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A SURFACE IN A SPACE WITH PROJECTIVE CONNEXION
Bohumil CENKL, Praha

Let us consider a 2-dimensional domain of parameters

{L . 7o every point «wef) let there correspond a 3-=dimen=
sional centre-projective space Ps(u) with centre
A,u). Let 74 be an arc connecting two points «’
u* of the domain of parameters JL(pel2) and let there
be given the homology ~H (w'w®y) between the local spa=-
ces PB@') , P («*) . Let a connexion be given by the
equations olAi:co’A sl =0 ; =77;€’m0[“dv

(?,3' =0,1,2,3; &= 7-72' . The Konig’s variety le celined
in this way is called a surface JI  with projective ronne=-
xion. It is possible to choose the coordinate asystem (repér)
on the surface 7  in such a way that the connexion is gi-
ven by the equation

dA swiA +duA, fclvAL, dA, =l A+, AtpduA+U-k)dv A,y
dA =cu°A +'3dv'A +w”A +(4+&)de s A, m"A +GJ1A +<u"A +a)"A

cﬁu+1r dv, o =0, [dwdv]+0, (i,%=01,3);
D" i

3 o 4_ 2 3 .
let a"a':;'a':da:q"as ,ﬂ=ﬂ°~,&1 /6"' +/&3

Consider upon the surface J]. a curve ¢ which has
contact of thg¢first order with the asymptotic .« =comsl at
a point A, | . Consider the tangents to the asymptotics
v=comsl from the points on the curve e o They form e
ruled surface. Then there exists such a quadriec such that.
one system of its lines has a line~contact of second order
with our ruled surface. This quadric we shall denote by

Gu®) ( P+4 is the Smith-Meshke s invariant of f"the con=
tact of the curve ¢  with the asymptotic u=comol ), If
we interchange the asymptotics we get a quadrie Glv-(»). In.
the two parametric bundle of quadrics @ (W,A)=G, @)+AGu ()
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. H+1 '
there exists for A - /‘;,!:4 a singular quadric consisting of

a tangent plane of .1 surface JI at the point A, and a
plane T - which dves not contain the point A, (if A+0
then the surface is not without torsion; if A =0 then both
planes pass through the point A, ). If we consider the
characteristics of one-parametric ( u« = comsl or comsl )
systems of such planes T of singular quadrics (which are
_riot tangent planes) we have for fixed an invariant point

~ P(») in T , which is their point of intersection. The
points P(?) 1lie on a line m  which passes through the
point A, of the surface 7T -the first pseud o-
norma]l of the surface with projettive connexion. If we
consider the dualisation E‘; nf the surface we have a

9

dual quadrie 5 to the qua;iric Q(, %%’ ‘e The quadrie
a consists of two planes, the line of intersection of
which is the first normal m, . The normal
m, and a pseudonormal M  are generally different lines.
A canonical plane is determined by these lines. The second
pseudonormal is dual to the first one. The summit of the

4 R
‘quadric ’Q(ﬂ,% isa second normal of
the surface T .

There are o3 osculating quadrics @, of the sur -
face at the point A, « Then A =0 | there exist exact-
ly three curves passing through the point Ao‘ ,bn the sur-
face and having contact of the third order with a certain

Q; . But when A +0 , there is a differential equa -

tion of the second order v'™ta,v'+u, ) *+a, (v)+a, =0

4 9

the solution of which are the curves of the surfaée Ir ha-.
ving contact of the third order with (/, at a point A, .
The osculating planes of these curves are the tangent planes
of a cone of third degree. This cone has three singﬁlar tane
gent planes passing through one straight line. We call this
linea normal m,(¢,7) with respect to G,

( m; depends on two parameters only). If '

§_____i huw ",lzi v
3 1+H 3 1-% we obtain the normal " .

Among the 0o? quadrics q, it is possible to flnd



e quadrics @; in the fol 'wing way. Consider a
gtraight lline n passing thre - tne point Ao of the

surface I , which is not @ = ¢ of tangent plane at the
point A, . Let R, be the - ~“ace formed by the tan -
gents to the asymptotic curves . - eonsl  from the points
on the asymptoiic—curv_e = ecriet . And let Rz be the
correcponding surface, if we interchange the asymptotics.
Let < be & line on the surfrce R, containing the
point A, wnd enalogously £ on the surface Rz_ °
The surfaces R, , R, = clearly non-developable
~surfaces. Two straight lines p , #, {or o , 1, )
determine 2 plane | (or 7 Jo On the line #x, (or
#, ) there is a point P, (> F, ) which is a tan -
zent point of the plane T, (o t, ) with the surface
R, (or K, J. The straight ' ‘ne ¢  which is determi~
ned by the two points P,l ’ f‘j._;.ﬂ is called the reciprocal
line to 1 . The quadric (J, - that quadric (3 with
respect to which n , ¢ ar: polar ]inps. The equation
of (i, is in the local coordins.. system x°x*x'x*=4& (x3)*,
Among the normals T, (‘f; 1) we have m, (¢,0)=n_, which
belongs to the qundric 6, . The normals M and m, de-
termine a mlfw” The intersection of this plane with the
tangent plane is a tengent to tho curve adu -b-dvr=0 passing
through the point Ao « The accond normal ﬁq is the
polar line to m, with respect .o {, (3=0, hx’- bx'-ax*<0) .

The normal m, is not & line of the plane determined by =
and M, « L&t )} he a tangent curve to the curve

adw - brdv=0 st a point A, ard let 7 have a contact
of third order with the osculating
face JI . From the points on the

quedric G4 of the sur-

curve ,3 consider tan -
gents to the asymptotic lines; tien we obtain two systems of
1 quadrics (1"1 " &, , vhich have contact of the
" second order with one of the considered line surface. The
guadric G, has in a convenient coordinate system the

o0

eguation 2_3
) (4+Jh,)x x*-x x3 %((\')2" $ge X x4
han
+ b+ 3&—. g,h 7 1tk o ))‘ x*=0 -
Now let ud c,ons:t.der omo og:ms conservmg the surface
element of the third order.
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For a surface with projective connexion, there are two
kinds of homologies of locsl space onto itself. In homologies
of the first kind, the asymptotes are identicsal while in ho=-
mologies of the second kind one asymptote corresponds to the
~other and vice versa. It can be shown that the homology of
the first kind exists also in the case, when on the surface

T the relation #H *0 holds. For the existence of the
homelogy of the second kind, however, the condition 4 =0
is necessary and sufficient. There are oo? homologies of
the second kind. Among them are oo perspective homolo =
gies, the summits of which necessarily lie on Darboux’s tan-

gents at a considered point.

If h=0 on a surface I y then the singular

quadric consists of two plenes. One is a tangent plane of

9T at the point A, and thdother T, is a plane contai-
ning the point /‘\o o There exists an infinity of curves
(determined by the equation adu -4&dv =0 ), such that
the characteristics of the one~-parasmetric system of planes
T, along one curve of the system are invariant lines, the
first normals =n° of -the surface with projec~
tive connexion without torsion. The s e ¢ on d normal
Mn° is a polar line to m° with respect to the main
Lie’s quadrdé - Q0,1).

We shall call "pseudogeodetics" on a surface JT the
curves =g (w) for which f¢ (w,», dw,dwr) has an
extremal value, if ) is =2n invariant differemntial form’
on the given surfzce I . If we take ¢ =adut bdv it can

~be shown that the necessary and sufficient ccndition for
fuv:g:({o) to be a pseudogeodetic curve is that the relation
a, ¥ ﬁq}, =0 should hold. In this case, however, each cur-
ve which passes through the given point is’'a pseudogeodetic
curve. If we use the inverisnt forms V2abdu dv ,

alrdu dv '
Vi, aldu*~ ke, b'dv? | K adutk bdr  ( h, , &k, are
arbitrary paralﬁe‘cers) , we have given the respective Euler -
Lagrange ‘s differential equations of the pseudogeodetics. The
corresponding osculating planes of the pseudogeodetics always
envelop a cone of the third degree. There exists a straight

1ine which is the intersection of three singular tangent
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planes to this cone. We thus hav: three invariant st;aight
lines (with respect to invarisnt 4ifferential forms) which
lie in one plane. This invariant ol -ane is formed by lines

(the normals) m°{(A) ’z_i,, NSRS P2 a.ﬁ-

AR xiod el - _;g%__ N

For values of the parameter Aﬂ=&fi'75 s we obtain three
normals corresponding to our three forms. We have a bundle

7%7§1ﬂ) which i8 formed by m° (i) and mn, « Among the
normals m°(A) there does not ¢ -ist a line such that the
developable surfaces of the congrucnce of these lines in =
tersect the conjugate net on 7l

@

- By Wileczynski s,directrix o a surface with projective
connexion we shall understand a g neralization of that line
from a projective space, where we consider the definition
by means of a linear complex. The V.d., has the following
characteristic in a projective sp.ce: if we take an arbitra-
vy straight line n  passing through the point A, of a
surface T and a straight line ¢  reciprocal to v
we get two line cougruences E y T: in a corresponden-
ce C « IT Cl is a developable correspondence and if
the developable ruled surfaces of these congruences inter =~
sect a conjugate net on I, then f is a W.d. Such
a straight line on a surface with projective connexion, how-
ever, does not exist, not even when the surface is without
torsion. If, however, we want C to be only a dgvelopab—
le correspondence, or [, , [, to cut a conjugate net
by their developable ruled surfaces, then we get théKW.d.
as a solution of a certain system of partial differential
equations. This system has only one solution if initial con-
ditions are given, that meens if n is chosen at one
point. In this cese, however, W.d. defined 'in such a way a=
re not identical with the W.d. studied by A.3vee, by means
of the definition by & linear complex, on the assumption that
we choose fu at the particular point as a W.d. of Svec’s
system. '

Let us consider two surfaces I , JT with pro-
_jective connexion. Let T and T be in an asymptotiec



correspondence ( +» Let H ™Me a2 homology between the
local spaces at the considered pr ris. It is possible to show

that a linearising line (introdu s by E.Cech) of a tangent
to an asym;ltotlc v = const ~ H =characteristic only
when A =174 o If I is giv i, then aT depends on fi=-

ve functions of one variable., In o.7cr for a linearising li-
ne of a tangent 1o an asymptotic dv =0 to be a tangent to
one curve of a system adw~ddv=0 passing through a gi-
ven point it is necessary and sufficient that the equation

wl@a,-wlta'~w -2&’)+ £ (3-2) =0  gnould hold. If T

is given, then 7f d«vpends on ‘r\ e functions of one veriable,

The space with projective conexion (3-dimensional)
without torsion, where through ecch point pass three surfa =

ces, on which the system of curves adwu -&dv=0 1is un -
determined ( w =4 = 0) is charactcrized by the equations

3 = - 3 > -

Rﬁa Rdi . Rlﬂ R312 Sa2 0’
where

[dw™ ] = {" (g -5 @3] - Ra’z o',

[Q[Q, 1= [:w u\..“: *1-4 R”;s [‘U‘ } y Rd(‘ja)z R;(jé) =0

(B.CENKL, The normals of‘ a surf:~> in a space with projecti=-
ve connexion, sent to be printec; '

A.8VEC, Sur la geométrie différe: .i=lle d‘une surface plongée

dens un espace a trois dimensions 2 connexion projective,

sent to bepprinted).
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