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A NOTE ON PERFECTLY NORMAL SPACES
Meyer JERISON, Lafayette, Indiana, USA

A topological space is said to be perfectly normal if
it is a nefmal space in which every closed set is aG‘d‘. It |
is well lknown [1,p. 110] that

(* I eny subspace of a perfectly normal ‘space is per -
fectly normal.

The difficulty in the proof of (X ) lies in the verification
that every subspace of a perfectly normal space is normal;
it is obvious that a subspace will inherit the property that
every closed set is a (g . In thighote we present a charac-
terization of perfectly normal spaces that will yield (X )
as a simple corollary and may have other advantages as well.

The essential idea is to replace the notion of closed
GJ* with that of zero-set (see [2] ). The zero-set of a
continuous real-va1ued~fung:tionf on a topological space X
is the set {x &X:f(x) = 0} o An{r‘ zero-set. in X is a clo=
- .sed Gd’ : it is obviously closed, and it is the intersec -
tion of the' open sets {x: if(.x) E< £ /n. b& . In & normal space,
conversely, every closed G@?" is a zero-set. To prove this, :
let K be a closed set that is the intersection of the open
sets Uﬂl% =4,2,... o By Urysohn’s lemma, there exist con=-:
tinuous functions f,, satisfying O=f, (X)24  on the who=-
le space, £,(<)=0 for all x€ K , and £,(x)=1 for all
X%U n, » Then the continuous function :q__-"z’”fn(x) has K
as its zero-set. In & non-normal space,’a closed Gd’ need
not be a zero-set. [2,, pPPs 50, 97} 5

THEOREM. A space X _is perfectly normal if and only if
every closed set in A is a gero-set.

Proof, That every closed set in a perféctly normal spad
ce is a zero-set was proved above. Conversely, suppose thgt
every closed set in X is a zero-set. We saw above that eve-

ry closed set is then & (U~ . Let K and | be any two
=16~




-disjoint closed sets in )( and let them be the zero-sets of

the functions;fz and 9- , respectively. Then the continuous
function fz/(f T4 gz‘ ) vanishes on K and is equal to l

identically on L. Consequently, )( is a normal space.

"COROLLARY. Any subspace of a perfeqtlx Qormal space is
perfectly normal,

Proof. The intersection of a zero-set (of a space) with
a subspace is a zero-set of the subspace.

REMARK. We did not assume above that we were dealing
with ‘T;.-spaces. If one wishes to include the-T; separation
axiom in the definition of "perfectly normal®, then of cour-
se, one must assume in the Theorem that X is a 7: -space.
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