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4, 1 (1963)
ON THE LOCAL MAP OF MANIFOLDS
Bohumil CENKL, Preha

Let us consider a 7 -dimensional differentiable meni-

-4
fold M of class C . Let ¢~  be identical mapping

of M . To every point xe M let there corres-
pond just one pair (f, » Ug) , vhere  f, is a

trensformation of the class C” of M onto itself
defined on a neighborhood U,,; of a point o € M so,
that f (x) = ac end that for en arbitrary curve €
going through the point xeM , the curves f, (¢)
end @ (c) have =n enalytic contact of the first order, but
no contact of the second order at the point xe M .

We can now write briefly

foedig N Ge @)-de @)=Tc 8

when 3: 9 is. an infinitesimal jet of the order 2
(Mn -jet). We shall speak briefly about a combined manifold
M’ .

It is straightforward that a correspondence between two

projective, affine, ... spaces end & tangent homology, afini-
1y, «+e Of this correspondence is a special case of a notion
introduced above. It is possible to show that we cen associa~
te 8o called linearizating tensor (introduced by E. fech),
which plays a fundamental role in the theory of corresponden~
ces between two projective, affine, ... spaces, globally with
a combined meanifold M, -

Further a relstion smong linear connections on M and

the linearizating tensor associated with the combined meni-
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-fold M{. will be showm. It appears that two connections vhich
are in certain correspondence defined by the relation M > M;
have common torsion tensors.

1. et M be an m ~dimensionsl differentinsble ranifold
of the class Cw. Let us denote by T"; (M) the tongent vece-
tor space of M at a point aeM and let T(M) be the

tangent buadle space over M . et P(M,GL (nn,R))

be a principal fibre bundle over a base —rs~mnifold M with

Lie structural group GL(n,R) and vith a projection fu
of P on M . ve soy thot the vector - € Ty (P) is
vertical if it is tangent to the fibre going through.the point
& eP . For ecach g € G=GLM™M,R) we denote by Dg-
the right translation of the menifold P corresponding to
the element @~ -

Let £ be the Lie algebra of the group G~ . We denote
by 6 a differentiable representation of G on a vector
space R“' and by 6, its induced representation of the Lie
algetra. & of- G on a vector space R™ . Let {&} vea
bese of & =R™® R . Teking a base { }4, of R™ we
cen express the ‘representation 6 of & on R™ by a mat-
rix (9;“.):

(1 6l = Ginbsr 9= (ginde G -

Because 6, (€,) is en endomorphism of the vector space R™,
having chosen a base of R™ , we can write

(2) 6, (5,,)5;_ = a":f €

where (a,:;) is a matrix, the elements of which belong to R;
correéponding to £f +« The adjoint representation of G on
L be denoted, as usually, ad; .

We have on G the left invariant vector fields
@ 8y @)= % (Eg )y, ¢€C-
1) ij R = 42,m clge PrOyere = 2,000y 5




It is easy to show that
(4) [€;, &= % Exj= oy Eiy -
The representation 6, of & on R™ cen be e.uressed

in the following way:

(5) 6, (Eij)e, = Fis Tin &5 °
If we have an R"™ -valued q, -form
(6) 9= 906

on M end an L ~valued ti" ~form
n o= ¢80 &
on M, then we cen define the R™ -valued (g+q')-form

®-9 -ss follows:
(8) ¢p-g= (¢f‘@&f).(9‘® e;) =0 (E,,).e1L 9347"'/\9’v .

Now let us have two vector spaces A= R™® /{ RM,*B#{GR”*
( Rﬂ* being the dual vector space of R™ ). If we deno-
te by 6  the dusl representstion of 6 , we obtain
the representations R = coho* and L '=adj @ 6%
of the group G on the vector spaces A md B res-
pectively. Let {e‘} be the dual base of the bese {e;}
of R™ . We define the lineer mep A:B>A as

follows:

© A Fetoe, )3, (afl-auf)aedret

cj A
Since we have X = R™ @& R™* , the vector Ep or
the base {&,} Joe ritten in the Form ? o ( 8},)8; e ¢
-in the bese {e; ® e’} of Ke R™

Now we cen write &p = aq’ & @ e’ o The m:pping A

m
is then, in fact, a mappingef B = R™@® R™ & R™
-17 -



inte A=R"® A R™* ; which, having chosen a be~
se of R™ , assigns to every element /b::. 6 ® e e’
an element (/bf: - /3; )C,‘, ® e‘/\ eh .
It is straightforward to verify that we have

(10} AL (gl=R(GIA, ¢ge€b.
If considering x € P as an isomorphism of R™ on
T.IM, (nz=a) we can define & fundamental

4 =~form as follows:

Definition: The fundsmental 4 ~formon P 1s an
R™ -valued A-form 0 on P , which assigns to a
vector T, € T, (P) a vector
(11} Ot )=x".n"1, -

It is easy to verify that a fundamentsl 4 ~form se-

tisfies the following conditions:
: * -4 .

a) D%9=9,.8, 9.69,

B 8(t)=0 <=> nT=0.

Let a frame {1}:,..., X} be given on a neigh-
borhood, Uy on M . The form & = ¥ @ e; is
en  R™-valued 4 -formon Ux . If we consider two
neighborhoods U , Uﬁ s UnUs; +0 and if Qus
denotes the coordinate trensformaetions of P , then
P=gus @), ace U n U . Denoting by 11,
the cross-projection of P y 1t holda according to the
definition of a principal ‘fibre bundle that

Mx)=g,, n&Np . 2), xep  (Ucn l,) .
Now we cen define the R™ -valued fundamental 4 -form
6, om P vy 8, = 1‘1: x). 11,* ) . Nemely,

6‘ = 6/‘ . holds.
~18- ,



A connexion I° on be given by a system of ho—
rizontal spaces. To every point xz € P there is as-
signed a so-called horizontal space Hz. and a so-called
vertical space ¥, 8o, thet their union is T, (P) -
For arbitrery g € G and x € P, Hzg-""' D'g Hx
and Hx depend differentiably on a polnt =X € P.
Acoonexion |° on P cen also be given by an € -ve-
lued differentisl 4 -form <« on P . Tfle R™-va-
lued 2 -form on P
(12) S, =dbé+w6,

where © 18 @ fundemental 4 -form on P , is called -
the torsion form 3., of a commexion [ * '
The tensor t2 asaigned to the torsion form
2., 18 called the torsion tensor. t 2., 1is the
mapping of P into A of the type R .

2. In this part it will be shown that a differentiable
- transformation of certain type of P onto itself assigns
to a connexion on P  against a comnexion on P  and that
there exists a tensor on P which depends only on a res=-
pective mapping of P onto itself,

Let - Dbe a differentiasble map of P onto itself,
such that the following conditions are satisfied:

1) h’D’z"D"‘hf

'
2) A Ty o= Ty, , for an arbitrary vertical
vector T, - '

3) I I 1s a connexion on. P and T, & hori-

zontal vector, then there exista a vertical vector 1 so,

-19~




that A’ Ty = Tha + Yoz °
A map hA'Hy of a vector space H, is agsin a hori-

zontal vector space at a point Hx « Then let us denote

« It is easy to verify that a system of spaces H;'
s define a conne-~

]
th
which are assigned to the points of P
xion ™ on P . We have clearly

Proposition: Let @ and @' denote the connexion

forms of the connexions [° end. "'  respectively. I’

is the masp of I°  as described sbove. Then the tensor t,

where AU = @'— @ s 1s independent on the choice of a
connexion I° on P .

Proof: Let, {Au,---y Fm}
and {4, .oy Y } be a base of V, . Let j;,- be a
mep of a vector A , where the mepping 4 1is cho-
sen. {j\,,,..-, j;n} is obviously a base of Hiy

be a base of H,

(the horizontsl space at the point X € P of the connex-

ion " ). Hence we have
~
(13) M, = by +vE v
where 17 . dis a function of apoint x e P . A
base {1{2} of ‘4, be chosen so, that the equation

(14) w )= g

holds.

The tangent vector T € T, (P) be given by
: o«

(15) v=ah + v, .

Now we have - i -
(16) W)= 6, @' )=(b+a’v; )EL

where ' 48 the 4 -form of the conmexion [ on P .
By, making use of (16), we have

-20~



an w(r) = vy € o

Ir -{/h,,%---; o} is the dual base of { 8)..., 8™}

( B are fundemental forms on ™M ) we can write

=

(18) w=v, 8" & -

e {e‘o efee} is a base of B , then
. 3 [ 4 ’

(19) Qpi

are components of the tensor Tt

Let 9T ‘be a connexion form of a new connexion JL on

P . The horizgntal spaces K  be formed by ‘vectors
(20) Ao = 3»1 A+ 9:.“ Vi ; 9\3; 9::‘ are funct-
ions of apoint % €P . Assume tnat Dez |A% 1% 0

om P .1 a= (a{) , we shall denote by (&:‘ )y=a
the inverse of a . VWe can write now

(21) = A e+ BT vk

From the equa’ciorfs (19) md (20) we have

(220  ¢r+Al g =0.

when K' is a A -nap of the horizontal space K , we
have the horizontpl space K spanned by vectors

(23) j;o; = 2-: j;'j + 9: Vs -

We can write then
~ I &
(24) Ry = Ry + A, v, Vo -

The vector T can be written as follows:
~ . «
(25) v a Al k; + (2" ¢+ ATV v,
. I, 4 . o & A
T=a Ak (@Gl ) g
If we denote by ar' +the connexion form of the comnexion
N' ( ' is the mep of the comnexion L ) we have

-21-



: x At
(26) w'=T'-a =1 670 &, -
From (18) end (26) we see that 4 is independent of

the choice of the initial connexion. It is clear that the

choice of a base of H does not play any essential role

through the proof.

3. Throughout this chapter let us consider how to defi=-

ne the functions 1)‘:"!‘%) mentioned above. It is poss—

ible to show that having Mf associated to M
construet the functions 1/': (z)

, we can
. In the neighborhood
Ux of & point 2, on- M let us have a coordinate

° 1 ~m 4 b
system (x',..., ™), x, = (x,;++<y €, ) . The mepping
f.no cen be written as follows:

' . ' . : 4 s d -
(27) ot = f;o (:x,4,...,x"'), :x::= x: = f;° (o€, 51X, ); (i=7,2,--n)

If we put . 9{1:

< X
28) A (x,, %)= 5 %
We have

i <
29) Ay (2., %)= dy
4
beceuse X, € gx, 3 -
The function AL (x,y); x,y e M cen be consi~
dered as a function on MxM y which is defined in some

neighborhood Y  of the point (x,,2,)e M x M

Let us have two neighborhoods V, \6, H Ven Vo ¢
2
on MxM g tet (x)...,a*™),

1 2
(Yyeesy Y ") be coor-
dinates of points w eV, v e respectively,so that
1 +1
(250, 2™), (™., 2*™) are coordinetes in some

. ) %
neighborhoods U.,' ’ Uz on M aa enalogously

4 n+1
(4., Y™y (Y75 ..; W 27) ere coordinstes in some
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neighborhoods U,, Uy on M
section V,,‘ 2! \43

. For points of the inter-

let us have the same transformation of
coordinates as it is for points of U,_ N U;,. on M

Namely, if we have a neighborhood U, oo M

, we cen
sssociate to every point o € U,

on M . If we have U, = U Ue

xel, and analogously
for U, end U, , then we have U,c U,, Ujc U,
and in that case it is sufficient to consider the transfor-

mations of coordinates in the intersection U, N U,

the neighborhood Um

on-
1 2
ly. In this interpretation (:z:’, cery :n'n), (™% .cy ™)

are coordinastes of two points of Ug *

We shall denote

i ey T 0 ey
(30) A, W)= 24 e éxk;‘ =

The functions are defined on V,g, . Let B;q ()

analogously defined functions dn Vﬁ

the relations )
. . X s .

GL) By ()= kil ) AL (W) Ry )5 i, (v), Ry ()e G,

where u- v

b ({')jyk" 4, 2,. ..,ﬂ,).\

be
« We obtain easily

. It is straightforward to verify that

(32 B;,k ()= M), ) Ay o (W) R} ‘(v-),k: @)+ () e

The expressions (-++) are equel to zero on the disgonal
o~

M of the product M x M | We shell not request
those expressions in detail. On M  there holds also:

. ~ a‘
G &L )= Al ).

~

¢ A2

i be the coefficient of the inverse matrix to the mat—

rix (»31.’ ) .

Let us identify the points (v, w)e Vo x G
-23 -



(Vy ’u’,;)é

bxG, velnl if the equation
(34) g = by, (V) wy b, (V)= (47 ()

is satisfied. .
If we denote R the union of the sets { Y x G}
under the above described identification, we -have a princi-

v
R.We can consider R as a rrinc:%:zl fidre bundle )
pal fibre bundleéVover M x M | (if we shall mske any

extension of the covering and of the functions /b‘/_; )

with the structural group G and nstural projection

q’ : R—-> Mx M .
Let us define on @ "(V)  the functions

<7 e ) A &) A (L)
(35) :K‘;(%)=A¢lkm)u}ii W, W4 , W= Q(ur)-
r wu=veln Vs , then we have

<3 e B) ~ @) ~ @)
6) g4 (W)= B, () w; W, Wik -

Now, it follows from (31), (32), (33) that on M  the

relstion
<7 _ 71
(37) ya (W) = gl (ug)
is satisfied. From (36) it follows that the functions (34)
are globally defined on a principal fibre bundle S (M, G)

which is a submenifold of R + We can identify in a natu=-
rel way M and M | In that what follows we shall

speak about the principal fibre bundle P (M P G) in=-

stead of S (M, G) . Let us now define the mep of
* *

P into B = R"® R" @ R" as follows:

Let us associate an element
ik i 7
(38) vy (x)ebse ®e
for the point =x € P . We can mske now the identification
- 24 =



A
G v = ap v @),

f

4 P

where a,” v (z) are the components of the ten-
’ 4

sor t® (19). From (5) we see that Qijn = a, o;-“,,_ and
that (38) can be written in thé form .

ik s (e 5) Gen), hg)
oy v )= dy,, vV ) = o g v )= )

The equation (13) goes under (39) into the equations

~ : ~ sk . .
(1) Ay=h “’)147. = b +v; Xy, G,j,R=42,...;7)

i
If we have associated a combined menifold M{, to a mani-~
fold, then the differentiable mapping of connexions on P
into itself is given. ’U‘;h are the components of the
tensor T®
Definition: Let « be a & -valued 4 ~form on
P given in the chosen base by the equation (18). The func-—

-1
tions 2, (z) be given by (38), (39). Then we say
that the tensor T4 is a linearisating tensor.

From (34) we get
ij ,i
(42) Ve = V5 -

According to the above considerations we have the following
Lemma : It is possible to associate a linearisating
tensor tW% on the pair P (M, G) as a mepping of P
into B to the combined manifold My . fwu is the
tensor corresponding to the 4 -form on P defined by

(18).
It is also possible to show that the following lemme is se~
tisfied.

Lemma : Let & be a [ =connexion 4 -form on

P eand o' & ["- comnexion 4 -formon P, .
~25-



[ is the map of [° , when A~ is the
onto itself 2 . Let =, , . be the

where
mapping of P

torsion forms of these connexions respectively. Then the re-

lation
(43) t=_=tZ,
éa’cisi‘ies their torsion tensors.
Proof. According to the definition (12) of the torsion

form we can write

(44) =Z,-5,=«-6a= .
= (v;07@E)-(6"@ €)=

vy 6,(Ex)e, @ 8°N B =
a,:h 'U‘;c ea- ® 9“/\ Gb-

[}

. € 7 o P &
%(a‘& v, -a, v le; ® N8
But from (41) we have

F) « 7 %
(45) Qo Vi = Q, Va

and then we have

(46) th,-tZw=ﬂ-tu-0.

4. If we compare the notion of linearisating tensor in-

troduced ebove with that one defined by E. Cech [3_], then we

have
Proposition: Let M= A,,,

affine space and T be the tangent mepping of the iden~
S

tity mepping of As onto itself at a point « € A, .

’ »

Then the linearisating tensor associated to (An)f is th

be an 7 -dimensional

Bech’s linearisating tensor [3].

- 26 -




Proof: Let {A, :L,..., .7.,} be a moving frame of
A, - We have the well known fundemental equations

- h °
(47) dA = C«)t 3,: ’ dj“_ = G)i \y*'] (L, k=4’2’-co’n):
Let A be an affine mapping of A.,\_ onto itself. Let
‘{A‘, J“n"w .7:,,} be a A -map of {A,Z,...,Jn}.
w) AA=A, A =T (i=42,..,7).
According to (46) we have

. A ]
w9) dA'=g*J, dI;=a T, -
¥We say thet the mapping 4  1is & tengent affine mapping if
the following conditions are satisfied:
500 AA=A", AdA=dA, A=A".
The necessary and sufficient conditions for A to be &
tangent affine mapping are:
(51) &= " (i=4,2,...,m).
We have then '
(52) [c.)"‘a);'—aT;]-‘O (i, h=412,...,7).
According to (51) we have

(53)  wf - = ch; @ (i,jk=12,..,n),

where c:a- - c;h . c;,, is a tensor defined
on the neighborhood of a point A . It is so called Jech’s

linearisating tensor which plays a fundemental role in the
theory of correspondences between two affine (projective,s..)
spaces. That this tensor is a linearisating tensor mentioned

above it is straightforward to see from [2].
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