular weakly complete pair
(w1, uz) at card P = 2 such that (uy, ug) is absolutely incomplete? —
Example 24.2, based on Lemma 24.1 (which can be rather generalized)
gives the positive answer to that question.

24.1. Lemma. Let (uy, uz) be a regular pair of the type (P, Po), let
Pi:= {z | x € P, zu; contains a one-element set} for i = 1, 2. If there holds

(i) PO = 0:
(i) 0 <card P < No,
(iit) Pin P2 =,

(iv) ie{l, 2}, x € P! = there exists A € xu; such that A n Pt =0,
then the pair (w1, wz) is absolutely incomplete.

Proof. Under the suppositions we put
Pi := {x | x € P, there exists k such that zx, zk.1, ..., € Pt}

for ¢ = 1, 2; clearly P1 n P2 =#. Let P° := P — (P1 y P2). From the
suppositions it -follows clearly that (for ze€ P, ie{l, 2})

o e Su), s(@06) <P —Pi=s(c)Nn P has the property (t)
hence, the cardinality of each set of the collection
U:= {s(x,0)n Po|zeP, ie{l,2}, ocSw), sxoc <P— Pt}

is at least N (Lemma, 22.1); clearly, card U < card P. card S(u) < No - N =
= N (Lemma 22.2). Therefore, if we put M := Po, J := {1, 2}, then
according to 22.3 there exists a partition (M;, M,) of M such that
Un M, #0#+Un M, for all Uell. Let A; := M; y P3>*t for i¢e
€ {1, 2}. Then (A;, A;) is a complementary pair of aims. If 2 € u1A, U
U u2A,;, then there exist ieJ, 6 e S(u) such that s(x, o) < A; <
< P — Pt, hence 8(z, o) N Poel, and 0 % (s(z, o) n PO)n M3 ; <
< s(z,6) N As_¢, thus s(z, o) & A, which is a contradxctlon Therefore
wA; U u2A;, = 90. QED. ,

24.2, Let P be a set, 0 < card P € No, I" € Corr (P, P), card I‘x >2
for all z € P. Let # = (P1, ) be a partition of P such that I'z ¢ P;
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whenever 2 € P;. We define u, < (D), T'D), 4y < (D), ') (at P);
therefore, 24.2 is a special case of 23.2. (u;, u,) is a regular weakly
complete pair (and ([uilp, [u2]p) is a pair with perfect information).
Evidently, the suppositions of Lemma 24.1 are satisfied. Therefore
(u1, ug) is absolutely incomplete. Let us note that here it is possible to
choose P, I', # with card P = 2.

§ 5. THE FUNDAMENTAL PROBLEMS.
ON IDEAS AND METHODS

a) The fundamental problems. Notes on methods

0. In this part a we shall formulate the fundamental problems in-
vestigated in this work. We suppose: (P, P,) is a type, (u;, u2) denotes
a regular weakly complete pair of elements of Corr (P, exp P), » denotes
an R-correspondence of Corr (P, exp P), ~, 1, 2 are memory relations,
u, 1, Uz, ~, 1, 2 have the type (P, Py); (A1, Az) denotes a complement-
ary pair of aims, A denotes an aim (P := P(p,p,)). Let us denote two
equalities:

(*) I ulAl U § U2Az = P,
(which means that (T u;, 3 us) is complete on (A, A;)),
(**) ~ ulA = uA.

1. The equality (*) need not hold (as the principal examples show,
it may happen even wu;A; U u,A, = 0). Therefore, we can consider
the following two-player problems:

(I, 1, 2) To give suitable sufficient conditions on (uy, u,) for the
satisfaction of (*) at all (A, A;).

(IL, T, 2) To give suitable sufficient conditions on (A, A;) for the
satisfaction of (*) at all (uq, uz).

2. Similarly, the equality (**) need not hold (see e.g. § 4.20). Therefore,
we can consider the following one-player problems:

(III, ~) To give suitable sufficient conditions on w for the satisfaction
of (**) at all A.

(IV, ~) To give suitable sufficient conditions on A for the satisfaction
of (**) at all u.

3. Further, a (~, {A})-absolute u-strategy need not exist (see § 3.8.4).
Therefore, we can consider the following problems:

(V, ~) To give suitable sufficient conditions on w for the existence of a
(~, {A})-absolute u-strategy at all A.
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(VI, ~) To give suitable sufficient conditions on A for the existence of
a (~, {A})-absolute u-strategy at all u.

4. We shall write (K) ((K)) instead of (K, =, =) ((K, ~, ~)) for

K e {I, 11}, and instead of (K, =) ((K, ~)) for Ke {111, IV V, VI
(The meaning of =, ~ is the same as in §1.2.)

In this work only the cases with T, 3, ~ e {=, ~} are investigated.
Especially, then for K e {III, IV, V, VI} only the problems (I°{) are
considered ((K) are trivial for these K).

5.0. Let us note that the “odd” problems are little interesting, as
they need considerably strong sufficient conditions; we present only
two results concerning them, namely very simple Lemma 5.1 (for (III)),
and in §7 (a theorem about the ‘‘locally finite case”, for (I)).

5.1. Lemma. Let the graph T" of (the R-correspondence) w have the

following property:

If (%o, ..., Tm), Yo, ---5 yn) (m, n = 0) are (finite) sequences of elements
of P such that xy e Txy_1,ys€Tys_1(r=1,...,m;8 =1, ..., 1), £o = Yo,
Tm = Ym, then m =n, xx =yx (k =0, ..., m). (I.e. for two arbitrary

positions x, y there is at most one path from x to y at the graph T'.)
Then

i = u.
(The proof is simple.)

6. The most important role play the problems (II, 1, 2); namely,
(*) implies i uw;A; = wA; for i =1, 2 (§4.8.6 etc.), therefore, (IV)
will be considered in a near coherence with (II, ...).

The often used theorem 11 of § 3 is the most important result for (V°I);
some more special results for this problem are obtained at the results
for (II, ...) derived in § 6. (Compare part c.)

7. As we have mentioned above, the problems (II, ...) can be
considered as the most important ones. At investigations of them
there are two kinds of methods: to investigate either a given game
structure, or an auxiliary game structure constructed in a suitable way
to the given game structure. The latter alternative is used in § 7, namely
a certain “‘extensive’” form is introduced there in connection with
the fact that the set of all variants can be in a natural way topologized
(even metrized, namely, similarly as the Baire’s space); the results
of §7 concern only the problem (II). The former alternative is used
in §6, and § 5c describes the so called idea of active and passive aims
used for these purposes. This idea must be considered as main (for
these problems) in this paper: namely, also results of § 7 are obtained
by applications of that idea to the auxiliary game structures. Moreover,
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the use of the idea of active and passive aims together with the method
of successive approximations (see part d) gives, without any applications
of the theorem 11 of §3, results concerning the problem (VI).

b) Aim-functions and aim-correspondences.
Aim-modifications

Let (P, Py) be a fixed type, P := Pp,p,), let u, v € Corr (P, exp P).

8. The problems (II, ...) concern some complementary pairs of aims.
Aims of such pairs can be given e.g. as (arbitrary) aims having certain
properties, or as (arbitrary) values of suitable mappings, i.e. as aims
depending on some ‘‘parameters’”. Such a mapping (i.e. a mapping
into exp P) will be called an aim-function. Instead of mappings of exp P
into exp P we can consider elements of Corr (P, exp P) (compare § 2.7)
which will be called aim-correspondences. We introduce a special
symbolization for them: an aim-correspondence will be denoted by
symbol p¢, where ¢ is a symbol with the distinction whether it is written
above or below (therefore, only the symbols ¢ distinguish distinct
aim-correspondences), e.g. if we substitute ¢:=,, then p* = p,;
further, we shall always consider no single aim-correspondences but
pairs of them, namely p¢, p., and our denotations will always satisfy
the condition

ie.
pAd =P — p{(P — A)

(see §4 (30)). Thus it is always sufficient to define only one of aim-
correspondences pF, P, .

-

9. Let u be a regular correspondence of the type (P, Po), let ~ be
a memory relation of this type, p¢ e Corr (P, exp P). Then we can
define

~u = (~u L ),

hence ~ u¢ € Corr (P, exp P) (§2.6.1), and if p* is an R-correspondence
(M -correspondence), then ~ uf has this property, too (§2 (33), (34)).
Instead of ~ ut (= u¢) we szlall write ¢ (uf), too (compare §3.6).
The correspondence ~ uf (u°, u¢) will be called the (~, ¢)-modification
(¢-modification, plain ¢-modification) of u. Correspondences obtained
in such a way will be sometimes called ~-strategic (strategic, plain
strategic) modifications, or only aim-modifications.
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10.1. Let us note that if (u, v) is a regular pair fo the type (P, Po),
and (T, %) is a pair of memory relations of this type, then (for an
arbitrary p¢ € Corr (P, exp P)) the assertion

(T u, 3 v) is complete on all pairs (peA, p(P — 4)) (A = P)

is equivalent to the equality

~

luezévs,

(in fact, T wA =T u.pd, 3v,Ad=P — (3 vy(P — A) = P —
— 3 v.p(P—A)=P — 3 v(P — ptA4)), and therefore this equality
implies (see §4.8.6)

1 u® = uf, 2 Vg = V.

10.2. Therefore, the assertion
for every weakly complete regular pair (u, v) of the type (P, Po)
(T u, 3 v)is complete onall (ptd, ps(P — A)) (4 < P)
(which concerns the problem (II, 1, 3)) is equivalent to the assertion

1 ut = 3 (u'). for all game correspondences « having the type (P, Po)

(see §4.4.8).

c¢) The idea of active and passive aims

11. Let the suppositions of §5.0 be satisfied, let 4, B, X < P.
The idea of active and passive aims consists in such choices of (P)-collec-
tions Ay, Az and of je {1, 2} that for 7 := 3 — j there holds

(€) XeWy<=P—Xe;,

(i.e. A = (exp P) — A; = (exp P) — Ay),

(P) Be; = B < j uh,

(A) there exists 4 € A such that 4 = 7 wA,.

If these suppositions are satisfied, B := P — A, then Be;, B <
< ; ujAjCP— ; uiAiCP—A:B, hence

A= 1‘: uiAi = uiAh
B = 3 ujAj = ujA;,
7 wAi U j ujA; = P;



138

consequently, if there is some 4, < A such that 4, € U;, then 4, <
< % wh;, and again Ay = w;A; = A, i.e. there holds

A . smallest Ay
{ B is the { greatest element of { %L (under <).

In this situation the aim A; (A;) is called active (passive). (This termino-
logy is chosen for certain connections with the pay-off functions which
Berge ([1]) has introduced at so called active (passive) players, compare
§9.)

If instead of (P), (A) the following stronger conditions

(P*) BeA; = there exists o;€ § S(uy) such that s(x, a;) <= A; for all
z€B,
(A*) there exist A € W;, o;€ i S(u;) such that s(x, o;) < A; for all
zed,
are satisfied, then clearly moreover there holds:

a (¢, {A})-absolute u,-strategy exists for : = 1, 2.

In this form the idea of active and passive aims will be applied in § 6.

12. In this work two possibilities of applications of the idea of active
and passive aims will be used — after choosing U;, A, (usually as the
collections of all fixpoints of suitable correspondences) and proving
the satisfaction of (C), (P*) to verify the satisfaction of (A*) in such
a way:

either to put 4 := 7 w;A; and to verify 4 € A;, usually by means
of constructions of suitable 7 -acceptable u;-strategies; for these con-
structions there are used results of §3b, in particular, those giving
the existence of a (7, {A:})-absolute u;- strategy,

or to construct suitable 4 € ;, o, € 7 S(u;), and to verify s(z, 6) <
< A; for all x € 4, usually in such a way: ; has been given as the set
of all fixpoints of some correspondence, and 4 is constructed as its
smallest fixpoint by means of ‘“‘successive approximations’, (compare
§ 5d), moreover, at this construction also a suitable o; is constructed.

Let us note that (at fixed (u;, u,), (A;, A;), (U, A,)) often both the
possibilities can be used; proofs at the second of them are more complicat-
ed, but the first possibility gives the existence of the ‘‘active” (7,
{A¢})-absolute u;-strategy only non-constructively.

d) Fixpoints of correspondences. Successive approximations

13. In this part d let P be a set, X, ¥ < P, we Corr (P, exp P),
let (wm)mem be a system of elements of Corr (P, exp P). 4 || B (for
sets A, B) means 4  BA B¢ A, A Bmeans 4 <« BV B < A.
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14. We say that 4 is a fizpoint of w (a common fixpoint of (Wim)menr)
iff A =wAd (A = wpd for all m e M). The meanings of phrases of the
type “4 is the smallest (greatest) (common) fixpoint of ...” are clear
(< acts as the partial ordering). Evidently

a
4 is { the smallest common fixpoint of (wm)mem <>
the greatest

a

<> P — Ais | the greatest common fixpoint of (wm)merr
| the smallest

Thus, if in §5.11 e.g. A; is given as the set of all common fixpoints
of (Wm)menr, then Ay(= {P — X | X € W;}) is the set of all common
fixpoints of (wp)emar-

15.0. First of all let us consider the case of a single M-correspondence
(denoted by w). This can be considered also as the case of an isotone
mapping of the complete lattice (exp P, <) into itself (compare § 2.8).
According to well-known results (see e.g. [13], chap. IV, Theorem 8),

the extreme fixpoints of w exist, namely, J X ( | X ) is the smallest

XcpP XcP
X<wX XowX

(greatest) fixpoint of w. But for our purposes (see §5.12) we must
introduce the ‘‘successive approximations’ (by means of a certain
transfinite iterating of w) of these fixpoints (this idea is well-known,
too; cf. e.g. [13], ch. IV, § 1, exercise 8).

15.1 Let w be an M-correspondence. Letters &, 1 will denote ordinal
numbers, oo is an auxiliary symbol which is not an ordinal number,
{ denotes either an ordinal number or co. If X S wX, then w'X is
defined for all & (but w*® need not be defined, compare § 5e) by the trans-
finite induction:

wX = X,
wtX = O wwiX (& > 0),
0=y<&

where @) = {H (if X = wX, then X = wéX for all & in both choices
of ). Let us mention several important properties:

@ &1 < & = whX S whX,

therefore, we may write

2) wiX = lim ww?X (&£>.0)
0=y<s
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(see [13], chap. IV, §8);

(3) wwtX = wi+1 X,
(4) wrX =w..... wX (0 < n < wo),
Nt p—
n times
(5) wiX = lim w"X if £ is limit,
0=,<¢
(6) whiite X = w§aw§1_X,

(7) whX = whX, & <& = wiX = wsX forall & > &,
(8) whX = whX, wisX = wiX, & < &, & < & > whX = whX,
9) whX # whX, & < & = wiX £ whX forall £ < &,
(10) card £ > card exp P = wiX = w1 X.
Thus we can denote
weX 1= whX (= whH+ X),
where &, is arbitrary such that wéX = wH+1 X; therefore
(11) wweX = weX,
in particular, ww*X = w*X = wow~X.

(We have not presented proofs, as they are simple.)
15.2. Thus we have defined w*X if X { wX. It can be easily proved

(cf. (2))
(12) XHWwX, Y fwY, XY =>wXccwYforall ¢
Therefore -

(13) X S wX = w*X is the {Z’r‘;:ltl::: of ¥ such that ¥ = w¥, ¥ 2 X

(namely, if e.g. X < wX, then w*X = ww*X,w*X > w°X = X, and if
Y=wY,Y > X,then Y =w*Y D w~X,see(l1), (1), (12)). Especially

, weg smallest )
(13") {w“’ pis the {greates ¢ fixpoint of w.
By a transfinite induction one can easily obtain

1V w)tX,

= §X =
(14) X S wX =>w'X {(1 N wpX.
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15.3. % is an M-correspondence, too (§ 4 (26)); there holds: P — X §
S w(P — X)iff X 2 @X, hence #*X is defined iff w*(P — X) is defined,
and clearly (see (1), (2), §4.10)

(16) WX = P — w¥(P — X) (where X | @wX).

16.0. Let us note that if w is an M-correspondence, X S wX, then
. smallest
w*X is the

greatest
s {11 IE]) g (§ 2.11). Of course, there are non-empty systems of M.cor-

respondences of Corr (P, exp P) having no common fixpoint. Nevertheless,
sometimes the common fixpoints of a system of correspondences are
exactly the fixpoints of a suitable correspondence. We shall need only
the following simple result (which can be easily generalized):

16.1. Lemma. If w,, w; € Corr (P, exp P),

common fixpoint of the two M-correspondences

Wy . Wy S W W W < W2 Wy W2 . W,

then X is a common fixpoint of wy, ws iff X s a fixpoint of w, . wy.

Proof. Let w:=w;.w;. If X = w; X = w,X, then X = wX. On
the other hand, if X = wX, then wX < wywX < wwX = wX = X,
hence X = wiwX = wiX, w:X = waw X = wX = X. Q.E.D.

e) Transfinite iterations of certain correspondences

17.1. In §5.17 let w e Corr (P, exp P) be an M-correspondence. If
w Y. 1 (i.e. if either w © 1 or w < 1), then w:X is defined for all X < P
and all £, and we can define wl as the element of Corr (P, exp P) for
which

(w) X = wkX,

(where (w+) X is defined by §2.3, but w'X is defined by §5.15.1) for
all X < P. It is easy to see that if w S 1, then we get valid formulae
from (1)—(11) (of §4d) by omitting X and replacement of ww?”, ww#,
whwh, ww® by w. w?, w . wé, wéh . wh, w'. w, respectively, in them.
(12) implies that
(16) w? is an M-correspondence (where 14 w).
By means of (13) we conclude

smallest

(A7) 1S w = w® isthe{gr

eatost of all v such that v = w .v,v 2 1,

where v € Carr (P, exp P).
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Here let us yet mention some interesting remark: Let @ := P X exp P,
let @ be the trivial mapping (§2.4) of exp (P X exp P) onto
Corr (P, exp P). For any » € Corr (P, exp P) let W, € Corr (@, exp Q)
be such that for each veexpQ W,v = ¢ u.¢(»)). Then (among
others) the construction of w® can be also given as (in substance) that
introduced in 15.1 but taken with ‘“‘exchanges” P :=Q, w := Wy,
X := ¢~!(1): if w is an M-correspondence, then W, is also an M-cor-
respondence (this is clear), and if 1S w, then ¢~1(1) S ¢p~l(w),
(Ww)* ¢~1(1) is defined, but (13) and (17) easily show that ¢p—1(w®) =
= (Wu)® ¢~1(1); hence w® = @((Wy)* ¢~1(1)). (If one identifies each
v < @ with ¢(v), then it would be possible to write directly w® = (Wy)*1.)

17.2. Let us note that

smallest

greatest of all v such that v.v =9, v 2 w,

(18) lgw»wwisthe{

where v € Corr (P, exp P). (In fact, w® . w® = w> (see above), and if
vv_vcw,thenwo—lcwcv,lfw'lgvforo n < &, then
wy= lim w.w"Sw.vSv.v=w, hence w® S v.)
0=y<é
17.3. w is an M-correspondence, too (§4 (26)), and if w S 1, then

@ S1 =1 (§4(23), (47)), therefore (@) is defined (for all ¢), and (15)
implies

(19) / (@)* = w- (where 1 ¥ w).

18.1. Let u € Corr (P, exp P) be an M-correspondence in §5.18.
Then we can put

ub = (1 U »)®,
uy = (Inw>, |
Cup = (@)y = (Ln @)%,
wV 1= (#)> = (1 U %)™,

as 1U u, 1 n u are M-correspondences comparable with 1, @ is an
M-correspondence (§ 2; §4 (26); §5.17.1). There holds

(20) ud = @)y, ug=(8)d,

(in fact, b = (fu

7 = (0 0 = (10 9)* = (@)g,sec (19), §4 (48),
hence (@)2 u)d =

@)y = uy, see §4 (22)),

1) uy = @)s, uv = (u)y,
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(g upn=1na)> =10 @) = AU w)® = @), see §4(22),
§2.5.3, §5 (19), §4 (48), similarly 4V = (u’)y). Further (1 n @) P =
=(QUwP=(1U%P=PasiP =P, see §4(33)), 1 n @)0 =
= (1n u) 9 = @, therefore

(22) upP = ubP = uVP =P, upl = ugl = 0.
18.2. If moreover u@ = @ (i.e. if 4 is an RM-correspondence), then
w =u (§4 (27)), hence ud = (u")2 = (W), Uy = W)y = @)V

(§4 (22), §5 (21)), further 420 = (W) @ =P — (W))P =P —P =9
(§4 (30), §5(22)):

(23) wWh=0=ul= (), uy=@)’, ulf=0.

19.0. Let us mention several notes on some concepts considered at
general topologies (compare § 2.8, § 2.18), e.g. in papers [6], [17]; [3], [15].

19.1. If some v € Corr (P, exp P) is considered as a general topology
(on P) — we may say as a general ‘“‘closure-operation” —, then 9 is the
corresponding interior-operation (94 = P — v(P — A) is the interior
of A4, see [17], Def. 2); for x € P «0 is the set of all neighbourhoods of x
(a set A is a neighbourhood of B (4, B < P) iff Bn w(P — 4) =0,
ie. iff B < ad; a set 4 is a neighbourhood of z iff 4 is a neighbourhood
of {x}, i.e. iff x e ad; see [6], 4.1).

19.2. We say that v e Corr (P, exp P) is an U-correspondence iff
v.v = (ie. iff v is idempotent under . ); compare e.g. with papers
[3], [15] (in which, nevertheless, only Cech topological spaces are
considered), where under a U-fopology an idempotent Cech topology
is meant. If u € Corr (P, exp P) is an RM-correspondence (i.e. — if
P +# § — a game correspondence), then 1 U u is a Cech topology (§2.18.2;
especially, if moreover u is a Cech derivative — which has a special
“game-meaning”, see § 2.18.3 —, then 1 U u is the Cech topology belong-
ing to u, see § 2.18.2), 24 = (1 U u)® is the smallest of all U-correspond-
ences being greater than or equal to 1 U u (§ 5 (18)), and 2 is a Cech
topology (§ 5 (16), (18), (23)), therefore w2 is the upper U-modification
(in the sense given in [15]) of 1 U w.

Further, the interior-operation to the upper U-modification u2 is
u= = (w)a (19.15 (23); §4 (22)).

19.3. Let us note that in § 6 certain ‘‘game interpretations” of ul, u,
ete. will be given, and this can be used for proving some properties
of these ‘‘modifications”” by means of game methods (as we have
mentioned in § 0).

(T'o be continued)
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