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Commentationea Matheaat icse U n i v e r s i t a t i s Csrol inae 

4> 3 (1963) 

CB A NUMBER OP CORftffOTING TRANSFORMATIONS 

2« HEBRLÍN, Praha 

The aim of t h i s remark i s t o prove the fo l lovdng: 

Theorem: Let f be a t r ans fo rmat ion of an n -po in t s e t X • 

Then t he re e x i s t a t l e a s t n d i f f e r e n t t rans format ions of 

X commit ing with f , t h a t i s , t h e r e e x i s t t ransformat ions 
g l » %» •*•» g s ' s « n , g i 4- g . f o r i «f j , such t h a t 

g-Jf(x)J » f fg±(x)J f o r a l l x c X and a l l 

«L —• J L , .& , • « • , S • 

We nse the fol lowing n o t a t i o n : 

i denotes the i d e n t i t y t rans format ion of X and we m*ite 
o i i - i j? i 

i * f , f « f ( f ) , and F•* U it] • We wr i te F(x) -» 
i - o 

nni 
=. U {f (x)} . 

i=o 

y c X i s sa id t o be maximal according t o f , or simply 

maximal, i f f (x ) + y f o r every x e X • I f Y i s a s e t , 

• tYl denotes the ca rd ina l of Y • We assume t h a t I x l = n • 

Lemma 1« Let g commute with f, g(xn) =* Xg * Then 

IPC*.)!'* I ?(:*>)/. 1 d i i i • 
• Proof. We have fCx^) » ffg(x1)J * glttxj)! • Hence, if 

1 . 1 ' i • ," J • 
f(x2)+ f ^ ) , then also * f Uj) + t(±x) . 

Lemma 2> Let FCx^) n FCx^) 4* fi , F(x^) r\ F(x^) + fi . Then 

F(x x ) r\ F(x 3 ) + fi . 

• 132 -



• i" d k 1 x 

Proof. We have f(x1) » f(xg) , ^(xg) *
 f ( x 3 ' » f o r s o m e 

i, o> fc- i • Hence, i+k j+1 \ 

f(xx) =* f (xJ , and thf lemma is 

proved. 

x-̂ , Xp € X are said to belong to the same component accord

ing to f , or simply to the same component, if F(:r-) f\ 

rsF(x2)#» 0 • By lemma 2 ,* two components ore either equal 

or disjoint. 

Lemma 3* Let there exists on3y one component and or& one ma

ximal element according to f . Then F(y) = X , where y 

is the maximal element. 

Proof. Let xQ non € F(y) .As xQ 4* y , xQ is not maximal, 

there exists X-, such that fix.) = x . Evidently, 

Xj, none F(y) • Continuing this process we get a sequence 

- xm . As (XI - n , there exists only finite number of diffe

rent x4 • Therefore there must exist x- and natural k 
1 k J 

such that f(x*) * x.* , x. non € F(y) . Hence, F(x.) n 
A F(y) =* jt5 , and x. and y belong to different compo-

o 
nents. 

Lemma 4* Let there exist only one component, and no maximal 

element according to f . Then F(y) = X for all y e X . 

The proof is evident. -

Now, we are going to prove fhe theorem by induction. If 

n = 1 , then the theorem is evidently true. Let n > 1 . ?fe 

assume that the theorem is .proved for all m £ n - 1 . We di

vide the proof in three sections according to the properties 

of f . 

(a) There exist more than one component. 

(b) There exists only one component containing at most one 
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moximaL element. 

(c) The exists only one component containing more than one 

maximal element. 

(a) V/e denote the components Yj_, Y^, ..., Yk . We may 

assume that / Ŷ l ̂  ^i+i' t i = 1, 2, ..., k - 1 . Evident

ly, every X± is fixed under f , that is f(Y.) = Ujf (yi)}c 

C Y^ . If v/e denote by flY^ , as usual, the restriction of 

f onto Yi , then flt^ is a transformation of Y.. . By 

assumption, there exist at least I Y.1 different transfor

mations of t^ commuting with flY.* . V/e denote this set by 

F^ * Let G be a system of transformations of X such that 

g € G if and only if gjY.̂  e F^ for each i = 1, 2,..* 

. . . , J£ » 

V/e have 

IG I = -TT IF,! £ J T I Y A . 

If no ixA = 1 , then the theorem is true, as every trans

formation in G commutes with f . 

Let iYiI = 1 for i = 1, 2, ..., r , that is X± = {y±} . 

For each i= 1, 2, ..., r , ye define a constant transforma

tion h.(x) = y. for every x € X . Evidently, all h^, i = 

= 1, 2, ..., r , commute with f . Let us denote G" = 

= G U (,1J ih±l ) . We get 

, • k 
iGf £, TT I Y, | + r • 

k 
"Evidently, m £ i YA - n - r , and every |Y. 1 ̂  2 , i -

~ r• .+ 1, r + 2 , ..., k . Hence,' JG'I is* n , and the case 

(a) is proved. 

(b) If there exists only one component with at most one 
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element y , then, by lemma 3 and 4 , the points y , f (y) , 
2 n-1 

f(y), ..., f (y) are different. ̂ That proves the case (b). 

(c) Let y, ŷ , y2, ..., y. be maximal elements, 

|F(y)f £ 17.(̂ )1 for i = 1, 2, ..., t . We denote X' = 

~ x ^ iy] i --*' = f I X' . Evidently, f' is a transformation 

of :X' , | x'| = n - 1 . Hence, there exist different trans

formations g^, gp, ..., gg , s. g n - 1 , such that every 

gf commutes with f'. We may assume that gf , i = 1, 2, ... 

..., s , are all transformations of X' commuting with f' . 

We are going to prove that every g£ can be commutatively 

extended to X , that is, for each gl , i = 1, 2, ..., s , 

there exists a transformation gj of X such that %1X' = 

= g/ , and gj commutes with f . By assumption, y is a 

maximal element and therefore 

|F[f(y)J| = |F(y)/ - 1 =|F'ff(y)JI , 

where F' denotes the set of transformations of X' belong--

ingfto f' . As |F(y)liS /F(y±)| , by lemma 1 , g££f (y)J 

is not maximal element according to f . 

Thus, there exists at least one element x* such that 

f (x{ ) = g'± [t(y)J . 

If we define g^jx' = g^ , g^(y) = x^ , then gi is the 

required commutative extension of g^ . 

It remains only to prove the existence of g± which can 

be extended in two different ways. To prove it we show that 

under assumptions of (c), there exists a natural k such 

that 
k k-1 

f(y) = f(z) , 2 + f (y) . 

Let y^l* y f yn be maximal. T.Ve. have F(y) r. F ^ ^ ) *£ fb , 

y^ non e F(y) , y non c F (y 1 ) • Hence, the re e x i s t s n a t u r a l 
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k k-1 
k such that f (y) * F(y--) , f (y) non e F(y,) . There 1 m k x 

exists an integer m such that f (y-̂ ) ~ f (y) • Put z = 

m-1 k-1 k-1 
= f (y^) . Evidently, z * f (y) , as f (y) non « FCy^ 

k-1 , , 
Now, f I X commutes with f and can be extended in two 

different ways. The proof is finished. 
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