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ON SUBSTITUTION OF OPERATIONS IN SYSTEMS
OF EQUATIONS OVER ALGEBRAS

Ivan CHAJDA, PREROV

(Received March 26, 1973)

The mapping transforming a system of equations over an algebra into another
algebra with different operations (from a different class of algebras) is frequently
constructed for solving this system (for instance in operator calculus). A solution
of the system in the second algebra is transformed back again into the first algebra
and in individual cases it is proved that the transformed back solution is a solution
of the initial system. The theorem which gives conditions for back transformation
can be generalized and assumptions of it can be weakened.

The conceptions of the systems of equations over algebra and of the regularizer
are taken from [1] and [2].

1.

By the symbol A = (4, Or) there is denoted the algebra with the set of generators
A and the set of operations Or. For each operation o, € O there exists an ordinal
number k, — the so called arity of o,. By the symbol {a., « < k,} it is denoted
a sequence of the type k, formed by the elements a,. Let a,e W for « < k. The
result of operation o, for elements {a,, « < k,} is denoted by o,(a., k,)

Let .o/, be the set of all expressions consisting of elements of the algebra U =
= (4,0y), of the Or and of the set X = {z,, u < s} (Wwhere XN 4 =&, XN Or= )
which would give elements of 9 if the elements of X were replaced by elements
of U; that is, expressions with the right number of elements (of U or X) after each
operation-symbol.

Let us introduce the equivalence w on./;: an element T €47, is equivalent to
element & €275, symbolically 7 w & iff T = 9 for each replacing elements of X by
elements of A. We can introduce an operation o, € Or for elements of &75:

T @ 0y(Dy, ky), O, €4 5 iff T = 0,(Fs, k,) for arbitrary replacing elements of X
by lements of U (where J, is obtained from &, by replacing elements of X by ele-
ments of A).

It is clear that w is a congruence relation on..

Definition 1. The factor algebra .7;/w is called formal W-polynomial algebra
and is denoted by For (U, X). Each element of For (A, X) is called the A-term
(or briefly the term).

Any term V of For (U, X) generated only by the set {zx,, # < k}U 4 and by
operations O, where k < s, O < O is denoted by V(z,, ¥, Oy).

Remark. U is a subalgebra of For (A, X) because ¥ < X = For (A, Y) = For
(U, X) and A = For (A, ).
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Let 2 = (A, Or) be an algebra of the class A, B = (B, Og) be an algebra of the
of the class A'.

Definition 2. The mapping ¢ of For (¥, X) into For (B, X) is said to be the S-map-
ping iff the following conditions hold:

(i) the image of the A-term o,(x,, k,) is the B-term
Vy(x,, ky, Oy)
(ii) | is the mapping of A into B

(iii) for each sequence {a,, 4 < k}, @, € A the identity @(oy(a,, k,)) =
V,(@(a,), ky, Og) holds.

Then the operation o, € Or is called substitutable by the operation Oy in the algebra B.

Remark. A special case of S-mapping is a homomorphic mapping (i.e. A, B e 4,
Or = Oy, V,(z,, k,, Oy) = oy(x,, k), 0, € Og). If A is a grupoid and B is an
algebra with one binary operation and two suitable defined unary operations, then
the conception of substitutability can be equal to the conception of isotopy.

Theorem 1. The equivalence relation @ induced by an S-mapping on W is a congruence
on A,

Proof. Let {a,, p < k},{b., u < k} be sequences of elements of A, ¢ be an
S-mapping of U into B and <a,, b,> € D for each u < k, ie. @a,) = @(b,).
Then ploy(a,, ky)) = Vylp(a). k, Oil) = Vy(p®,), ky, 021) = @(oy(b,, k,)), thus
{oy(@p,ky), 0y(b,, ky)> € P for each k,-ary operation o, € Oy. Accordingly, @ is a con-
gruence relation on 2.

EXAMPLES ON THE SUBSTITUTION OF OPERATIONS

1. Let A be the Boolean algebra with n generators{a,,u =0, 1, ..., n —1},B be
‘the Boolean ring with unity generated by the set of generators {b,, u =0, 1, ...,
n — 1}. Let ¢ be the mapping of For (2, X) into For (B, X) for which ¢(a,) = b,
for 4 < n, and for arbitrary xo, x, € X is

P(Xo U x1) = @(X0) + @(x1) — @(Xo) . @(1)
PEeN 1) = @(%o) . Pl1)
P(2o) = 1 — (o).
Then @ is the S-mapping and operation, U is substitutable in B by Oy = {+,—, .}.
Analogously for other Boolean operations. The inverse mapping ¢~1is the S-mapping

of B into A. It follows directly from [8] and [3]. Then for example the operation +
of B is substitutable in A by the set Or = {U, N, 7} of all operations of A because

@ H@o + 21) = (¢1@0) O @1(z1)) U (9~ 1(o) N ¢1(1)-

2. Let A be the set of non-zero complex functions of the real variable t which
have the continuous first derivative in the interval <0, oo) and fulfil | f(t) | £ Me®,
where M 2 0, S = 0 are constants, let the set of operations of A be Op = {+, —, ., :,
derivative, integral}. Let B be the field of operators, where Oy = {4, —, operator
product, operator quotient, multiplications by a constants}. Then there exist various
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S-mappings of U into B, for example the Laplace transformation, the Garson-Laplace
transformation, the Fourier transformation etc. Operations of U are substitutable

in B by the operations of B.
2.

Let &7 be the set of elements of For (A, X), X = {z,, u < s} and A = (4, Oy).

Definition 8. The subset & of the Cartesian product &/ X & is said to be the
system of equations over U, each pair (t,9> € E of A-terms 7, ¢ is called the equation.
Elements of X (resp. of 4) generating A-terms 7,  are called unknowns (resp. para-
meters) of the equation (z, 9) € K.

Definition 4. A homomorphic mapping & of For (U, X) into A’ = (4’, Or), where
W, A, For (A, X) are of the same class of algebras, is called the characteristic mapping
of the system E iff h(tr) = k() for each (z, #> € E and h(For(AU, X)) = h(A).
If h | A is an isomorphic mapping of A into A’, the characteristic mapping 4 is said.
to be proper. The congruence relation induced by %» on For (U, X) is called the
regularizer of the system E. If h is proper, the regularizer induced by h is called
proper.

By the symbol £ we denote the A-term 7 where all elements of X which generate ¢
are replaced by elements of U and each z, is replaced by the same a,€ U in all
places in 7.

Definition 5. Let E be the system of equations over % and ~ be a regularizer
of E. The sequence {V (@, k., Or), u < s}, where a, € U, is said to be the solution
of the system E with the regularizer ~ iff we obtain (z, 5) € ~ for each (7, e E
by replacing each element x, by the element V,.(a., k., Or). If the regularizer ~
is proper, the solution is called proper.

In [2] it is shown that the solution {V(a., ki Or), u < s} is proper iff T =13
for each (7, #) € E. Accordingly, the proper solution is the solution in sense of the
classical definition (see for example [6]). The definition 5 is, however, more general
than that one.

3.

Let E be the system of equations over an algebra W = (4, Or), let @ be an S-map-
ping of A into B = (B, Op). The mapping ¢ maps each’ AU-term 7 onto B-term ¢(z)
and each equation {7, ) of E onto B- equation {@(t), @(#)). Let us denote by ¢(E)
the set of all {¢(7), (#)> for <z, ¥ € k.

We use frequently (for example in the operator calcultis) the theorem on transform-
ing of the solution of ¢(E) onto a solution of E. ThlS theorem can be generahzed
for arbitrary algebras

Theorem 2. Let E be a system of equations over U, @ be an injective S-mapping
of W into B and p be an injective S-mapping of B into W. If {V ,(bs, k.0H), u < s}
is a solution of the system @(E) with regularizer ~, then

{9(V u(ba, k,, On)), p < 8}
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18 a solution of the system E with regularizer ~ , defined by the rule:
{a,b) e ~e iff <‘P(a)’ ¢(b)> € ~ (P)

We can however, weaken the assumption of this theorem and extend the range
of applications of it. The assumption of existence of ,inverse’* S-mapping y is too
strong for the applications where the theorem can bring new results (for new trans-
formations in the operator calculus, for modeling various systems etc.).

Lemma. Let A = (A, Or), ¢ be an S-mapping of W into B = (B, On). If ~ is
a congruence relation on B, the relation ~a defined by (P) is the congruence relation on .

Proof. If is evident that ~, is an equivalence relation on % because (P) implies
the reflexivity, transitivity and symmetry of relation ~, for congruence ~. Let ~,
be not a congruence relation. Then there exists at least one sequence {{a,, b,),
i < k} and at least one k,-ary operation o, € Or so that {a,, b, > € ~, for p < k
and {o,(a,, k), oy(bu, k))> ¢ ~,. From it follows by (P):

{ploylay, ky), @loy(by, k) > ¢ ~

which is a contradiction because ~ is a congruence relation by the asumption and
$P(oy(@u, ky)), @loy(bus k)))> = (Vy(@lan), Ky Of), Vilp®u), ks, Op)>e ~.

Theorem 3. Let A = (4, Or), B = (B, On), ¢ be a S-mapping of W into B. Let £
be a system of equations over W. If {V ,(b«, ku, Og), p < 8} i3 a solution of the system
@(E) with regularizer ~ and W, is an arbitrary element of W fulfilling p(W,) =V,
for each p < s, then {W,, u < s} is a solution of E with the regularizer ~, given
by (P).

Proof. By the lemma ~, is a congruence relation on 2. Let T be an W-term v
where each z, is replaced by W, e U, ¢(t) be B-term ¢(7), where z, is replaced
by V,.e W and let p(W,) = V,, where {V,, u < s} is a solution of ¢(E).

By the condition (iii) od the definition 2 we obtain ploy) = @(0,), where oy, ky)
is an A-term. By the theorem 1 we obtain ¢() = ¢(t) for an arbitrary U-term.
Thus {¢(7), ¢(#)) € ~ implies {g(t), (P)) € ~ and by (P) we obtain <z, ¥ € ~,,.
Accordingly, {W,, u < s} is really the solution of £ with the regularizer ~ .

The theorem 2 now follows from the theorem 3.

4.

It is possible that the system E has other solutions which can not be obtained
from solu tions of @(¥) hy the theorem 3. The solution of E obtained from the solution
{V., u < 8} of p(E) by this theorem is called induced by the solution {V,., u < s}. The
solution of E induced by proper solution of ¢(E) need not be proper.

Theorem 4. Let E be a system of equations over U, ¢ be an S-mapping of A into B.
The solution of E induced by the solution {V,, u < s} of p(E) ts proper iff:

(1)  {V. pu < 8} 1s a proper solution of p(E)
(2) @ b]N A 18 a one-element set for each b e B.

Proof. The sufﬁclency is evident. Necessity: Let {V,, u < s} be not proper so-

lution of @(E), i.e. ~ = = and let the induced solution be proper. i.e. ~ = —.
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Then from (7, #> € ~, we have T = # and by (P) We obtain g(r) = @(3) for each
{@(7), p(#)) € @(E). From it ~ = = and thus {V,, # < &} is proper which is a con-
tradiction. Let @~1[b]N A be not one-element set and ~ = =, then ¢(t) = @(d).
By the theorem 1, ~ is a congruence relation, but ¢-15]N A is not one-element
set, i.e. ~, 3= = which is a contradiction with the assumptions of the proof again.

For applications the following sufficiency condition can be often use:

Corollary 5. Let @ be an injective S-mapping of W into B, E be a system of equations
over . Then the solution of E induced by a proper solution of @(E) is proper.

Proof. The assumptions of corollary fulfils (1) of the theorem 4. From injectivity
of @ we obtain condition (2) of the theorem 4. By this theorem we obtain the
assertion of corollary.

Theorem 3 and corollary 5 can be applied to the operator calculus if the
transformation into the field of operators is injective but there does not exist
substitutability for each operator operation into initial functional algebra (i.e. the
inverse mapping of the S-mappint @ of 9 into B is not an S-mapping of B into A
for each operation of B).
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