Cor P. Baayen; Zdeněk Hedrlín
Commutative polynomial semigroups on a segment

Commentationes Mathematicae Universitatis Carolinae, Vol. 4 (1963), No. 4, 173--179

Persistent URL: http://dml.cz/dmlcz/104951

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1963

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
1. Introduction

A commutative semigroup of mappings of a set X is a family of mappings $X \to X$ which is a commutative semigroup under composition of functions. A commutative polynomial semigroup of mappings of a subset X of the real line R (shortly: an X-cps) is a commutative semigroup of mappings $X \to X$, all elements of which are restrictions to X of (real) polynomials on R. Such a semigroup S is called maximal if every continuous map $g : X \to X$ which commutes with all $f \in S$ itself belongs to S, and entire if it contains (restrictions to X of) polynomials of every non-negative degree.

If S_1 is a semigroup of continuous maps $X_1 \to X_1$ ($i = 1, 2$), and if τ is a homeomorphism of X_1 onto X_2 such that $S_2 = \{ \tau \circ f \circ \tau^{-1} \mid f \in S_1 \}$, then S_1 and S_2 are called equivalent (by means of τ). In that case the transformation $f \mapsto \tau \circ f \circ \tau^{-1}$ is an isomorphism of the abstract semigroup S_1 onto the abstract semigroup S_2.

In this note we determine, up to equivalence, all entire I-cps, where I is the closed unit segment $[0, 1]$. Moreover, we establish which of these I-cps are maximal and which not. We denote by J the segment $[-1, 1]$.

2. Commutative polynomial semigroups of mappings $R \to R$

and $J \to J$.

It follows from results of J.F. Ritt [7, 8] and of H.D. - 173 -
Block and H.P. Thielman [5] that every entire R-cps is equivalent by means of a linear transformation to one of the following three semigroups of polynomials:

(i) the semigroup P, consisting of the maps

$$P_n(x) = x^n;$$

(ii) the semigroup P^*, consisting of all P_n, $n > 1$ and the map P_0 such that

$$P_0(x) = 0$$

for all x;

(iii) the semigroup T of all Chebyshev polynomials

$$T_0, T_1, T_2, \ldots,$$

where

$$T_n(x) = \cos(n \cdot \arccos x).$$

The first two semigroups are not maximal; e.g. consider x^3.

Lemma 1. There exists a unique maximal commutative semigroup $\overline{P}(\overline{P}^*)$ of continuous maps $R \to R$ containing P (P^*, respectively). The semigroup $\overline{P}(\overline{P}^*)$ consists of the following maps: all maps $x \to |x|^\varepsilon$, $\varepsilon > 0$ a real number; all maps $x \to |x|^\varepsilon$ sign x, $\varepsilon > 0$ a real number; and all maps in P (P^*, respectively).

Proof. It is immediately verified that \overline{P} and \overline{P}^* are commutative semigroups. In order to show their maximality, and the fact that they are the only maximal semigroups containing \overline{P} or \overline{P}^*, we proceed as follows.

Let f be any continuous map $R \to R$ commuting with all maps in P or in P^*. Take any a with $0 < a < 1$ and let $f(a) = \alpha$. As $\alpha = P_2 f(\sqrt{a})$, $\alpha > 0$ if $\alpha = 0$, it follows that $f(x^2) = \alpha^2 = 0$ for all rational r, because $f \circ P_n = P_n \circ f$ for all natural n. Hence $f(x) = 0$ for $x > 0$; if $x \leq 0$, $P_2 f(x) = f(x^2) = 0$ implies again $f(x) = 0$. Thus f is identically zero.
Assume $\alpha > 0$ and let $\xi \in \mathbb{R}$ with $\alpha^\xi = \alpha$. Then as f and P_n commute, $f(a^r) = a^{r\xi}$ for all rational r; hence $f(x) = x^\xi$ for $x > 0$. If $x < 0$, then $P_2f(x) = fP_2(x) = (x^2)^\xi$, hence $f(x) = \pm |x|^\xi$. As f is continuous, the lemma follows.

The situation is different for the semigroup T: this semigroup is maximal. In order to show this, we consider the following mappings of the unit interval I into itself, first introduced in [2]:

$$t_0(x) = 0 \text{ for all } x;$$

and, if $n > 1$:

$$\begin{cases}
t_n\left(\frac{2k}{n}\right) = 0, & t_n\left(\frac{2k+1}{n}\right) = 1 \quad (k = 0, 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor); \\
t_n \left[\frac{k}{n}, \frac{k+1}{n} \right] \text{ is linear } (k = 0, 1, 2, \ldots, n-1).
\end{cases}$$

These so-called multihits are easily seen to constitute a commutative semigroup M; in fact, $t_n \circ t_m = t_{n+m}$. In [2] P.C. Baayen, W. Kuyk and M.A. Maurice proved much more: the semigroup of all t_n, $n = 0, 1, 2, \ldots$, is a maximal commutative semigroup of continuous maps $I \to I$.

Lemma 2. The semigroup M is equivalent to the semigroup T' of all Chebyshev polynomials T_n, restricted to the segment J, by means of the homeomorphism $\tau: [0,1] \to [-1, 1]$ such that

$$\tau x = \cos \pi x.$$

Proof: immediate.

Hence we have shown:

Lemma 3. The J-cops T is maximal.

This strengthens considerably a result of G. Baxter and J.T. Joichi [3], who showed that T cannot be embedded in a 1-parameter semigroup of commuting functions.

- 175 -
We conclude this section with a triviality.

Lemma 4. Let Q_1, Q_2 be polynomials commuting on some non-degenerate segment. Then Q_1 and Q_2 commute everywhere on \mathbb{R}.

3. **Commutative polynomial semigroups of mappings $I \to I$**

It follows from the results of section 2 that every entire I-cp is equivalent by means of a linear transformation to a semigroup $S|A$, where S is one of the R-cps T, P, P^* and A is a closed segment $[a, b], a < b$, that is invariant under S.

The only non-degenerate segment mapped into itself by T is $[-1, +1]$. The only non-trivial segments mapped into themselves by P are the segments $[-a, 1]$, with $0 < a < 1$; we write $P(a)$ for the $[-a, 1]$-cp of all $P_n|[-a, 1]$, $n = 0, 1, 2, \ldots$. The only non-trivial segments invariant under P^* are the segments $[-a, b]$, with $0 < a < 1$, $a^2 < b < 1$, $b \neq 0$; we write $P^*(a, b)$ for the $[-a, b]$-cp of all $P_n|[-a, b]$, $n \geq 1$ together with $P_0^*|[-a, b]$.

Lemma 5. Each of the semigroups $P(a)$, $0 < a < 1$, is not maximal, and is contained in a unique maximal $[-a, 1]$-semigroup $\overline{P(a)}$. Similarly each $P^*(a, b)$ is contained in a unique maximal $[-a, b]$-semigroup $\overline{P^*(a, b)}$.

Proof. In the same way as in the proof of Lemma 1 one shows that $\overline{P(a)} = P|[-a, 1]$ is the unique maximal commutative semigroup of continuous maps $[-a, 1] \to [-a, 1]$ containing $P(a)$. Similarly $\overline{P^*(a, b)} = P^*|[-a, b]$.

Remark: If S is a semigroup of mappings of a set X into itself, and if $A \subset X$, then $S|A$ denotes the semigroups of mappings of A into itself, consisting of all mappings $f|A$ such that $f \in S$ and $f(A) \subset A$ (cf. [6]).
Theorem 1. There are two maximal entire I-cps; they are both equivalent to T^* (or to M).

Proof. Every maximal entire I-cps must be equivalent by means of a linear map to $T' = T|[0,1]$. There exist two linear maps of $[-1, +1]$ onto $I = [0,1]$.

Lemma 6. If $0 < a, b < 1$, then $P(a)$ and $P(b)$ are equivalent by means of the homeomorphism τ,

$$\tau(x) = \frac{\log x}{\log a} \cdot |x|^\varepsilon,$$

where $\varepsilon = \frac{\log b}{\log a}$.

Lemma 7. Let $0 \leq a_1 \leq 1, a_2^2 \leq b_1 < 1, b_1 \neq 0 (i = 1, 2)$. The semigroups $P^*(a_1, b_1)$ and $P^*(a_2, b_2)$ are equivalent if and only if there exists a real number $\varepsilon > 0$ such that $a_2 = a_1^\varepsilon, b_2 = b_1^\varepsilon$.

Proof. Suppose $P^*(a_1, b_1)$ and $P^*(a_2, b_2)$ are equivalent by means of τ. Then we have, for arbitrary $x \in [-a_1, b_1]$ and for arbitrary integers $n \geq 1$, that $P_n(x) = (\tau^{-1} \circ P_n \circ \tau)(x)$; i.e. $(\tau \circ P_n)(x) = (P_n \circ \tau)(x)$. It follows (cf. lemma 1) that either τ is of the form: $\tau(x) = |x|^\varepsilon$, for all $x \in [-a_1, b_1]$, where ε is some real number -- as τ is a homeomorphism this is only possible if $a_1 = 0$ -- or τ is of the form: $\tau(x) = |x|^\varepsilon \cdot \text{sign} x$. As clearly we must have: $\tau(a_1) = a_2, \tau(b_1) = b_2$, the assertion follows.

The next lemma is easily proved:

Lemma 8. No semigroup $P(a)$ is equivalent to a semigroup $P^*(b, c)$.

Consequently we have:

Theorem 2. There are infinitely many non-equivalent non-maximal entire I-cps. Each of them is equivalent to one of the following semigroups, which are all mutually inequivalent: $P(0), \ldots$
Theorem 3. Every entire I-cps is contained in a unique maximal commutative semigroup of continuous maps $I \rightarrow I$. Two entire I-cps are equivalent if and only if the maximal commutative semigroups in which they are contained are equivalent.

4. Remark on mappings commuting with T_n or P_n, $n \geq 2$.

It was shown by P.C. Baayen and W. Kuyk in [1] that every open map of I into itself that commutes with t_2 is itself a multihat t_n. From this it follows almost at once that every continuous map commuting with t_2 is either a t_n or is everywhere oscillating (nowhere monotone).

This result has been improved very much by G. Baxter and J.T. Joichi [4], who showed the following theorem:

If a continuous map $f : I \rightarrow I$ commutes with some multihat t_n, $n \geq 2$, it is itself either a hat-function or a constant map.

Now we saw in section 2 that the semigroup M of all hats t_n is equivalent to the semigroup T' of all Chebyshev polynomials on $[-1, +1]$.

Hence we conclude:

Theorem 4. Every non-constant continuous map of $[-1, +1]$ into itself that commutes with a Chebyshev polynomial T_n with $n \geq 2$, is itself a Chebyshev polynomial.

For the maps P_n, $n \geq 2$, the situation is completely different. Consider e.g. continuous maps of $[0, 1]$ into itself which commute with P_2 on that interval.

There exist multitudes of such functions. For let $0 < a < 1$, and let f_0 be any continuous function of $[a^2, a]$ into $(0, 1)$ such that $[f_0(a)]^2 = f_0(a^2)$. If we define: $f(0) = 0$, $f(1) = 1$, $f(x) = [f_0(x^{2^n})]^{2^n}$ if $x \in [a^{2n+1}, a^{2n}]$.
(n integer), \(f \) will be a continuous map \(I \rightarrow I \) commuting with \(P^2 \).

References

