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OF MANIFOLDS WITH CONNECTION
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Investigating a so-called generalized space with connection &, we define some
projections of its curvature form and we deduce that these projections represent
some natural ‘‘obstructions” for holonomy of the successive developments of .%.
Since the first of them is the usual torsion form of &%, [9], these projections are called
the higher order torsion forms of & . (For a space with Cartarr connection, we have
studied this question in [4].) In the general case, the torsion form of a sufficiently
higher order coincides with the curvature form. Thus, if the torsion form of
this order vanishes, then the connection of & is integrable and a development of
an arbitrary order of % is holonomic. Moreover, if % has some additional properties,
we also introduce the “weak” torsion forms of &, which represent some natural
obstructions for holonomy of the successive weak developments of % (see § 3). As an
example, we treat in details a surface of a 3-dimensional space with affine connection.
We also find a remarkable difference between the methods of investigation used
in the “strong’ and in the “weak’’ case, cf. §6 and § 7.

Our considerations are in the category C=.

1. In [5], we have defined a generalized space with connection as a quadruple
& =% (P(B, Q), F, C,c), where P(B, G, ) is a principal fibre bundle, C is a con-
nection (of the first order) on the groupoid PP-! associated with P and ¢ is a cross
section of the associated fibre bundle £ = E(B, F, G, P). Let Gy = PP-! be the
group of all isomorphisms of E;, z € B, and let H; < G be the stability group of
o(z). The curvature form 2(z) of C at x is an element of g, ® A2 T%(B) and the
torsion form (or the strong torsion form) of order zero 7°(x) of & at z is introduced as
the canonical projection of 2(x) into (§z/hz) @ A2 T:(B), [4]. Further, the develop-
ment of order r of & (or the absolute differential of order » of ¢ with respect to C,[7])

is the cross section ¢* : B — |J J*(B, E;) = (B, J"(B, F), G, P), of(x) = [Cr-V]-1
xeB

(x) (0 ),[3]. Sometimes, we shall also say that o7 is the strong development of order »

of &.In [4], Proposition 1, we have proved that o%(x) is a holonomic 2-jet of B into
E; if and only if 7°(x) = 0. Let u be the canonical mapping u : gz = To(z) (Ez).
In the course of the proof of Proposition 1 of [4], we have established the relation

(1) A([C'T (=) (0)) = —p(Q(2)),

where 4 means the mapping assigning to every semi-holonomic 2-jet its difference
tensor, [3], [4].

A generalized space with connection & will be said to be a generalized manifold
with connection, if it satisfies ,
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a) m =dim B < dim F = »,

b) C-(z) (o) is regular for every x € B.

If it further holds

¢) @ acts on F transitively,
then & will be called a manifold with connection. Such a manifold with connection
is locally equivalent to a submanifold of a space with Cartan connection.

We define the weak development of order » of a generalized manifold with con-
nection & as the cross section A7 : B — |J K},(E;) = (B, K,(F), G, P), A(z) =

. 2eB
="k( o'(x)), where k(o"(x)) means the contact element determined by o7(z). (For
definition of contact elements and for the corresponding notations, we refer the
reader to [1].) Further, let K, be the m-dimensional subspace of 7's(z) (E;) determined
by C-Y(x) (0), let & : Towu)(Ez) — Tom) (Es)/Kz be the natural projection and let
Iz < gz be the kernel of the projection ¢u. The canonical projection of £(x) into
(82/Tz) ® A2 T%(B) will be called the weak torsion form of order 0 of & at z and
will be denoted by »°(z). (If & is a manifold with connection, then »°(z) coincides
with the reduced torsion form of & introduced in [3].) The following assertion extends
Theorem 2 of [3] to the case of an arbitrary action of G on F.

Proposition 1. Let & be a generalized manifold with connection. The second weak
development of & at x is holonomic (i.e. A2(x) € K2,(E;)) if and only if v°(x) = 0.

Proof. This is a direct consequence of (1) and of Proposition 11 of [3].

2. Consider an arbitrary generalized space with connection & and denote by
H!, < @ the stability group of o7(x) € J7(B, E;). The canonical projection of Q(x)
into (gz/h1) ® A2 T%(B) will be called the (strong) torsion form of orderr of & at z
and will be denoted by z7(x). On the other hand, ¥ will be said to be (strongly)
r-holonomic at z, if o7(x) € J7(B, E,). By Proposition 2 of [4], we obtain immediately.

Proposition 2. Assume that the strong torsion form of order r-1 of & vanishes in a
nesghbourhood of x € B. Then & is strongly (r + 2)-holonomic at z if and only if =7(x)=0.

Let s,(F, m) be the minimum of the dimensions of the stability groups of the ele-
ments of 7%, (F). The smallest r satisfying s,(F, m) = 0 will be denoted by is(F, m)
and will be said to be the index of isotropy of F with respect to m-dimensional
velocities or the strong m-index of isotropy of F. Let Dy < Ty(F), r, = is(F, m),
be the set of all elements whose stability group has dimension zero; one sees easily
that D, is an open subset. We shall say that &% is of general type of the first kind at 2,
if for some (and hence for every) u € P, it holds u~1(¢"(2)) € D;.

Proposition 3. Assume that a generalized space with-connection & is of general type
of the first kind at every point. If & is strongly (is(F, m) + 2)-holonomic at every point,
then its connection s integrable.

Proof is obvious.

~

Remark 1. One can easily see that the strong n-index of isotropy of a homogeneous
space F(n = dim F) coincides with the order of isotropy of F as introduced in [4]
and that a space with Cartan connection is of general type of the first kind at every
point. Hence Corollary 2 of [4] is a special case of Proposition 3.

3. Consider a generalized manifold with connection &. Let N be the stability

group of A7(z) =z and let u, be the canonical projection of g5 into To(K:,(Exz))-
Let K. < T,(Ky(Ez)) be the m-dimensional subspace determined by C-1(z) (Ar),
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let & be the canonical projection T (K, (Ez)) — To(K5(Ez))/K; and let fr © gz
be the kernel of the projection esur. The canonical projection of 2(x) into (g/¥;) ®
® A2T%(B) will be called the weak torsion form of order r of & at x and will be denoted
by »"(x). On the other hand, % will be said to be weakly r-holonomic at z, if A7(x) €
€ KI(E;). (We introduce a more precise terminology than in [1] or [2]. For com-
parison, “holonomic’ in the sense of [1] or [2] means “weakly holonomic’’ according
to our present terminology.)

Proposition 4. Assume that v'~1 vanishes in a neighbourhood of z € B. Then & i3
weakly (r + 2)-holonomic at z if and only if v"(x) = 0.

Proof is based on some properties of contact elements which will be deduced in
the following two lemmas. Let M, V be two manifolds, » = dim M > dim V = m.
Let 7 : IE,’,,(M) — M be the jet projection.

Lemma 1. Let X be a I-jet of V into KI,(M) such that tX e JYV, M) is regular.
Then X is canonically identified with an element x(X) € K7+ 1(M).

Proof of Lemma 1. Consider first the case V = Rm, X = 0. Let X = jlp and
let ¢, : Rm — Rm be the translation y — y + z. Take a local mapping y of R™ into
T~,’,,(M ) such that k(y(z)) = o(«). Then z — p(z) t;!is a local cross section of Jr (Rm, M)
so that Y = ji(y(x) ;1) is an element of 77;!(M) and one finds easily that Y is
regular. Put %(X) = &(Y); we have to show that this definition is correct. If we
take another local mapping ¢ of Rm into 7,(M) such that k({(zx)) = e(x), then
Y(z) = p(z) @(x), where ¢ is a local mapping of R™ into Lr,. Set Y = ji[ip(x)t,11;
then we have ¥ = ji[y(2) t;1t, () ;1] = Y. Joltz () t;1]. But jiltzp(x) t;1] eLn!
which implies k(¥) = k(¥). — If V is arbitrary, we take an element ke H1(V)
such that b = aX and we define %(X) = »(Xh).

In the course of such a consideration, it is often convenient to use an auxiliary
fibering on M. As well known, for any fibered manifold (W, =, W,), dim W, = m,
the elements of J7(W, , W) are identified with those elements of Kt (W) which
are transversal with respect to the projection z : W — W;. Let X e JyV, KI,(M)),
X = jlo. On a neighbourhood U < M of the point 7(g(x)), take an auxiliary fibering
p: U~ Uy, dim Uy = m, such that fX and X are transversal with respect to u.
Then g is locally identified with a local cross section y of Jr (U, u, U,) and, by the
preceding construction, x(X)eIz,’,,+1 (M) is identified with jly eJ7+1(U, =, Uy)
t = p(z(e())). )

A cross section g of V into J1(V, K}, (M)) will be called admissible, if the values
of the mapping y — 7g(y) of V into JYV, M) are regular 1-jets. If p is admissible,
then k(o(y)) € KL(K,(M)) and x(ji[k(o(v))]) € K2(K,(M)), z€ V. On the other
hand, %(o(y)) is a mapping of V into K'1(M), so that »(ji[#(o(y))]) € Kriyy ).

" Lemma 2. Let g be an admissible cross section of JY(V, KI,(M)) such that the values
of %(o(y)) lie in K7y '(M). Then x(ji[#(e(%))]) € KiF A M) if and only if =(jz[x[o(y))]) €
e Rr3(M) and (j\[ko())]) € KA(Kr,(M)). 3

Proofof Lemma 2 is based on the same idea as the proof of Proposition 2 of [4].
On g neighbourhood U of 7(Be(x)), choose an auxiliary fibering u : U — U, dim
U, = m, such that 7o(z) is transversal with respect to u. Then x(e(y)) is locally

identified with a local cross section y of Jr+1(U, u, Us). Let a*(y), ai(¥), ..., af: ...

’
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+ ¥r41 (y) (Symmetric in all subscripts) be the coordinates of y in a local coordinate
system. Then the coordinates of j! y are a*(t), a%(t), ..., a% ... ir,1 (t) and O,z af ...
b (8) = b ... Gpya0r,2. Hence b} ...4p. 4y, are symmetric in the first » 4 1
subscripts. Further, the elements of K2(K’,(U)) transversal with respect to the
corresponding fibering are identified with the elements of J2(J7U), which implies
bi ... piabry2 = bi ... 9r420p,1. Then j} ye Jr#2U and x(ji[x[o(y))]) € Kt *(M). The
converse assertion is obvious.
We are now in a position to prove Proposition 4. According to the proof of Lemma
1, it is %(C-1(x) (Ar)) = A7*+}(x). Then Proposition 4 follows easily from Lemma 2
and Proposition 1, QED.

One can say that a generalized manifold with connection & is (s, 7)-holonomic
at x, 8 £ r, if it is strongly s-holonomic and weakly 7-holonomic at x. We can also
pose a natural question: What is the geometrical meaning of vanishing of the canon-
ical projection of Q(z) into (gs/n]) @ A?T%(B) (where n’, means the Lie algebra
of N1)? Since n} = {, N bz, we deduce from Proposition 1 of [4] and from Proposi-
tion 4 the following

Corollary 1. Assume that v'—1 vanishes in a neighbourkood of x € B. Then the cano-
nical projection of Q(x) into (g;/n}) @ A2T%(B) vanishes if and only if & is (2, r + 2)-
holonomic at x.

4. Let w,(F, m) be the minimum of the dimensions of the stability groups of the
elements of K/, (F). The smallest r satisfying w,(F, m) = 0 will be denoted by i, (F, m)
and will be called the index of isotropy of F with respect to m-dimensional contact
elements or the weak m-index of isotropy of F. (It should be underlined that is(F, m)
is defined for arbitrary m, while i,(F, m) has a non-trivial meaning only for m <
< dim F.) Let D, = K[(F), r, = iy(F, m), be the set of all elements whose stability
group has dimension zero; one can easily see that D, is an open subset. We shall say
that & is of general type of the second kind at z, if for some (and hence for every)
u € P, it is u~1(Am(x)) € D,. By Corollary 1, we deduce

Proposition 5. Let r, be the weak m-index of isotropy of F. If a generalized manifold
with connection & of geneml type of the second kind is (2, r. + 2)-holonomic at every
point, then its connection is integrable.

5. As an example, we shall treat the case # = A4;(= the 3-dimensional affine
space) and dim B = 2. Such a manifold with connection % is locally equivalent to a
surface of a 3-dimensional space with affine connection. To simplify the evaluations,
we shall apply some convenient specializations of frames. It will be sufficient to use
the simpliest case of such a specialization, which is based on the following well
known fact. Let P(B, G, =) be a principal fibre bundle, let ¢ acts transitively on the
left on a manifold M, let o be a cross section of the associated fibre bundle (B, M,
@G, P) and let p € M be a pomt Then

2) @ = {ue P; u(o(n(u))) = p}

is a reduction of P to the stability group H of p. We shall say that @ is the reduction
determined by the pair (¢, p). Let z? be some local coordinates on M, let a® be the
coordinate functions of g, see [6], and let z} be the coordinates of p. Then @ < P
is characterized by

3) ab = zf.



Further, let X, = & () ;- be the coordinate expressions of the vector fields on M

Fr
corresponding to a basis @* of g*, see [6]. Then the differential equations of the
stability group H of p are

(4) &.(xo) @* = 0.

6. For the sake of simplicity, we shall first discuss the “weak’ case and we shall
use the method of investigation explained in [8] combined with some specializations
of frames. Fix an affine coordinate system on Aj; this implies an identification
of 43 and R3. The fundamental section ¢ of & and the point po = (0,0, 0) determine
a reduction @ of P to a subgroup H of the fundamental group @ of 4;. The differen-
tial equations of H are

(5) ot=0, 4j,..=123.
where @t,& ! is the natural basis of g* The first weak development At of & can be

considered as a cross section of (B, K%,, , H, Q). On K!,, , there are natural local
coordinates

(6) yp=yg, p,q’,,,=1,2_

Let w be the restriction of the connection form to Q, see [8], and let w!, w} be the

components of w. According to [8], the coordinate functions a, :Q — R of A1 are
determined by

(7) w3 = ayw! 4+ aw?.
On @, it further holds
(8) dot = ! A 0} + Rlo! A w?,

do} = of A @} + Rio' A w2
Hence & is weakly 2-holonomic if and only if
9) R3 = q,R! + a,R2.

Let n} be the restriction of cut to H < G. By [8], the equations of the fundamental
distribution on H x K! Iz are

(10) dyp — Yof — YaYpm§ + ypn3 + 73 = 0.

Let p; € K}, , be the point with the coordinates y; = y, = 0. The pair (41, p;)
determines a reduction @, of @ to a subgroup H, of H with the differential equations

(11) 7} = 0.
Let @', @ be the restriction of w!, w} to @;. By (3) and (7), it is

From now on, we shall suppose & is weakly 2-holonomic. Let 2K < K32,, be the

subspace of all elements lying over p;. Then A2 can be considered as a cross section
of (B, 2K, Hy, @1). On 2K, there are natural coordinates

(13) Y115 Y12, Y22.
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According to [8], the corresponding coordinate functions of A2 satisfy
(14) @) = apg@I.

Hence & is weakly 3-holonomic if and only if it holds (on @)

(15) R3=0,R} = a,,qR'I

By the standard procedure, cf. [8], we find the equations of the fundamental distri-
bution on H; X 2K in the form

dyn —_— yu(2:ft} —_ ﬂg) —_— 2y12ﬁ% = 0,
(16) dy1z — yua(n} + 23 — 73) — yums — yani =0,
dy22 — Y22(273 — 73}) — 2y17; = 0,
where 2?7, 73 are the restrictions of the corresponding n’s to H; < H.
Denote by 2K < 2K the subspace of all ““hyperbolic’’ contact 22-elements on A;
and assume that the values of 42 are hyperbolic. Choose the point p; € K with the

coordinates y1; = ¥22 = 0, y12 = 1. According to §5, the pair (42, p) determines
a reduction @, < @, to a subgroup H, < H, with the differential equations

17 #?=0, #i=0  #Al+ai—ai=0.
Let @!, @} be the restriction of @', @] to @,. By (3) and (14), we obtain
(18) ' 3 =0, 0} =02, @)= ol

Further, let 7T}, 73, 7}, 73 be the restrictions of the corresponding forms to H, < H,.

Let 3K < K3 , be the subspace of all elements lying over p,. Suppose that & is weakly
3-holonomic. Then A3 can be considered as a cross section of (B, 3K, H,, @;). On 3K,
there are natural coordinates

(19) Y, Yz, Y122, Y222.
By [8], the corresponding coordinate functions of A3 satisfy

= [ —3 2
—20}= a1 ®?! + 411202,

3 — 0l — 0} = ano! + ann?,

il

(20)
—20} = a10! + 422202
Thus, & is weakly 4-holonomic if and only if it holds (on Q)
@1 R3 =0, R} =0, —2R} = ainR' + a11.R2,
R} — R} — R2 = a112R! + a132R?, —2R) = a;2,R! + a2,R2. .

According to [8], we deduce the equations of the fundamental distribution on H, X

X 3K in the form
@2) dyin — y1 (27! — 73) = 0, dyi22 — Y12273 — 27} = 0,
dyiz — Y127} — 27%= 0, dy222 — ¥222(27% — 7)) = 0.

One finds easily that the coordinates of an element of 3K satisfy 111 &= 0 == y222
if and only if it is a contact element of the third order of a non-ruled surface. The
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stability group of such an element is characterized by
(23)  ml=m=al="=0,

i.e. its dimension is zero. Hence the weak 2-index of isotropy of 4; is equal to 3 and
a hyperbolic contact 23-element is of general type if and only if it is a contact element
of a non-ruled surface. By Proposition 5, we obtain.

Proposition 6. If a hyperbolic non-rulzd manifold & without the strong torsion of
order 0 is weakly 5-holonomic at every point, then its connection is integrable.

Remark 2. An analogous treatment ot the case F = P; and dim B = 2 is, in
fact, carried out in [2]. However, our investigations in [2] were based only on some
computational analogies with the “flat’’ case. On the. contrary, in the present para-
graph, we intended to justify every step of our evaluations in all details.

7. To the “‘strong’ case, we shall apply some results of [7]. The natural equations
of the fundamental distribution on G X A are

(24) dat + 213} + Dt = 0.

Let @ : T(P) — g be the connection form and let ®¢, @ be the components of ®.
It holds

(25) dot = o! A @ + Dat,

‘ do} = of A o} + Da}.
Let at be the coordinate functions of the fundamental section ¢ of &. By [4], < is
strongly 2-holonomic if and only if

(26) : @Da; + Dot = 0.

Using an a.lgorlthm of [7], we deduce the equations of the fundamental dlstrlbutlon
on (G x L) x T(A43) in the form (24) and

(27) . dx' —z'w” + xi&'ﬂ: —

1

where ? is the natural basis of 1}*. In partlcular ‘the equations of the fundamental
distribution on @ X T'i(A43) are (24) and

(28) . dai, + o = 0.

Let ¢ be the canonical form of H!(B), let p;, p, be the product projectibns of H\(B)®
@ P, let ¢ = pig, w = p3® and let ¢?, w!, w} be the components of these forms.
Then we have

(29) dot = w! A wi + Rigl A ¢2,
dow} = wf A 0} + Rig! A @2

Let af, at : HY(B) @ P — R be the coordinate functions of o!. (According to [7],
they are determined by af = f*af and by

(30) dat 4+ dlw} + ! = aj,eP.)
By Proposition 2, is strongly 3-holonomic if and only if
(31) &R+ Rt =0, d,Ri=0.
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In the same way as before, we deduce the equations of the fundamental distribu-
tion on @ X T3(4;) in the form (24), (28) and

(32) dat,, + @, &8 = 0.

The group @ acts transitively on the set of all regular 21.velocitiés on A3. Let p; €
€ T')(43) be the element with the coordinates zi = 0, xf = 67, a3 = 0. The dif-
ferential equations of the stability group H, < G of p; are

(33) B1=0,50 =0, d3 =0,

Denote by 2T' = T3(A43) the subspace of all elements lying over p;. By (4) and (33),
the equations of the stability group .H, < H, of an element of 27" are (33) and

(34) 23,08 = 0.

If at least one of the coordinates z3, is different from zero, then &% =0 and dim
H, = 0; such a 22.velocity will be said to be non-planar. Analogously, a 2-jet X
of B into Az with source # will be said to be non-planar, if the 22.velocity XY is
non-planar for some (and hence for every) Y € H%(B). Thus, we have deduced that
the strong 2-index of isotropy of As is equal to 2 and that a 2-jet of B into Aj is of
general type if and only if it is non-planar. By Proposition 3, we obtain.

q?

Proposition 7. If the second development of & is non-planar and if &P s strongly
4-holonomic at every point, then its connection is integrable.
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