Miroslav Katětov
Remarks on characters and pseudocharacters

Commentationes Mathematicae Universitatis Carolinae, Vol. 1 (1960), No. 1, 20--25

Persistent URL: http://dml.cz/dmlcz/104862

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1960

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
respectively, every \(x \in S \) is contained in some \(A \in \mathcal{U} \). The \(k \)-character of \(S \), denoted \(\kappa \chi(S) \) (respectively, \(k \)-pseudocharacter, denoted \(\kappa \psi(S) \)) is the least cardinal of a \(k \)-base (\(k \)-pseudobase) of \(S \).

Clearly, every \(k \)-base of \(S \) contains a \(k \)-base \(\mathcal{U} \) with card \(\mathcal{U} = \kappa \chi(S) \) and a \(k \)-pseudobase \(\mathcal{B} \) with card \(\mathcal{B} = \kappa \psi(S) \).

1.2. If \(S \) is compact, \(A \cup B = S \), \(A \cap B = \emptyset \), then \(\chi(A, S) = \kappa \chi(B) \), \(\psi(A, S) = \kappa \psi(B) \).

1.3. If \(S_1, S_2 \) are spaces, and \(\mathcal{G} \) is a continuous mapping of \(S_1 \) onto \(S_2 \) such that \(\mathcal{G}^{-1}(K) \) is compact whenever \(K \subset S_2 \), then \(\kappa \chi(S_1) = \kappa \chi(S_2) \), \(\kappa \psi(S_1) = \kappa \psi(S_2) \).

1.4. Theorem. Let \(S_1, S_2 \) be locally compact, \(M_1 \subset S_1 \), \(\overline{M_1} = S_1 \), \(M_2 \subset S_2 \), \(\overline{M_2} = S_2 \); let \(M_1, M_2 \) be homeomorphic. Then \(\chi(M_1, S_1) = \chi(M_2, S_2) \), \(\psi(M_1, S_1) = \psi(M_2, S_2) \).

Proof. Consider only \(\chi \), the proof for \(\psi \) being quite analogous. Suppose first that \(S_1 \) is compact. Let \(f \) be a continuous mapping of the Čech–Stone compactification \(\beta M_1 \) onto \(S_1 \), \(f(x) = x \) for \(x \in M_1 \). Then \(f(\beta M_1 - M_1) = S_1 - M_1 \), and the restriction \(\mathcal{G} \) of \(f \) to \(\beta M_1 - M_1 \) satisfies the conditions from 1.3. Hence \(\kappa \chi(\beta M_1 - M_1) = \kappa \chi(S_1 - M_1) \) and therefore, by 1.2, \(\chi(M_1, \beta M_1) = \kappa \chi(S_1, S_1) \). This implies the validity of the theorem for compact \(S_1, S_2 \). If \(S_i \) are locally compact, choose compact \(T_i \supset S_i \) with \(\overline{T_i} = T_i \). Then \(S_i \) are open in \(T_i \) and therefore \(\chi(M_i, S_i) = \chi(M_i, T_i) \) from which the theorem follows.

1.5. By 1.4, for a given \(S \), the cardinals \(\chi(S, K) \), \(\psi(S, K) \) where \(S \subset K \), \(\overline{S} = K \), \(K \) is compact, do not depend on \(K \); they will be denoted \(e \chi(S) \), \(e \psi(S) \) and called external character (pseudocharacter) of \(S \).

Two spaces \(S_1 \), \(S_2 \) will be called associated if the these is a compact space \(K \) and subspaces \(S_i \subset K \) homeomorphic with \(S_i \) such that \(S_1 \cup S_2 = K \), \(S_1 \cap S_2 = \emptyset \).
Clearly, if \(S_1 \), \(S_2 \) are associated, then
\[
\varepsilon \chi (S_1) = \varepsilon \chi (S_2),
\]
\[
\varepsilon \psi (S_1) = \varepsilon \psi (S_2).
\]

Clearly, \(\chi (S, R) \leq \varepsilon \chi (S) \) if \(S \) is dense in the space \(R \); if not, it may happen e.g. that
\[
\chi (S, R) > \aleph_0, \quad \varepsilon \chi (S) = 1,
\]
\[
\chi (S, R) = \aleph_0.
\]

1.6. If \(S \) is locally compact \(\sigma \)-compact, then
\[
\varepsilon \chi (S) \leq \aleph_0.
\]

1.7. If \(\varepsilon \chi (S) \leq \aleph_0 \), and \(\chi (x, S) \leq \aleph_0 \) for every \(x \in S \), then \(S \) is locally compact \(\sigma \)-compact.

Proof. Suppose that \(S \) is not locally compact at \(a \in S \).
Let \(A_n, n = 1, 2, \ldots \), form a base of \(S \); let
\(G_n \) form a base around \(a \) and let \(G_1 \supset G_2 \supset \ldots \).
Since \(G_n - A_n \neq \emptyset \), choose \(x_n \in G_n - A_n \),
\(x_n \to a \); denote \(K \) the set consisting of \(a \) and all \(x_n \).
Then \(K \) is compact, \(K - A_n \neq \emptyset \), \(n = 1, 2, \ldots \),
which is a contradiction.

Remark. It is easy to see that the assumption \(\chi (x, S) \leq \aleph_0 \) cannot be omitted.

2.1. If \(R \) is an ordered set, let the least cardinal of a cofinal set in \(R \) be called cofinality character of \(R \).
Let \(N^N \) denote the set of all sequences of natural numbers ordered as follows: \(\{ \xi_n \} \leq \{ \eta_n \} \) if
(and only if) \(\xi_n \leq \eta_n \) for every \(n \). The cofinality character of \(N^N \) will be denoted \(\mathcal{C} \).

It is clear that \(\chi_1 \leq \mathcal{C} \leq 2^{\aleph_0} \); by the author's knowledge neither of the equalities \(\chi_1 = \mathcal{C}, \mathcal{C} = 2^{\aleph_0} \)
has been proved as yet (nor disproved, of course).

Order the set \(F \) of all sequences of positive numbers as follows: \(\{ \xi_n \} \) precedes \(\{ \eta_n \} \) if (and only if)
2.2. If S is metrizable, $M \subset S$ is σ-compact, then $\chi(M, S) \leq \mathcal{B}$.

Proof. Let $M = \bigcup_{n=1}^{\infty} K_n$, K_n compact. Let A be cofinal in N^N. Choosing a metric ρ for S, put $G_n, \xi = \{x \in S : \rho(x, K_n) < \frac{1}{n}\}$, and, for any $x = \{\xi_n\} \in N^N$, $U_x = \bigcup_{n=1}^{\infty} G_n, \xi_n$.

If H is a neighborhood of M, choose K_n with $G_n, \xi_n \subset H$ and $x \in A$ with $\{\xi_n\} \subset x$; then $M \subset U_x \subset H$. Hence U_x, $x \in A$, form a base around M.

2.3. Let S be metrizable, $M \subset S$. If $M - \text{Int} M$ is not compact, then $\chi(M, S) \geq \mathcal{B}$.

Proof. There exist (distinct) points $\xi_n \in M - \text{Int} M$ such that $\{\xi_n\}$ has no cluster point in M. Choose a metric ρ for S and put, for any neighborhood G of M, $\varphi(G) = \{\rho(\xi_n, S - G)\} \in F$ (see 2.1). Let U be a base around M. If $\{\xi_n\} \in F$, choose $x_n \in S - M$ with $\rho(x_n, \xi_n) < \min \left(\frac{1}{n}, \xi_n\right)$. Since $H = S - \bigcup(x_n)$ is a neighborhood of M, there is $U \in U$ with $U \subset H$. Since $\rho(-\xi_n, S - U) \leq \rho(\xi_n, x_n)$, $\{\xi_n\}$ precedes $\varphi(U)$ in F.

Thus $\varphi(U)$; $U \in U$, form a cofinal set in F.

2.4. Theorem. Let S be metrizable; let $M \subset S$ be σ-compact. Then $\chi(M, S) = \mathcal{B}$ if and only if $M - \text{Int} M$ is not compact.

Remark. For instance, in E^n the character of every non-compact closed set (different from E^n) is \mathcal{B}.

3.

3.1. Definition. A space S will be called a λ-space if there is a transitive relation σ on S and a set A such that the sets $\{x \in S : x \sigma a\} \subset a \in A$, form a
3.4. The cartesian product of \(\mathcal{A} \) -spaces is a \(\mathcal{A} \) -space.

Proof. Let \(S^\xi, \xi \in Z \), be \(\mathcal{A} \) -spaces, \(S = \prod S^\xi \).
Let \(\sigma^\xi, A^\xi \) be \(\mathcal{A} \) -spaces as in 3.1. Put \(\{ x^\xi \} \sigma \in \{ y^\xi \} \) if (and only if) \(x^\xi \sigma y^\xi \) for every \(\xi \); put \(A = \prod A^\xi \). Then \(A \), \(\xi \) possess properties required in 3.1.

3.5. Theorem. The cartesian product of locally compact para-compact spaces is a \(\mathcal{A} \) -space.

Proof. Let \(S \) be locally compact para-compact. Then there is a locally finite open cover \(\{ U_\alpha \} \) such that \(\overline{U_\alpha} \) are compact. Clearly, there exists a subcover \(\{ V_\beta \} \) such that no \(\alpha \in \beta \) lies in \(U_\beta' \), \(\beta \neq \beta' \). By a well known theorem, there exist open \(V_\beta \) with \(\alpha \in V_\beta' \), \(V_\beta \subset U_\beta \), \(U V_\beta = S \). The collection of all \(V_\beta \) has properties indicated in 3.3; hence \(S \) is a \(\mathcal{A} \) -space. Now apply 3.4.

Remark. It is easy to see that \(k_X(S) = k_Y(S) \) for any locally compact \(S \); nevertheless, I do not know whether \(k_X(S) = k_Y(S) \) holds whenever \(S \) is a product of locally compact spaces.

3.6. Corollary. Let \(\mathbb{R} \) denote the space of rational numbers, \(J \) that of irrational ones. Then \(k_X(\mathbb{R}) = k_Y(\mathbb{R}) = \mathcal{K} \).

Proof. By 3.4, \(k_X(\mathbb{R}) = \mathcal{K} \); hence, \(\mathbb{R} \) and \(J \) being associated, \(k_X(J) = \mathcal{K} \). Since \(J \) is homeomorphic to the product of \(\aleph_0 \) discrete countable spaces, we have, by 3.5, \(k_Y(J) = \mathcal{K} \), hence \(k_Y(\mathbb{R}) = \mathcal{K} \).

Remark. The conjecture seems probable that \(k_X(\mathbb{R}) = k_Y(J) = \mathcal{K} \).