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Commentationes Mathematicae Universitatis Carolinae 
3, 2 (1962) 

TV/0'THBQREMS CQNCERNING COMMCN FIXED POINT OF COMMUTATIVE 
MAPPINGS 

Zdeněk HEERLÍN , Praha 
We use the foliowing notátion: if P is a systém of 

mappings from the set X into itself, then, for any Y c X , 
F(Y) is the set of all f(y), f € F, y € Y ; instead of 
F((y)), F(y) is written. If Y c X, P(Y) C X, then PIY dé-
notes the set of all f € P restricted to X • 

The operát ion in all semi-groups throughout this remark 
is the composition of mappings. 

Let F be a commutative semi-group of mappings from the 
set X into itself. F is said to be a maxima! commutative 
semi-group of mappings, if there exists no mapping from X 
into X #iich commutes with all mappings from P and does 
not belong to P . 

Let P be a systém of mappings from a set X into it
self. By r(P) we denote the set of all f € P such that 
for each f^ e p there exists f2 e. F and f = t^ o f2 

holds» By f, of. we denote, as usual, the composition of 

mappings f^ and f̂  , that is, í^ o f-Cx) » f^feAx-íl for 
every x € X . 

We now examine the s i tua t ion in which a l l mappings from 

a systém P commute and each of them has a f lxed po in t . 

In order t o i l l u s t r a t e , l e t us consider the extremely 

simple systém of mappings. Let X consis t of s i x po in t a , 

1 , 2 > . . . , 6 , and P consist of four mappings, f^, ř g , f o , £AI 

from the s e t X into i t s e l f defined as fol lows: 
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1 2 3 4 5 6 

1 2 3 4 5 6 

2 1 4 3 5 6 

2 1 3 4 6 5 

1 2 4 3 6 5 

Obviously, P i s a commutative semi-group of mappings • Each 

mapping from P has a fixed poin t , but there ex i s t s no com-

mon fixed point of áLl mappings from F • Therefore i t i s not 

t r ne tha t every coraautative semi-group of mappings from a f i 

n i t e set in to i t s e l f has common fixed point proviáed tha t 

each mapping from tne semi-group has a fixed point• But t h i a 

a s s e r t i o n i s t rue under assumption tha t F. i s a maximal com

mutative semi-group* We prove: 

The ořem 1+ Let P be a maximal commutative semi-group of 

mappings from a set X in to i t s e l f , r(F) č & . If each 

f € F has a fixed po in t , then a l l mappings from P háve p r e -

c i s e l y one common fixed point• 

I f X i s a f i n i t e s e t , then also F i s f i n i t e and the 

composition of a l l mappings from F belongs to r ( F ) , and 

there fore r (F) t SĎ • We obtain immediately from The ořem 1 : 

Corrolar;/: Let F be a maxi/nal eairisutstive semi-group 

of mappings from a f i n i t e se t X in to i t s e l f . If each f e P 

has a fixed point , then a l l mappings from F háve p rec i se ly 

qne common fixed point• 

Proof of Theořem 1 : 

Let f *e r (F) , Define a mapping- u from the se t X i n 

t o exp X as fol lows: 

u(x) « P [f *(x)] V 
-.,33"-, ':. 

*1« 

2 * 

f 4 : 



Assuredly, F [u(x)J c tt(x)' • 
Let y € u(x) • Then y - f o f'(x) for some f c F • 

Therefore F(y) c uCx) . As f'c r(F), f ' o f € F f; tliere 
exista g € F such that 

f = f o r o g f 
and hence f'(x) = f' o f o g(x) * g(yi • 
This implies U(x) c F(x) , and f i n a l l y u(x) s F(y) « 

I f x^, i g e X , then e i t he r uCx^) = u(xg) oř 

u ( x 1 ) n u í x ^ « JĎ . Indeed, i f x e uťxj) n t i íxg) , then 

x = f̂  o f " ^ ) » f2 o f ' ( i g í j where f̂  € F , f2 « F , and 

F(x) * UÍXJL) = uíxg) * . 

Theref oře we can choose x a , a e D f such t h a t 

U u (x a ) » U u ( x ) , and u(xft ) H u(xQ ) = 0 f o r 
a c D a xeX a l a2 

a l * a2 V 

For each x £ X and f e F we háve 

;i [f(x)] c FJf'(x)J , 

and hence m 

w 
u [f (x)J * u(x) . 

This implies the image of "4 fu(x)J under F is contained 

-1 -1 
in u fu(x)] • The sets u [ii(xa)J , a € D , cover X 

and are disjoint. 

If any of the sets u(xQ) contains only one point, then this 

point is a cominon fixed point of all mappings from F • 

Let u(x&) contain at least two points. We obtain a con-

tradiction. 

Denote F Q = F I u(xa)« Fa is a group of mappings from 
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the se t u((x&) in to i t s e l f , for each á i D , as F a(x)= 

=* u(x a3 for e%ch x € u(xa> « (See lemma in f l j ) • Hence 

the re must e x i s t , for each a 6 B , a mapping fQ 6 F such 

t h a t f a l u ( x a ) f i J u'(xa') , "vahere by i we denote the 

i d e n t i c a l mapping from X i n t o i t s e l f « Ife introduce an au-

x i l i a r y mapping g from X in to i t s e l f as fol lows: 

g I 12 [u(xa)J = f*f u [u(x a ) J i f ť l n [u(xa)J * 

/ i l~u [u(xa)J f 

and 

g | u [u(x a ) j «• fa o f' I u [u(xa)j otherwisw* 
- 1 '• • . , ' 

Ad the se t s u [^(xa)J cover X and are d i s j o i n t , g i s 

a mapping from X i n t o X « Cer ta in ly , g commutes with 

each f € F • As F i s maxima! commutative semi-group, we 

obtain g € F » 

But g has no fixed point on X , as for each 

x e X g(x) € u(xa> for some a e D • g I u(x a ) € FQ 

and g 1 u(x a ) i s not i d e n t i c a l mapping from u(x a ) in to 

i t s e l f . As F a i s a group, g has no fixed point on 

u (x a ) (See lemma 1 in [ l ] ) i This i s a cont rádic t ion . Al l 

mappings from F háve at l e a s t one common fixed poin t . 

L®t x^j x2 be common fixed points of a l l mappings 

from F . Then the mapping fCx)* 3 x^ for every x X 

commutes with each mapping from F and therefore f 6 F . 

f (xg) » x^ and therefore x^ * Xg • The theorem i s proved. 

The ořem 2 . Let f and g be mappings from an a rb i t r a ry 

se t X in to i t s e l f , f o g = g o f . Let f háve prec ise ly 
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n f ixed po in ty , n natural number. Then, the re e x i s t s a 
k 

n a t u r a l number k , l á k á n , such t h a t f and g » 

* g o g o . . . o g háve a common f ixed po in t . 
k- t imes 

Froof• Let us denote the set of a l l f ixed pointa of f 

by Y . Obviously, gď) C I .Hence g|Y i s a mapping froaa 

a s e t Y , which has n p o i n t s , i n to i t s e l f . There must 

QsSat a k , l á k á n , such tha t g l í o g l l o « « o g Y 

k-t imes 

has a fixed point in I , and this is the assertion of the 
theořem* 

R e f e r e n c e — 

[ l ] Ž. HEBRLÍH: On common fixed points of coumutative map-

pings, Commentationes Mathematicae Univer

s i t a t i s Carolinae, 2,4 (1961). 
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