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HIGHER ORDER TORSIONS 
OF MANIFOLDS WITH CONNECTION 

IVAN KOLAR, BRNO * 

(Received November 10, 1971) 

Investigating a so-called generalized space with connection &*, we define some 
projections of its curvature form and we deduce that these projections represent 
some natural "obstructions'' for holonomy of the successive developments of £f. 
Since the first of them is the usual torsion form of £f, [9], these projections are called 
the higher order torsion forms of £f. (For a space with Cartan connection, we have 
studied this question in [4].) In the general case, the torsion form of a sufficiently 
higher order coincides with the curvature form. Thus, if the torsion form of 
this order vanishes, then the connection of £f is integrable and a development of 
an arbitrary order of -9^ is holonomic. Moreover, if &* has some additional properties, 
we also introduce the "weak" torsion forms of SP, which represent some natural 
obstructions for holonomy of the successive weak developments of £f (see § 3). As an 
example, we treat in details a surface of a 3-dimensional space with affine connection. 
We also find a remarkable difference between the methods of investigation used 
in the "strong" and in the "weak" case, cf. § 6 and § 7. 

Our considerations are in the category C00. 
1. In [5], we have defined a generalized space with connection as a quadruple 

&> =.&(P(B, G), F, C, a), where P(B, G, n) is a principal fibre bundle, C is a con-
nection (of the first order) on the groupoid PP~X associated with P and a is a cross 
section of the associated fibre bundle E = E(B, F, G, P). Let Gx c P P - i be the 
group of all isomorphisms of Ex, xeB, and let Hx <-- Gx be the stability group of 
a(x). The curvature form Q(x) of C at x is an element of g^® f\2 T*(B) and the 
torsion form (or the strong torsion form) of order zero T°(X) of £f at x is introduced as 
the canonical projection of Q(x) into (QXII)X) <g) A 2 -̂ *(-̂ )> M- Further, the develop­
ment of order r o£Sf (or the absolute differential of order r of a with respect to C, [7]) 
is the cross section ar : B -> \J Jr(B, Ex) = (B, Jr(B, F), G, P), ar(x) = [OO-D]--

xeB 

(x)(a ) , [3]. Sometimes, we shall also say that ar is the strong development of order r 
of £?. In [4], Proposition 1, we have proved that a2(x) is a holonomic 2-jet of B into 
Ex if and only if T°(X) = 0. Let [i be the canonical mapping /j : qx -> Ta{x) (Ex). 
In the course of the proof of Proposition 1 of [4], we have established the relation 

(1) A([0']-1(x)(a)) = -fi(Q(x)), 

where A means the mapping assigning to every semi-holonomic 2-jet its difference 
tensor, [3], [4]. 

A generalized space with connection 6? will be said to be a generalized manifold 
with connection, if it satisfies 
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a) m = dim B < dim F == n, 
b) O~x(a;) ((T) is regular for every x e B. 
If it further holds 
c) 0 acts on F transitively, 

then Sf will be called a manifold with connection. Such a manifold with connection 
is locally equivalent to a submanifold of a space with Cartan connection. 

We define the weak development of order r of a generalized manifold with con­
nection Sf as the cross section lr : B -> \J Km(Ex) = (B, Km(F)t O, P), Xr(x) = 

XBB 

= k( or(x))t where k(ar(x)) means the contact element determined by ar(x). (For 
definition of contact elements and for the corresponding notations, we refer the 
reader to [1].) Further, let Kx be the m-dimensional subspace of Ta(X) (Ex) determined 
by C-X(x) (a), let e : Ta(x)(Ex) -> Ta(x) (Ex)/Kx be the natural projection and let 
la? c 9.r be the kernel of the projection €fx. The canonical projection of Q(x) into 
(Qx/tx) ® A2 T*(B) will be called the weak torsion form of order 0 of S? &t x and 
will be denoted by v°(x). (If ^ i s a manifold with connection, then v°(x) coincides 
with the reduced torsion form of Sf introduced in [3],) The following assertion extends 
Theorem 2 of [3] to the case of an arbitrary action of 0 on F. 

Proposition 1. Let SP be a generalized manifold with connection. The second weak 
development ofS^atx is holonomic (i.e. X2(x) e Km(Ex)) if and only if v°(x) = 0. 

Proof. This is a direct consequence of (1) and of Proposition 11 of [3]. 
2. Consider an arbitrary generalized space with connection S? and denote by 

Hr
x c: Ox the stability group of ar(x) e Jr(B9 Ex). The canonical projection of Q(x) 

into (Qxlf)x) ® A 2 37*(J^) wiH b e called the (strong) torsion form of order r of Sf at x 
and will be denoted by xr(x). On the other hand, Sf will be said to be (strongly) 
r-holonomic at x} if a

r(x) e Jr(B, Ex). By Proposition 2 of [4], we obtain immediately. 

Proposition 2. Assume that the strong torsion form of order r-l of S? vanishes in a 
neighbourhood ofx e B. ThenS?is strongly (r.+ 2)-holonomic at x if and only if rr(x)=0. 

Let sr(F, m) be the minimum of the dimensions of the stability groups of the ele­
ments of Tm(F). The smallest r satisfying sr(F, m) = 0 will be denoted by is(Ft m) 
and will be said to be the index of isotropy of F with respect to m-dimensional 
velocities or the strong m-index of isotropy of F. Let Dx cz Tr^(F)y rx = is(F, m), 
be the set of all elements whose stability group has dimension zero; one sees easily 
that D! is an open subset. We shall say that S? is of general type of the first kind at x, 
if for some (and hence for every) u e Px it holds u~1(ari(x)) e Di. 

Proposition 3. Assume that a generalized space with connection S? is of general type 
of the first kind at every point. IfSfis strongly (is(F, m) -f- 2)-holonomic at every point, 
then its connection is integrable. 

Proof is obvious. 

Remark 1. One can easily see that the strong n-index of isotropy of a homogeneous 
space F(n = dim F) coincides with the order of isotropy of F as introduced in [4] 
and that a space with Cartan connection is of general type of the first kind at every 
point. Hence Corollary 2 of [4] is a special case of Proposition 3. 

3. Consider a generalized manifold with connection Sf. Let Nr
x be the stability 

group of Xr(x) =^z and let fjbr be the canonical projection of gx into Tz(Km(Ex)). 
Let Kx <-= Tz(Km(Ex)) be the m-dimensional subspace determined by C~i(x) (Af), 

150 



let er be the canonical projection Tz(K
r
m(Ex)) ->Tz(Km(Ex))jK

r
x and let fr c Qx 

be the kernel of the projection sffJir- The canonical projection of Q(x) into (gs/fj) ® 
® A2^*(I*) will be called the weak torsion form of order r ofS? at x and will be denoted 
by vr(x). On the other hand, &* will be said to be weakly r-holonomic at x, if Xr(x) e 
eKr

m(Ex). (We introduce a more precise terminology than in [1] or [2]. For com­
parison, "holonomic" in the sense of [1] or [2] means "weakly holonomic" according 
to our present terminology.) 

Proposition 4. Assume that vr~l vanishes in a neighbourhood of xeB. Then £f is 
weakly (r + 2)-holonomic at x if and only if vr(x) = 0. 

Proof is based on some properties of contact elements which will be deduced in 
the following two lemmas. Let M, V be two manifolds, n = dim M > dim V = m. 
Let r : Km(M) -> M be the jet projection. 

Lemma 1. Let X be a 1-jet of V into Km(M) such that TX eJl(V, M) is regular. 
Then X is canonically identified with an element x(X) e Km

l(M). 
Proof of Lemma 1. Consider first the case V = R«-s aX = 0. Let X = JIQ and 

let tx : Rm -> Rm be the translation y -> y + x. Take a local mapping tp of Rm into 
Tr

m(M) such that k(y(x)) = Q(X). Then x -> y>(x) t~l is a local cross section of Jr(Rm,M) 
so that Y =Jo(y>(%) t~l) is an element of fr^l(M) and one finds easily that Y is 
regular. Put x{X) = k(Y); we have to show that this definition is correct. If we 
take another local mapping ip of Rm into Tm(M) such that k(ip(x)) = Q(X), then 
xp(x) = y(x) <p(x), where <p is a local mapping of Rm into Lm. Set Y = i0[^ ;(aj)^r1]; 
then we have Y = jl

0[f(x)t^ tx <p(x) t~l] = Yf0[tx <p(x) t~1]. But jl
0[tx<p(x) tx

l] eLr
m

+i 

which implies k(Y) = k(Y). — If V is arbitrary, we take an element heHl(V) 
such that fih = <xX and we define H(X) = x(Xh). 

In the course of such a consideration, it is often convenient to use an auxiliary 
fibering on M. As well known, for any fibered manifold (W, n, W\), dim W\ = m, 
the elements of Jr(W, n, W\) are identified with those elements of Km(W) which 
are transversal with respect to the projection it: W -> W\. Let X e JX(V, Kr

m(M)), 
X = jlq. On a neighbourhood U <~ M of the point T(Q(X)), take an auxiliary fibering 
p : U -> Ui, dim Ui = m, such that f$X and TX are transversal with respect to [A. 
Then Q is locally identified with a local cross section % of Jr( U, ft, Ut) and, by the 
preceding construction, x(X)eKm

+l(M) is identified with jfa e J~r+l(U, jt, U\), 
t ~= (i(T(Q(x)))' 

A cross section Q of V into JX(V, Km(M)) will be called admissible, if the values 
of the mapping y -> Tg(^) of V into JX(V, M) are regular 1-jets. If Q is admissible, 
then k(Q(y)) eKm(Kr

m(M)) and x(jx[k(Q(y))]) e K2
m(Kr

m(M)), xeV. On the other 
hand, n(Q(y)) is a mapping of V into Kr+l(M), so that x(jl[x(Q(y))]) e Kr+*(M). 

Lemma 2. Let Q be an admissible cross section of Jl(V, Km(M)) such that the values 
of K(Q(y)) lie in Kr^{M). Then x(jl

x[x(Q(y))]) e Kr„t2(M) if and only if x(jl
x[x[Q(y))]) e 

e R^HM) and x(jl
x[k(Q(y))]) 6 Kl(KrJM)). 

Proof of L e m m a 2 is based on the same idea as the proof of Proposition 2 of [4], 
On a neighbourhood U of T(PQ(X)), choose an auxiliary fibering p : U -> U\, dim 
U\ = m, such that TQ(X) is transversal with respect to /*. Then H(Q(U)) is locally 
identified with a local cross section #of J>+-(U, /i, Ux). Let a*(y), afty), ..., of, . . . 
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• • • %r+\ (y) (symmetric in all subscripts) be the coordinates of % in a local coordinate 
system. Then the coordinates of j / % are a«(t), a?(t), ...,a\... ir+l (t) and dr+2 afx... 
* • • V+i (t) = 6". . . . ir+iir+2 • Hence 6*. .. . ir+iir+2 are symmetric in the first r + 1 
subscripts. Further, the elements of Km(Kr

m(U)) transversal with respect to the 
corresponding fibering are identified with the elements of J2(JrU), which implies 
K . . . ir+iir+2 = &?-..- ir+2ir+i. Then j} %e Jr+2U and *( j.J[*[e(y))]) e Kr

M
+W The 

converse assertion is obvious. 
We are now in a position to prove Proposition 4. According to the proof of Lemma 

1, it is H(C"1(X) (Ar)) = Xr+l{x). Then Proposition 4 follows easily from Lemma 2 
and Proposition 1, QED. 

One can say that a generalized manifold with connection y is (s, r)-holonomic 
at x, s g r, if it is strongly s-holonomie and weakly r-holonomic at x. We can also 
pose a natural question: What is the geometrical meaning of vanishing of the canon­
ical projection of Q(x) into (ga-/n£) ® /\2TX(B) (where nx means the Lie algebra 
of Nx) ? Since nr

x = Vx n i)x, we deduce from Proposition 1 of [4] and from Proposi­
tion 4 the following 

Corollary 1. Assume that vr~l vanishes in a neighbourhood of xeB. Then the cano­
nical projection of Q(x) into (g^/nj) <g) /\2T*(B) vanishes if and only if £f is (2, r + 2)-
holonomic at x. 

4. Let wr(F, m) be the minimum of the dimensions of the stability groups of the 
elements of Kr

m(F). The smallest r satisfying wr(F, m) = 0 will be denoted by iw(F, m) 
and will be called the index of isotropy of F with respect to m-dimensional contact 
elements or the weak m-index of isotropy of F. (It should be underlined that is(F, m) 
is defined for arbitrary m, while iw(F, m) has a non-trivial meaning only for m < 
< dim F.) Let D2 c: Kr^(F), rz = iw(F, m), be the set of all elements whose stability 
group has dimension zero; one can easily see that D2 is an open subset. We shall say 
that £f is of general type of the second kind at x, if for some (and hence for every) 
u G Px it is u~x(Xr2(x)) e D2. By Corollary 1, we deduce 

Proposition 5. Let r2 be the weak m-index of isotropy of F. If a generalized manifold 
with connection £f of general type of the second kind is (2, r,: + 2)-holonomic at every 
point, then its connection is integrable. 

5. As an example, we shall treat the case F = A3(= the 3-dimensional affine 
space) and dim B = 2. Such a manifold with connection £f is locally equivalent to a 
surface of a 3-dimensional space with affine connection. To simplify the evaluations, 
we shall apply some convenient specializations of frames. I t will be sufficient to use 
the simpliest case of such a specialization, which is based on the following well 
known fact. Let P(B, G, n) be a principal fibre bundle, let G acts transitively on the 
left on a manifold M, let q be a cross section of the associated fibre bundle (B, M, 
G, P) and let p e M be a point. Then 

(2) Q=.{ueP;u-H0(n(u)))=p} 

is a reduction of P to the stability group Hofp. We shall say that Q is the reduction 
determined by the pair (Q, p). Let xb be some local coordinates on M, let ab be the 
coordinate functions of Q, see [6], and let xb

Q be the coordinates of p. Then Q <=• P 
is characterized by 

<3) a* = x%. 
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Further, let Xa = £* (x) ~« & be the coordinate expressions of the vector fields on M 

corresponding to a basis coa of g*, see [6]. Then the differential equations of the 
stability group H of p are 

(4) f*to) S° = °-
6. For the sake of simplicity, we shall first discuss the "weak" case and we shall 

use the method of investigation explained in [8] combined with some specializations 
of frames. Fix an affine coordinate system on i 3 ; this implies an identification 
of A3 and R3. The fundamental section a of £P and the point p0 = (0,0,0) determine 
a reduction Q of P to a subgroup H of the fundamental group G of .A3. The differen­
tial equations of H are 

(5) £< = 0, i,j, ... = 1,2,3. 

where c2i,co ^ is the natural basis of g*. The first weak development X1 of SP can be 
considered as a cross section of (H, K\,2 , H, Q). On K\,2 , there are natural local 
coordinates 

(6) yp = yl> jp, ? , . . . = - 1 , 2. 

Let co be the restriction of the connection form to Q, see [8], and let co*, coj be the 
components of 00. According to [8], the coordinate functions ap : Q -> R of A1 are 
determined by 

(7) ft>3 = aico1 + a2ft>
2. 

On Q, it further holds 

(8) dft>* = ft>' A ft>) + R ^ 1 A ft>2, 

dft>| = ft>* A ft>i + R)col A ft>2. 

Hence SP is weakly 2-holonomic if and only if 

(9) R3 = aiR1 + a2R
2. 

Let n) be the restriction of co) to H cz G. Bj [8], the equations of the fundamental 
distribution on H X K\ ,2 are 

(10) dyp — yqn% — yqyvn\ + yvA + n3
p = 0. 

Let px G KJ, 2 be the point with the coordinates y% = tfc = 0. The pair (A1, jpi) 
determines a reduction #1 of Q to a subgroup Hi of H with thq differential equations 

(11) 7^ = 0. 

Let co*, mj be the restriction of o>i, co) to #1. By (3) and (7), it is 

(12) cD3 = 0. 

From now on, we shall suppose 9* is weakly 2-holonomic. Let 2K c K\,2 be the 
subspace of all elements lying over px. Then A2 can be considered as a cross section 
of (B, 2K, Hit Qi)- On 2K, there are natural coordinates 

(1 3) yu, yn, 2/22. 
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According to [8], the corresponding coordinate functions of A2 satisfy 

(14) fi>3 = apqW. 

Hence £f is weakly 3-holonomic if and only if it holds (on Qi) 

(15) .ft3 = 0, Rl = apqRQ. 

By the standard procedure, cf. [8], we find the equations of the fundamental distri­
bution on H1 X 2K in the form 

dyn — yn(2n\ — n\) — 2y12n\ = 0, 

(16) dy12 — y12(n\ + n\ — n\) — ynn\ — y22n\ = 0, 

dy22 — y2z(2n\ — n\) — 2y12n\ = 0, 

where n\, n\ are the restrictions of the corresponding n9s to H\. <-- H. 
Denote by 2Kh c 2K the subspace of all "hyperbolic" contact 22-elements on As 

and assume that the values of X2 are hyperbolic. Choose the point p2 e Ka with the 
coordinates yn = y22 = 0, y12 = 1. According to §5, the pair (A2, #2) determines 
a reduction Q2 cz Qx to a subgroup #2 <-- H1 with the differential equations 

(17) n\ = 0, ft| = 0, n\ + n\ — n\ = 0. 

Let 5*, eof be the restriction of <5>*, G>j to #2 • By (3) and (14), we obtain 

(18) S 3 = 0, cb\ = S 2 , 10I = w1. 

Further, let n\, src** ^3» ^3 k® * n e restrictions of the corresponding forms to H2<^ H1. 
Let 3K c: K| 2 be the subspace of all elements lying over p2. Suppose that Sf is weakly 
3-holonomic. Then A3 can be considered as a cross section of (B, 3K, H2, Q2)- On 3K, 
there are natural coordinates 

(19) ym,yii2,yi22,y222* 

By [8], the corresponding coordinate functions of A3 satisfy 

—2w\ = a n i S 1 + a112a>2, 

(20) co\ — o> J — a>§ = aiucS1 + a>i22<o2, 

—2m \ = a122m
l + a222a)2. 

Thus, £? is weakly 4-holonomic if and only if it holds (on Q2) 

i?3 = 0, Rl = 0, —2R\ = amJR1 + a112R
2
t 

* * R\ — R\—R\^ amR1 + a122R
2
y —2R\ = a122fl- + a222R

2. . 

According to [8], we deduce the equations of the fundamental distribution on H2 x 
X 3K in the form 

#111 — ym(2n\ — n\) = 0, d^122 — 2/122I2 — 2^l — °> 
dym — yuin\ — 2 I | = 0, d 2̂22 — y222(2n\ — I J) = 0. 

One finds easily that the coordinates of an element of 3K satisfy ym 4= 0 4= 2/222 
if and only if it is a contact element of the third order of a non-ruled surface. The 
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stability group of such an element is characterized by 

(23) n\= n\ = M\ = nj = 0, 

i.e. its dimension's zero. Hence the weak 2-index of isotropy of A3 is equal to 3 and 
a hyperbolic contact 23-element is of general type if and only if it is a contact element 
of a non-ruled surface. By Proposition 5, we obtain. 

Proposition 6. / / a hyperbolic non-ruled manifold £P without the strong torsion of 
order 0 is weakly 5-holonomic at every point, then its connection is integrable. 

Remark 2. An analogous treatment ot the case F = P$ and dim B = 2 is, in 
fact, carried out in [2]. However, our investigations in [2] were based only on some 
computational analogies with the "flat" case. On the. contrary, in the present para­
graph, we intended to justify every step of our evaluations in all details. 

7. To the "strong" case, we shall apply some results of [7]. The natural equations 
of the fundamental distribution on G X A3 are 

(24) dafi + xf&) + co* = 0. 

Let CD : T(P) —> g be the connection form and let <33*, G)j be the components of cD. 
It holds 

(25) dm* = & A &\ + D<s>*, 

dco) = ojf A ft)| + Dm). 

Let a* be the coordinate functions of the fundamental section a of £?. By [4], SP is 
strongly 2-holonomic if and only if 

(26) afD&i + DcQ* = 0. 
i . 

Using an algorithm of [7], we deduce the equations of the fundamental distribution 
on (0 x L\) X T\(AZ) in the form (24) and 
(27) . dxp — xp6* + 4<5j = 0, 
where co| is the natural basis of 1|*. In particular, the equations of the fundamental 
distribution on G X T\(A3) are (24) and 

(28) d ^ + xpa>) = 0. 

Let (p be the canonical form of HX(B), let Pi,pi be the product projections ofHl(B)@ 
© P, let tp = p\y, OJ = p\m and let cpP, co*, coj be the components of these forms. 
Then we have 

(29) deo* = col A coj + Ri(p* A <p2, 

dco) = cof A co\. + R)q>1
 A cp2. 

Let a1, a1 : Hl(B) © P -> R be the coordinate functions of a1. (According to [7], 
they are determined by ai = /?*a* and by 

(30) da* + of coj + o>* = ap<pp.) 

By Proposition 2,£? is strongly 3-holonomic if and only if 

(31) afSj + R* = 0, afpRj = 0. 
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In the same way as before, we deduce the equations of the fundamental distribu­
tion on G x T\(A3) in the form (24), (28) and 

(32) cto^ + 4t5J-= 0. 
The group G acts transitively on the set of all regular 21-veloeiti6s on A3. Let px e 
€ T\(Az) be the element with the coordinates xi == 0, x\ = b\, x\ = 0. The dif­
ferential equations of the stability group Hi c: G of pi are 

(33) & = 0, Sf = 0, 5>| = 0. 

Denote by 2T <=• T\{A3) the subspace of all elements lying over pt. By (4) and (33), 
the equations of the stability group Hi c: H\ of an element of 2T are (33) and 

(34) x\qS,\ = 0. 

If at least one of the coordinates x\q is different from zero, then co\ = 0 and dim 
Hz = 0; such a 22-velocity will be said to be non-planar. Analogously, a 2-jet X 
of B into A^ with source x will be said to be non-planar, if the 22-velocity X Y is 
non-planar for some (and hence for every) Y eHl(B). Thus, we have deduced that 
the strong 2-index of isotropy of A3 is equal to 2 and that a 2-jet of B into A3 is of 
general type if and only if it is non-planar. By Proposition 3, we obtain. 

Proposition 7. If the second development of S? is non-planar and if £f is strongly 
4k-holonomic at every point, then its connection is integrable. 
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