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GENERALIZATION OF STEFFENSEN 'S METHOD FOR OPERATOR EQUATIONS
IN BANACH SPACE

C HEN Kuo-Wang, Praha

In this paper the Steffensen’s method of aolution of
non-linear equations ([1], Appendix 5) is generalized for
solution of non-linear equations in Banach space. Here I use
the Schmidt s concept of the divided difference, introduced
in [2(I)]); partly, I have made use of this work of Ms in
methodological respect (in particular, peragraph 4), too.

Steffensen’s method is an iterative method based on al-
ternate performance of one step of the succesive approxime-
tion and one step of the method regula falsi. If we denote
the initial approximation by x, , then the iterative for-
mula for the\galculation of the roots of the equation X =
= £(x) 418 either

Rngg ©F X )+ TF [Flxp )y Xm T (Kpy pg = Xm)
or
Anea= F 8K )]+ dFIF (X0 ), Xmn] [Xmes = F&m )],

where
$LFERI] ~ £Xn)

I LX)y Xy 1= o ) o,

Both formulse are equivalent in the sense that they gi~
ve the same sequence {x,} when beginning with the same _
X, » In the generalization presented here, it is possible to
solve the equation X « FX by the analogical iterations
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(2,4) and (2,5) which are again equivalent in the same sense.
Therefore, the sufficient conditions for the convergence of any
of both sequences defined by the formulse (2,4) and (2,5) are
sufficient even for the convergence of the other sequence., The
formla (2,5) is simpler for the practical calculation. In spite
of that, I ehell deal further with formula (2,4), because in
thi: way I have been successfull in obtaining less restrictive
sufficient conditions for the convergence.

In the work [2(I)] J.W.Schmidt studies the solution of the
eq ation X = FX by means of method applying the iterative pro-
cess Xpyi= FUQ #TF (X s %) o Xy = ¥m ),
calling it the Steffenson’s method ([2(1)], method (2,9) on p.2;
conditions of convergence stated in Theorem 4,1, on p.7). How=
ever, this process is quite different from the iterative mrocess
(2,5) ,being, essentially, a modification of the secant method
¢([1],Chapter 3, paragraph 9). Its convergence is of mm other
character than convergence of the process (2,5), ss it is easy
40 see when compared the Schmidt’s estimates of errors ([2(I)],
(4,1)) with these contained in this paper. See also numerical
example in paregreph 3.

The general results of this peper are presented in para~
éreph 2. Applications of the general theorems on systems of non=-
linear equations snd on non~linear integral equations are stat=

ed 4in peragrephs 3 an 4.

(1) of convergenc unigueness
* We shall use the following denotation: R is a Bansch space,
F & non-linear operator mepping R into R . The symbol d F(w,v)
will denote the divided difference of the operator F ,This eon~
cept, introduced by Schmiat [2] under the title Steigung, is de-

" fined as follows, We shall say



that the operator  F has a divided difference o F(«, )
in the space R , when there exist two non-negative numbers
a, A such that for every two elements «, 2 from R
there exists a lineaer bounded operator o“F(«,v) on R ,
satisfying the inequality

(2,1) Fu-Fv = FFlu,v) (u-v),

NS Flu, )~ d'F(«r,uf)!lSa.lla-wl+#ﬁu-1rﬂ+ﬁ-ﬂ¢»-urll .

v

(2,2)

Let an equation
(2,3) X= Fx

be given; to solve equation (2,3) we use the iterative pro-
cesses
(2,4) xn+4=Ff'xn1-dvF(F-K”/"‘n’ meq=Fim) (ma,4,2,°)

(2,5) Xppy = Flp+dF (Fhp %) Knpa = Hp)  (ms 0,7,2,-:)

Lemme. Iterative processes (2,4) end (2,5) are equiva-
lent iA the following sense: Let &, be an arbitrary ele-

ment from R, If the elements of either of the two sequen~
ces

KogXgreres Ky defined by the process (2,4)

S SRR (x, = &, )  defined by the pro-
ces (2,5) are defined, then the ones of the other sequence are
defined as well and the equalities &, =X, , ¢=7,2,..., ™
hold.

Eroof. The proof of thia lemma may be achieved by means

of full induction, se is eamsily seen from that, when subtract-
ing the identity

¢ = Frx, - Fx, =" F(FX , X ) (Fx, ~%X,)
from (2,4), we get (2,5).
Theorem ). Let F be an operator which has the divided
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difference. Let the following conditions be fulfilled:

1) There exists & number A > 0 such that ineuqality
(2,6) I Fu-Friealw-vI
holds for two arbitrary elements «, v from R .

2) The inequality
(2,7 IIF(FX,, XMl = d, <1
holds for the fixed element &, € R .

3) The element X, is defined by (2,4) and there exists
areal number t (0<t < 1) such that

La+b)+24t]t
(2,8) h=e h(t)= T IlJ(.,»—.X,"<1

(2,9) d,+ [la+b)(1+2)+ 481 [1+TRIIIX ~Xllst < 1,
?

where
LA, A
G'(h)= z ’&L .
Red

Then the equstion (2,3) has a solution Xx* in the
sphere
(2,000 D={x€R, lx-x N€ALTT+ TRl X, - X, I}
The sequences {X,} defined by equalities (2,4) or
(2,5) converge in the norm of R to the solution x* of
(2,3) and the error Ix* - Xm |  of the approximation X,

satisfies ot n
@11)  IxF-sg € K [14 6] 1% =Xnglly ety 2,00

~”
(2,12) N x*-x I €2 [1+CHKITIX =X 1, =1, 2,... .

Proof. Let us put
""u-ﬂ - Xn Il = Km

I F (Fiy , X M= A,y n =01,2,... .
Firast of all, we shall show that the following inequalities
(2,13) | Xpos = FX WS dp v, ,
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(2,14) NFXy,, - Fx ll€e 2, ,
(2,15) WX, ~-Fx, llsd, x, +x, ,
(2,16) W FX g =Xl €21, +d, 2,
are fulfilled.

We have
ﬂ“ wed

e IS F(Fhm s X)) (FXpy =X )+ T F(FXpy Xy V(X (g = FX g )=

g = lF2x, = Fx, + O F (FXpy s %) (X, ~FX

The correctness of inequalities (2,14)(2,15)and(2,16) can be
easily verified.
We prove the following inequalities:
(2,171) =%, sd,, %, +l@+b)+24dn1d, IL:L »
(2,18) d,,, §d,+L[@+L)(1tX)+44d, Tn, . n=01,2,.
a) In the expression 2, = X, a=Xp,, Il , we

replace X, ..o and X according to the formula

n +1

(2,4); adding - FX , + FX, .4 end using formula (2,1)

for the differences F x Fx

2
g = FJ(”"—F.x,n_ ) we

ntq)
get
SHSFCFX, (X, 20X, =X )+ [ Fex

meq! mtq "ty M metq

VFX )= FCFX A )]

(Xppg = FAm I e
Using the inequalities (2,2),(2,13)end (2,15) we obtain

(2,17).

Kot

b) By means of the triangle inequality, we get
Apppg Sy +INTFOFX X )T FlXpyq FXn I+

a1

+ NIFCX gy F¥ ) = T F(Filpy , %)l .

By (2,2)
Ay Sy + ANFX L = FX N+ UFX,,, -%,, Ir24]

IR meg = FX M+ B IFR, -X  M+an, .

The formula (2,18) follows at once from (2,13),(2,14),
- 51 -



(2,15) end (2,16).

Now, by means of full induction we shall prove the follow-
ing relstions:

L)1+ 441 (140, .

a) d.,,sd,;;[(;“* Y1+2)+ 1

b)) A,<h” £,

c) Xn €D,

ud b

where 6‘;(&)-5{ b1

(&’] fﬁo<t < 4’

6, (h)= 0 for n>1 .

1) Let us put m ~ 14 » then we get for m = 0 from
(2,18) and (2,7), (2,9) the inequelity
dys dy+[@+&)(1+2)+44 1 7 <T <1,

-Hence, the inequelity a) holds for = = 1.

Similarly, from (12,17) we have
n, & don +L@a+rb)+ 24d,1d, 1}

From (2,8) and in view of that the inequality O<d, <
< T <1 holds, we get

[@+t-)+26t1¢t

P < -t

&:' = l‘l«@o .
2) Let the inequalities a), b) be fulfilled for 7. . A=
ccording to (2,18), it follows that
dp, s 4, +L@+b)A+ Q)+ 4411+ 6,  (hIx, +
- ,
+L@a+£)(A+2)+ 4 4d 1 4% M/z’ .

Because d < 1 md 6, _, (h)+ ol
=6, (h)< 6(H)
m +4 , considering supposition (2,9).

, we obtain relations a) for the index

Because d . <t < 4 , it follows from (2,17)
that
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24¢ n+1 2
i < [a+&)+24¢t]t "i < E(a«-r—(:,)-rt 1t /L:.h’:. .
w4 1_ t. -
From (2,8) it follows that g
By < A Ay o

Further, from b) we have
”"‘m’ﬂ“xﬂ < Ry + %y +ooeet «'w <
<hl1+6, AVIn, < h1+8h* )k, .

Therefore, X, € D me= 132y -

From the inequality

d, = lTFCFxp , Xpndl<T <1

it follows that the operators I -0 F(FX,,X,), n=01,---
have the inverse operators. Therefore, the sequence {.x,,,, }:’
is @efined by (2,4). Consequently, the inequality

(S .Xn "5 ,LM+M-4+¢W#M-1+”‘+/LW+,’+M”<“
1 . m ntm-2_,Mm ,_m-fm-d_zln. 2 -1
< U2 BT L oYl

2*'-. 1

m+m "

-4 ”'4E 1+ ’54 4
=g

1a=4>""C1eg, A 11,

holds for erbitrary m > m 2 M, > 4.

From here it follows that { x”} is a fundemental aequence.‘
Re being a complete space, the sequence {J(m} possesses the
limit element x* , of course, x¥e D .

We shell prove the inequality (2,11). Let us denote

ok [Ca+l)+24-¢1¢
*= T, < 1-t

Because d, <t <4 for arbitrary . , we have

2
(2,19) Moy € L %5 -

From here it is easy to show that

'S b m =201, ,
- 2
(2’20) 'Louf&. < 2—1 4/6,"_ bk =1, 2. ... o
! - 53 =



Then it follove

U dtmas ~ S M€ 2+ + 8 S

- - mad
(@ gt K w e wquan, Val A6, (gx, )k, ,
/7\_:0,”,1,.,,7 mMm = 4,2.,... .

In view of the relations’
274 am
QLtm S QW , =

mn -1

S

and the above inequality, it follows that
Bk mpamaq = X Il € 22" e G, h*") ] Ko oq *
Hence for m —» 0c©  we obtain the estimate (2,11).

The proof of the estimate (2,12) from (2,11) using
o
the inequality b) «,_, < A, is obvious.

m-1

2 1™ L,
R € @ %mey € Qk“’h &4\'-4

We shall prove that x* sstisfies the equation (2,3).

First of all we have
Ix*- Fx* 1€ Ix¥-x, Il +1x,, - Fx* 1.

In the expression lHx, - Fx*I , we replace Xm
according to the formula (2,4); we edd ~FxX, , + FX__,  =and
we use formule (2,1) for the difference F X, ., -FX,_, *
Vie get

N, = FX* I € ooy X =Ky g I+ I FXpnoq = Fx* Il .
Because X,_, €D, x*e D end d, , <1 <1 , we
obtain by (2,6) ‘

Do® o Fx®s U™, 4+t X, = Xy [+ %y g =X* 1,
Hence, for m —» 0© , we get Jlx™- Fx*l & 0.

Therefore

&*»B F.ﬁ* .

This completes the proof.

Theorem 2. If the assumptions of Theorem 1 are fulfilled
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and if 0 < X < 1 holds, then the equation (2,3) has a uni-
que solution in the sphere D .
Further the inequalities

(2,21) hoa*-x,, € “‘“’;’*;‘}“*ua‘”-x“_, 1}, m=t2,.,

(2,22) Ix*=x,, Il € [(a+€)_+;\2.bt]t/h"ﬂ'z ity = X,y M=ty 2pmee e
hold.
Proof. Let us assume that the equation (2,3) has two dif-
ferent solutions .X*, .3‘(‘ in the sphere D . Then we get
Ix*- X I = I Fx*- FX €A Nx*- K< ™= X1,
This is a contradiction showing that .x*s S(' .
We shall now prove the estimate (2,21). Let m 2 7 . We

* in the expression Ilx¥— Al by Fx* ana

replace X
we replace X, according to (2,4); adding - FX, + FX, end
using (2,1) for the difference fXx,, - F’L\n-,, ,we get
(2,23)
Nx*- Xyl m N FX ¥ FX e COFChyy g Fikimog ) =T F RS, 355y g 01 (m = FX g

We shell use the trisngle inequality for the norm of the
difference in the square brackets we shrsll use the inequality
(2,2) end for the difference Fx* — Fx,, (2,6).

After a slight modificetion we obtain

x® sy e AN X* =Xy N+ [ (@t B) 4281t U=, (U,

Because 0 < A < 1, it follows that

Ix*- x, Ils [(a+l)+28t1T I X =X sy ”2. .
1-2,
rn-44
From the inequilityllx,-x, ,lsh* ~Tix, -x, | end

(2,21), we get the estimate (2,22). ’

Theorem 3. Let F be an operator which has the divided
difference. Let the following conditions be fulfilled:



1) The inequality
(2,24) NI FCFx,, X =y <,
holds for the fixed element X, é R .

2) The element X, is defined by (2,4) and there exists
a real number t (0 <t =< 1) such that

[Catb)+2 8-
1-t

(2,25) 4 = h(t)= Mg Ko< T

(2,26) d,+(a.+,wcq,+¥»)c4+o’a~.‘)1/lx,-x,//‘+
+2(@+38)1+E6hI X, -X st <1 .

Then the equation (2,3) hes a solution x* 1in the
sphere

D={xeR, Ix-x, Il A[1+6CA")INX, =% 0] -

The sequences {xﬂ_} defined by formulse (2,4) or
(2,5) are convergent in the norm of R to the solution x*
of (2,3) and the error Ix*- X, Il of the approiimtion X
satisfies

)
(2,27)  Ix*~ x, IIs 22" T1re 1 Ilx, - I

XM—‘Y )

”+ ~m
(2,28)  Ux*—x, 80> "LA+6 NI %, = X, 1,

(HE T+ 8 1+ 6CR2™ 114 [Cav8 )+ 2 B214)
Tt %, =X, _,

(2,29) Il x*-x, II€ ”1)

~ed ) 2™
,h'z z(ﬂ; ;b’)i”*s(& ’J “ x1 _xouz."_hﬂ-ﬂ:-'f” xq_‘xa ” .

(2,30) Ix*x Il
med, 2, .
Proof. The main idea of the proof is the same &8s in
Theorem 1. The formulee
(2,31) Ay, € dpyy tnsy +[@+L)+28d, 1d, 1} ,
(2,2) dpSdpt2@+38)n, +@+lr)a+¥b)Ins , m=0,1,2,...
play here the rdle of formulse (2,17) and (2,18).
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AN

The first formuls is the same as formula (2,17), the se-
cond one will be proved in the following way.

By means of the triangle inequality, and using the ine=-
qualities (2,2), (2,13) and
NF Xy g™ Xmag 1€ | FXp g =Fx,, U N Foy =X, I, IF X, =%, II€[1Fx ~% _ |+

m "
*ﬂxouﬂ - Xy /)
we get

d’m--o-q * dm.*"d—F (Fxo\d-'t’ Xn 1 )= {F(xmwﬂ Fx”l- i+

NSy, 1) F¥ )= O FCFXpy X NS Htlrwllrd, I 1 + @B

“ F‘X.,u.q - Fﬂlv ” ’
Now

IF Xy g = Fp 1€ 107 F (g s Xim ) = O F Xy ; Fit 140 F (it s FiXn -
 GFCFy 2 X )+ T FCF 5y o M1 20y S LU F Xy 9 X ) =
e F (X, Fot I+ N F (Xy FiXn )= IFCFXy, % )+, 11, €
S [Ca+380d, 1, + rn,+d, 11, .

From the above inequelity we obtain (2,32).

We shall now prove that the relations
(2,33) ) d,&d,+@+&)@+F4)01+6,  (h)]n}+

+20@+3&)[1+6, ,(A)In,<t< 1,

(2,34) ®) n,e AR,

¢) x,eDd
hold for m = 4,2, .04 For m =1 it is evident.

Let us suppose that a), b) hold for 7 . According to

(2,32) we have
Apyy § dot @+ &) (Q+FL) 146, (WIS + 2@ +3 £) 146, (h)]r, +

+ 2 (@ + 3002y (a v d) (ar ¥ AP0 s d +@+ &)@+ ¥4,
[1+6, (A*)Ik2+ 2(a+34)[1+6, ChIIn, < t <.

The proof of all the aessertions of theorem except that

Fx*a x* and except the proofs of the inequalities (2,29)
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and (2,30) will be mede in the seme manner es in Theorem 1.
We shall now prove that the limit .x* of the sequence
{X,} satisfies the equation (2,3). We have
NEx®e XU & I FX*m Fxtp I+l Ftyy = Xpgn I+ U3 g =X ¥ 11§

€ N Fx®, s, M1 X ¥e sty W14 E Nl Sy g =%, WU, =~ X,

Evidently, it suffices to show that- I F(x™*, X, )l ie
bounded in the sphere D . But it follows that the inequa-

t
ylld‘F(x"‘, X M S NS F(X ™, X Y= F (X s Fpy M + U F Xy F Sy )=

—dFCFxy, x M +d, & allx* Fx, I+ 1x¥*-x, Il +361%,~ Fx, I+

+ttetrallx®-x,  d+lrllx*-x, ll+Lla+dd)t+34],
\IXM‘” - x” " holde.

We shall prove eet:ltmatea (2,29) and (2,30). From (2,4),(2,1),
(2,2) and from the inequality d, <t <1 (m=1,2,...)
it follows

Hx* s = AE - F, = T F(FXy ) Xpe g Wy =Fy M=

7

e NE*-FXpy + Py~ Fx, =T FFX, ) Xnea Wy~ Fpu g S

(2,35) & Il FFx*xXn )N B ¥ = Il + W TFXgy Xy ) =
- fF(FX,..,,*,;..,)ﬂ “.x”- F‘x,n,-»,“ £

2
$ NTF(% x, ) NX* X+ C(a+8)+26 LMKy X 17,

Because the inequality

UEFCH R N € USF (X Ko, ) = O F (o) Fkyy IS F G FX, )~ F (Fkoo % W
+ -1
holds, then from (2,2),(2,4) it followa“that

(2,36) K SFAE, X NEd,, +@+b)x¥x, I +[ @+t + 61 .

ll.)(m.~~xm.-4 It
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Considering (2,35), we get
Ix*s i< {C@+38)t +a+b1lx, -, N+d,_, Fix*x,l+

2
bl s o * 1+ L+t )+ 2 BET L IX, ~X, 17 .

From estimate (2,27) in the second term. Il x*- X, I* is not
2" a™ .2 2
larger then h°* [1+6(h" )17 X -, _, |

we get

3 then,

Ix*-x, ls{L@+38)t +a+bIlx,~%,_,lI+d,_, Fix*ou 1+
(2,37) 2
+ {& Mot )1+ 6 AT I I Lt b )+ 2 BE1E ] Ity = s I
We shall now prove that the inequality
[@+3e)t+asbdlsy-X, _ll+d, <t<Ad (m=12,...)
holds.
In fect, from (2,33) and (2,34) it follows that for m 2 1
[+38)t+a+bIix,-X,_ | +d,. ,sz(uﬂrm‘ R
Ity = ¥, ;+d,+(a+1»)(mm)z4+o;-* (h2)T0x,- %ol
+2(@a+34)[1+ 6, (&)] I, =%, Il € d, +@+4)(a+¥4)
(146, (A1IIX, -x,n%zc“wm* - I+
- 2
+ 2(a+38)[1+8, , (AN -X,01€d, @+ )+ Y81+ G, Y]

f ¢ = X lI* +2(a+34)[1+ 6, ()N x,-X, I<t < 1.

m

From (2,37) we obtain the estimate (2,29):

am PL A
hoc*_ i, I € i (a+b—)[4r6‘(l»4 jJt-f-E(cu&)i-ertth”xﬂ 5

From (2,29) end (2, 34) we get the estimate (2,30):

Flud
I x*-x, Il € il ““*j“:d““ 21% 1ot sy b o -, I

The proof is complete.
Iheorem 4. Let F be an operator which has the divided
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difference. Let the following conditions be fulfilled:
1) The inequality
(2,24) HdF(Fst,, X =d, < 1
holds for the fixed element x, € R.
2) The element X, is defimed by (2,4), and there exists
areal number t (O0<t < 1) such that

- lla+l)r26tlt _ 1
(2’25) .’L- lb(t) 4_~b ” X1 -Y, < 2

(2,38) dy+ @+ &) (a+¥ L)1+ CRY1Ix, - %o 1%+
+2@r38) g:a/."u«, X, €t <4 .
Then the equation (2,3) has a solution X * in the sphere
De{xeR, Ix-x,lls o [1+6CARI I, -x, I} -
The sequences {X, } defined by formulase (2,4) or (2,5)
are convergent in the norm of R to the solution x* or

(2,3) and the error Ux* - x, I of the approximation X,
satisfies ’

-1 ~
(2,27 U x*stp 1S 42" L1+ )N X ~Xnaa 1)

(2,28) N x* s 1€ A2 L1 +6CAE I xq =, I

[la+D)+24- L1 2
* < -y |
(2,39) 1x*-%nll it R
(2,40) fx*= x, I ,h"”’qllm—xo I m=dy 2 000 o

The solution X* is unique in the sphere D’ defined by
D= {xeR, IX=%, S A3 [1+6Ch*)1Ix - %0} D »
Proof. The proofs of ell the assertions of our theorem ex=-
cept the proofs of inequalities (2,39),(2,40) and of the uni-
Queness are the same as in Theorem 3.
.. Now, we shall prove inequalities (2,39) and (2,40). Accord-
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ing to (2,35) end (2,36), we obtain
llx"‘—x,,ll‘ {0a+r38)t+atlrllotn Yo ll+@+ 8N x%x, |+

B B Ix¥ sy I+ L(att) e 2481 % [y = oy I

From (2,27) and (2,41) it follows that d
. + - ‘"_4

(2,42) Ix*-xn,lls{L@+38)t +a+&]lx,-X,., W+ @rott .
NERY-17 L} I I I [ Y LA P8 (R SYO Y WL Ty PSR L

Now, we shall prove that the inequality
{(a+38)t +@+bILA1+H2" (4+o~m‘ 1917 Xy~ Xpoq Nty st <1
holds for m > 1.

In fact, from formulse (2,33) end (2,34) it follows that

for m » 1
{(a+38)t +lar b 1+ 82" U +6CRA NI X=X, I+

+dy S A +@+8)ar¥4)[1+6, , (RIIIxX,~% I+
+2@+36)[1+6,_,(4)]1. llx., W, Il +

+{(a,+3zr>+m+mc4+w "t 6Ch* >)J}h‘ T, -
Since 4 < 1 , we have
m-2 00
146, ,(h)e Z % | qegiafMe 2 ar L

%
Using these 1nequa11t1es, we obtain
{(@+38)t + @+ 1+h2" (14 6AZ ™)1} % -afm..”»*d '
€d,+(a+b)(a+ ¥8)1+6, ,Ch*)1lx,-x, u‘+z(a+3e~) >: Jh"
g ~x, 1+ 2 (at38) 82", [xy-x, ll+ 2(@4-36-)1»‘”’2 il
I -%lls d, + @+&)(@a+¥8)[1+6, _, (h*)1llx, -, II‘
+zca+3m‘% A sy -x, < t < 4.

From inequality (2,42) we get estimate (2,39),
”X*- X, I < [(a+-6—3+2tlft1 t "0( Wy g “"
From (2,39) and (2,34) it is possible to get estimate (2,40).

Now, we shall prove the ungguenesa of the solution of the




equation (2,3) in the sphere D’ . From (2,28) it follows
that x* ¢ D' . It is essy to show that D'c D .Assum-
ing that x*, £ are two different solutions of (2,3) in
the sphere D', x*-‘n@z Xn , we shall show that
x*a X,

Now, we replace x* in the formulee (2,35) and (2,36)
by 57 « We are right in doing so, -as these formulae are
based upon (2,1), (2,2), (2,4) only. We get

(2,43) IR < 1€ NSFIX, Xn U N X =X Il +

+[@+b)+28ET4 13y -Xpoyll? o,

(2,48) NIF(S, xp )& dp_, +(@+ L)X = Il +
+[a+38)t+a+ LI Xp =X , I«

From (2,44) 4t follows that

(2,85) NIF(R, 5 M€, ,+ @rbIIX ~x, I +
t+ [@+3b)t+2a+24]11x, -x in .

m-1
We shall prove that the relations
a) NFF(X, ¥Vl < t < 1,

[a+d)+2 41t
1-t

b) 1X-x, € [EETN Y i VAR

hold t_or m 3 3 .

First of all, we shall prove that these sssertions are cor-
rect for m = 9 .

a) We assume that X e D' , then we have the ine-
quality ﬂ;('-x,_ s R LA+6h)I 1 Xy, |l } . According
to this inequality and (2,33),(2,34), we obtain
NTFR, 4, 0€ dy+ @+ d) (ot ¥ &ILA+A2T Hx =, 1T +
F20ar38)(T+AMIX, - Xoll+ (@t &) B2 1+ 6CRITN X, =X I +
+[@+38)t+2a+281h> I x,-x, Il .
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From a simple estimation of the last two terms it follows

that
° N F(x, a(_,)MSd,+(a+—€r)(a+'¥&)(4+h‘)llx.,—x° n*+

o0
+ 2+36). = AR stg-a, < t < 1,
0

b) From the inequality a) just proved and from (2,43) it
follows that

15 g Lars)r2 821t
~xy Il §

ol X, -x, I1*s
1= IEFCS, x ) ¢y =%, |

¢ [(a.+1r)+2!&t1t T ¥y =%, 1%s A¥lx, -0, .
1-t

Now, let the inequalities a) and b) hold for m =3 -

a) According to (2,45)
ITF(F, sy a N § Ayt (@t LINK -, I+ L(@+38t +2a+280 152, , - X, 0l

From the inequelity b) and inequslities for o, and

I % 4eq ~%n I we obtain

ITF(R, Yy pq )l s do+(@atb)a+¥8I)1+6, (A

L

u«,-x,uuz (a+3 )01+ 6,., (A%~ ||+ (arl ) "
nx, %l +[(a+38)t + za.+2£r_'l,h‘ -4 Wty =, Il +

n-1

Because C4+E’n-1(‘h)]5h2‘.o ,h:" end 0 <t <1,
it is evident that
"
(at+ 8) A2 sty -, I+ [(a+38)t +2a + 24105 "

n+d

lxe -, lis 2@a+38)0" Ix,-%l+2(at+36)h

Latg- o 0 = 2 @+ 38)CA™+ A" )l sty - X, 1l 5

then we get
NFF (X, Xp o2 < dy+ @+ lr)as+¥b)1+6, _, (A7) -

m+d

i, =X, (|2 +2Ca+34) Z AR, -xl<t <1 .
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b) From a) it follows easily, that
~ ([a+4)+242¢0 ¢
IX-x,, Il€

%y o, - %, 12 s
w1 1= IFF(S, o 77"

[(a+4)+24-¢] ¢ I

1
_xm"ls hz“ -4”x1_x’ ’l R
1-¢

xﬂliﬂl

Thus we have proved the validity of the inequality b) for all
the m 2 3.

From this and by the limiting process for m —> o0 , we

get at once ~
“ﬁbz My = X &

Ae  x* -ﬂ% Xy the limit being unique, we
conclude that X = X *

Remark. If in theorems 1 -~ 4 we replace everywhere the
sg:ies 6(h), 6(hY), ... by the serieshtz.: n*,
h% (‘hg)“, +ee+++  and the sums 6, Ch), G, (h2),..c0e-
by the sums ‘é:; »h‘, *%(,h’)';. +++++ ,then theorems 1 - 4
hold again, evidently.

A ication on syste of non-linear equation
Application of the method to the solving of systems of
non-linear equations in the space R, .

Let R,  be an FEuclidean space. Let the system of non-
linear equations

(3'1) x,‘-ﬁ-(.x.”.:(z,...,xn) (1::4,27"',07-)

~be given, where fy (X4y X3,:+., X, ) has continuous partial

derivetives of second order in R.,‘ + Using the notation
X = (XgyXageees X))

FX = FC.Y.,, Xz, seey -X,’n). (‘ﬁr ()(." x‘,---,x,‘),...fn(x,, ..—.Yn)),



we can write the system (3,1) in the form
(3,2) x = Fx,
where F is a non-linear operator defined on R m

Let us introduce on R, the norm

Il stp Il = fmax. lsg 1 ;
a. P L
then the norm of the linear operator A given by the matrix

of real numbers (@) 19

irtyym 1:4 .
The operator [ hes the divided difference JF(x,y )
defined in R, :

Jﬁ,(){,'yq,.\g,... Xy ),...,d'ﬁ(y“..,,/y’,_' 1 %5 Y4, x/_'_”...)x“);
3 Tt (Yaserer Ymoas Xm Ym) .

.
:
I
.
.

IF(x,y) = -

d¢; (x.,'y,,xz, 9 X )y ,a"f (ry,, 3 Ygon ) X7 Yjy Xing 190 1%m)
.,d‘f TS ,'ym, '~ Ym) .

dt (x,,y,, 2900y X Dyere ,d'f (Y Yg- 1% :y,, a2 X )y
oy It (Uyrs Ymegd X B )

where
b 10
d‘ﬂ-(’yq,..,:%-nx;%, Xa-“;n,.; Xn)=m e (Yyy oo Yjr s
Xj’xa'*,,, 2000y Xﬂ) - ‘f‘: 0'44""!'7;’-1;'93" -Yi+1,u., Xy )17
(3,3) w .
1 = ¢
- mak :
@ ? €2 4y2,0) M jld 94 ’
[ d i i‘
smae S St ama 2 4L
,6' ’¢.4,z, w“m 1:4 et 4--{,. am 721 kegra

(See the Schmidt’s paper [2(II)].)
Let us solve the equation (3,2) by iterative process

(3,4) X‘“M’ a Frx™, d'F(FX""”, XM (xR ™Yy,
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For the chosen specisl space and operator F , theorem 4
(paragraph 2) gives as a special case

heorem 1 1) Let the condition )
gy Wy M=o, < 1

(0 {o’
J- oo W,
.:?fn;é-:«! K (x' 1001 %t s Xg Mg Wen

)
hold for the fixed element x@ m (x,...,x5") e R, ,

(o)

where Fx'=« (w;,,.., w;,,,) .

)
2) Denote by x & (x, , ...,x,f," )

the element
defined to the element X’ by (3,4). Let there exist a resl
number t (0< t <« 1) such that the inequalities

heh(t)= [(a+&)+24-¢t1¢ W’x _X[O’I<4

7

1=~ t 3:1’ .y
@+&)(a+¥4) Oy 2(+38) .. uﬂ m!s t<d,
da"‘ 4_4»3_ j'(’/ o IX ‘x’ ,’ h ;',’)' on

hold, where a and .{~ are constants es in (3,3).

Then the equstion (3,2) has a solution x* in the sphe-

Ire
- ) h (1) (o)
D={xeR, ,lIx-x ”;:'fo‘;”‘a XIS 7T 1-42 .-1,:,'...,»;' l}

The sequences {X,{ defined by (3,4) ere convergent to

- . ) w
the solution X' of (3,2) (i.e. mwl.xm-.x‘. l=2 0 )e

The following estimates hold:
ma~q

Ivz 7n)  (m-1)
i X e 1= 71 ST e 15
Pars 4

) (o)
)Mz‘mxlx?-x(”)k_:‘_"___w 15 x,o I,

x® _(n
(3,6) llx"-x S 7% S T i dem

S
) m) [a+dr)+2 4t1t ) X2
- - | € TN T e tmak (X 1)
(3,7 1x"= "n:'la:‘c”x, I< Tt 344, £ I3 =G ,
(n) (1 _ (o)[
(3,8) fo*~ x“lzmm,_x PP e Pn;’m:eﬂlx, X
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Numerical example. Let us solve the non-linear system of

algebraic equations
Xy m XD XD - 11
(3,9) {
Xym O+ A+ 2000, - 1% - 14
which has the solution X,»2, ¥, =3 . Let us find an
approximate solution by means of Schmidt’s method: ([2(I)],
method (2,9) and Theorem 4,1) and by means of our Theorem 1°.
Moreover, we shall choose for R, :
R,=(~00,+00)x(~00, +00) .

Since this system does not satisfy neither the first
condition of Schmidt’s Theorem nor the first condition of
Theorem 1', we shall construct an equivalent system, for which .
both conditions will be fulfilled:

We have the equivalent system with (3,9)

Xy = Xy + R (= X5 %2411+ B3, = (ot #172 -

(3,10) { - 20x, -1)%+ 14]
Xgw Xy + f (g X2 X34 A+ I L X, - (¢, +1)7-
where - 20X~ )% + 4] ;

& = ~-0.53003

« B
B = 0:43%10 / /=_0.0683’r#0-
g = ~0.23060

Let us celculate according to (3,3); we get a =0.43%1, b=0.
Solution based upon Theorem 1°:
_ Let us choose x(‘”= (2,2, 3.2) , According tt;
(3,10 ) we obtain Fx“ (2.00¥5444, 3.0054652 ). Condi-
tions of Theorem 1° are fulfilled:

D UEFFx®, x®)ji=d, s 0.06208%943 < 1 ,
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2) For t = 0.255%28 423 hold

A‘ A/(‘é)=' [{R—‘f”&)-“za&t.] f le(‘”_xf’)”- 0’0‘, < 4 P
1-¢

d’ " (Q'f‘g')far t#é‘)”x('”_xfp)"z_’_

2(a+ 3&)” 1 x(v)ﬂ <
1-H

é 0.250 642826 < t < 1.

Then
pefxeR,, lIx-x7l<€0.00599% g%8& ¢ -

From (3,7) we get estimates
| x*= x| < 0.005 992 584 ,
I x*~ x® 1l € 0.000 000 013 .

Actual errors
fx*— x@| = 0.000 291280 ,

Ix*- X = 0.000 000 001 -

Solution based upon Schmidt’s Theorem:

When using Schmidt ‘s method,we must choose the first
approximation '  and the second one ¥ . They are
mutually independent, their choise being limited by the con=-
ditions 2) only (see Selov). Let us choose again x @' =
= (2.2, 3.2) . A8 %™ we choose the first approximation
which was computed by use of our Theorem 1°. Conditions of
Schmidt ‘s Theorem 4.1 are fulfilled:

1) UFF(xD, O = ol, & 0.065 446 ¥¥8 .

2) For t = 0.16 hold;
b= h(t)a "'Lz_ [a#xP= x O 4 £ 4 X% x VY + 41 X"~ x P =
1—-

= 0.104066 612 < 1

dy+ @) I xP- x@y+ ‘—;5__—%'-’-/1;:‘”. X% 0.153033911 <t <1,
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znl‘x(.z)_ X(‘ﬂ" < "xfl)_ x(4) ")

0.000 564 O0k6 < 0.199 990 ¥43 .

3) De{yeRy lly-x®)e€ 0,000034 5859 -

We have estimate:
Ix*- x®| s 0,000 034 585

Actual error: @
Ix*= x| = 0.000 045 %14

Table
Theorem 1° Schmidt s Theorem
m) m) )
x :1- X;m x sn a.(m’
2.2 3.2 2.2 3.2

~Alo |3

X
2.000 24% 19% | 3.000 291 280| 2.000 24%49%)

3.000 291 280”7

2 2,000 000 000 3. 000 000 001 | 2.000 015 %14

3.000 009 25%

*)Not computed, but chosen.
P

Application on non-lin in T8 ations

For the practical solving of integrel equations it is, in

general, necessary to use an approximative method replacing the

integrsl equation by & system of elgebraic equations. If we

solve this system by use of the methods given in
we get the sequence of the spproximate solutions
tem, namely the sequence of vectors 5-(;" . We
an gpproximate solution of the integral equation

from the vector X, . Now, it is necessary to

estimate the proximity of .x; (s) is to the solution x“~ .

- 69 =
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I deal with the problem in this paragraph. .

Let X, X  be two Banach spaces. Let the space X be
linearly isomorphic with the subspace X' © X and isomorph-
ism be realized by the linear operator q « @ maps X' in-
to X end hes a linear inverse operator @' . Let there
exist & linear operator @ mepping A into X end in the
space X' g=qg, *

Let a non~linear equation
(4,1) X = Fux
be given, where xe& X @and the%ear operstar F maps X
into X . Let the conditions of Theorem 2 be fulfilled (pa-:
ragraph 2), From Theoremsl and 2, the equation (4,1) has a
unique solution X in the sphere D , which is defined by
thefformula

De{xe X, lx~x,Nsh[1+80")]Tlx,~x0fc X.

Let an approximate equation
(4,2) X = Fx .
be given where ‘x € X end F s a2 non-linear operetor mepe
ping X into X end havfhgr.thg divided difference JF (., v)
napping X into X ' s 80 that following relations hold:
(4,3) Fa-Fr = IF(2,¥) (& -¥) Z,veX
(4,4) N FF (@, %)= TF(# @GN T~ ||+ b1 T -1+

+ Ll 7wl G, e X 3

we shall further suppose that

DUFa-FrUsAIZ-#I , where 0 <A <4, &veX;
then IF (Fgux,,gx)l=d, < 1.

2) The element X, 1is defined by the formula

%, = FIX +SF(FX,,%,) (%, -F%,), X, e4% ;
there exists a real number ¢ (0<% < 1) *guch that
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the inequalities -k —— -
‘z-zzmu- Y+24¢E1E
h ﬁ,() -3

L+l@+B) A+ + 4 BIL1+6ARIIITZ, - KM€ T <1

hX-XH< 1,

hold.

According to suppositions 1) end 2), from Theorems 1
and 2 (paragraph 2) the equation (4,2) hes @ unique solution
%x¥4n the sphere D  defined by the formule

De{x ek, IX-%18RM+6RIIZ -4} X.

Then the sequence {Sr:mf defined by the formule
(4,5) X = F X+ TF(F g Fonaa) (Km = Fma )

. = -
belongs to the sphere D and converges to X + There
hold the estimates:

(4,6)  NZF-Xnll € ARV INF = X I
-2 —_—™ - —_
wn  IR*-X, 0 ol P S I A
= [@+I)+25F1E = _g 2
(4,8) NX*- X0 ll € 41' 3 t 1%, = Xpa I° 5
=y L@tBIr2BEIE pa T XA
(4,90 Ix*¥- X, U< s il PR

-—

Let the operator <, ! mepping X into X' satiefy
the inequality

N e -a"Flsulz -1 - a,7ed .
Finally, let the inequality

8 UFg'X - g Fx*lse
hold; then
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Ix*- g x* 1§ IFx™- Fg' X * N+ IFg;'X*- g 'Fx *I <

salx*-g'x*l+ e,

or

x - x* 4 .
(4,10) Ix*- g, %1 € oy €
From (4,10) end supposition 3) it follows that
hx¥- g

-4_

“sﬂx -G X

-l -— ”+ " %—4; *‘_ q°—1§m “ <
A llx*- X, 0.
ST
Considering (4,6) - (4,9), we obtain estimates:

(4,11) fi x*- cy, o, I S —i— E +(uh [4+ 5(4,} N X, = Ko -t u’

-y ™1 — - _
(4,12) Ix*-g2" & 11 € Atk 1 eRDNE,-R 1,
(413) 16~ G, T 16 75 { e L@ e Br+ 2 FEIRNZ, R, v el
(4,14) Ix™ ' %, I < ;1-'1-— {l@r )+ 251107 T2y % T NE].

We shall now make use of the precedent considerations
on integral operator.

Let F be an operator defined in the space ( < 0,1>
of functions x(s) , continuous on the interval <{«, >

(norm: ||Xﬂ-0m4ISCS)I ) by the formula
4
Fx(s)= [ f(s,t,x0¢)dt,
o .
where the function ¥(s,t, « ) is defined in the region

N={0sses1 0ctcq, ~0o<u<+o00} o
We assume that in L £(s,t, &) is a continuous funct-
ion of all three variables and has continuous partial deri-
yativea of the second order with respect te « -
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The operator F  map. the spsce ( < 0,1 > into
c<o0,1 and hes in this space the'devided difference
1
FF(u,v)x(s) =) (s, t, )y (t))xt)dt ,

where
, P, b, (t))-1(5, ¢, 0 (2)) for w(t)+ v (),
/ w(t) - v (t)
df(s,t,u(t)v(t))=
fl(s,t,u(t)) for w(t)= v (£),

dF(w,~)  sstisfies the relations (2,1), (2,2), where
1
a3 may /k(s,t)dt, =0,

"
hcs’t)i%”’f?’ (s,t,4Ct))l

(see Schmidt’s paper [ 2(II)], paragraph 7).
The supposition (A). Let us suppose that there exists a
region ',
N'={0sss4, 0st€q4, psusqgi,
and a number A (0< & < 1) such that the relation
| $(s,t, ) ~F(s,t, ) s A=
holds for two erbitrary points (s,t,w)e J1’', (s, ¢, )e 12'.
If we denote
L= é{w(s)ec.(aﬂ), ASsuc)sg i,

then, of course,
IFw-Frisadlla-v for u,re .

From the suppositions of Theorem 2,these concerning the
existence of dF (w, v ) and the existence of the number
A being already fulfilled, we shall suppose, that the remaine
ing postulates are satisfied, i.e. the following ones: there
exists an element x, € &£  emd anumber ¢ (0 <t < 1)
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IF(Fx, x, M =d,< 1,

h- ;‘tt s, -, Il < 1,

d,+a({+2)L1+ECh)IIN, ~X It <1,
where X4 1s defined by the formula

Xyo Fro 4 I F(Fx, ;%) (Xq~ FX, ) .

Then there exists in J .
De{xeC<0,1), lx-x,ll€ 1+ ERIlx-x,l}cX,

unique solution x"‘ of the equation

1
(4,15) x(s)s"/{!(s,t,x(t))dt,

L 4
X* being the limit of the sequence {“»{, defined by
the formula

2
(‘]16) xm;,"“ FX,,*JF(FX”,J‘”)(XM‘H—FXG).
Simultaneously, we sre considering the system
- N
(4,17) x‘:‘% A Ft Ly, %),  £=42,.., N,
where -
k-1 4
N R A
" which we get from (4,15) by using a quadrature formula., Let us
denote the vector (X, ..y &y ) by the symbol N o

X o We shall omit-to write the N when N 18 of a con-
stant valtue. We csn write (4,17) in the form
X< Fx,

where F  denotes the operator

- N N
Fx = {‘go Ahf(t’:, t:“, Xk)}“

- T4 =



mapping my, into m, -

According to the preceding paragraph there existe in the

space m, (the morm: IX I~ mac I Xg ! ) the ai-
vided difference o'F (i, ¥) which is the matrix ope=-

rator given by the matrix
(B‘h )= (A‘("(tiy tb; 7‘“’, 14: )) .
The relations (4,3) ms (4,4) hold, where

- ‘ I~
argme b, L0

From the supposition (A) it is easy to follow that the
relation - - -
WFa-Frliieala-vwI
holde in the set &  consisting of all the elements & of . °
my, sstisfying the inequalities p s« €9, C=d,2,000, N,

since N g
lFu-Fri= '"k“”“% Ak_ [fCt,, ta, Uy )-f(Eetg, % 11€

N
€ mae {3 419t b, U= FChs b YO €
4

£ Am:vluh-%lsxllﬁ-&‘-ﬂ .

Row, we shell choose X = C <O0,1), X = My X'=L'<0,13,
where ('<0, 1) is the space of functiops continuous on

< 0,17 oand linear on intervals (g, ty,, >, k=42,...N.
The operators G, 9, %, are defined in the usual way

([4], chapter 14) and the relstion lzll = lig H = llcr; Ml = 1
holds,

Let X, be the element defined by formulse
X, = FAX +SF(FR, ) (X, - FX,), = gXs -

Let there exist a real number t (0<ft <) such’ that
% - _%——ﬂ&‘,-?,ﬂ< 1,
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d+31+A)[1+6RIIIX,~-X, I6F <1 .

Then there exists in D _
- 2 - -
Da{iem , IX-X,Ish[1+6Ch 1%, =X, 1}el,
just one solution X * of the equation (4,17), X * being the
limit of the sequence { EM}:D defined by the formula

- —-2_ - e - - = -
(4,18) X, =F X, +dF(F, Xp) (Xppyq = FXm )+

We have the estimates (4,6) - (4,9) .
The supposition 3) is fulfilled with the value (w = 1 -
Finally, we shall estimate &£ in the estimate 4). We
shall define the moduls of the econtinuity (Lin Chun [3]).

Let o )y 1 be suffiociently small non-negative numbers.
Wy () = sup lx(s)-x(s")| (Is'-s"|< ) ;

@ (e sup P! t,u) - F(s" t, )| Us'-s'I€ ) ;
) s 1F 5, )= (5,8 @)1 (=g <T);

co(d’ ):/.suﬁlf(s,t w)-F(s,t", w")l
’ (!f’ tYIsd, la’-n"lsn),
where « € £<0,1>, 0ss,t= . Then

= Il Fg;'X*- q;'F.y*lla.-mulfF(s, t, X*(¢))dt - ZA& .
£, b, *(fa”"’”“”‘if""“(%tx"‘(’t)) zﬁwm

t, X*Ct, Ndt | s mav 3 /‘w;f(s, *&»-f@,a,x*(g»l

dt < @ (4, ap (40 .

B“"w_* _.)e pupl|F¥(s') -3 **rs“>|=aq.,g Ay #(s by, XX ) -

N A.-l

z Ay £(s" ty , x% | € Awﬁ‘l‘% [ALLIE (s, ty, X2E)~£(s" b, 531 €
< G%(.)(ﬂ') ’
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By means of the essily provable inequality

4 (s) (é)_4_ (5)_4_
€€ @ (5 a)f'(."‘i))ﬂ A (~)+J\.a? (3>

we get e o
- ) s), 4 2 iz -x |
I - g5 Tl 2 eV 2 0B RET Lroth L% D
—_—y g — - —
kg T € A {000+ O AR+ B e ®OING X,
Tl % by 2
I*-g;'z,, Il € 4—4:1{0*“)(%)4-.10;”(%”@'& I1%,-%, I*F
Ix*-g'%, s h{a{“(ﬁ-ﬂha{”(ﬁhafﬁz RSl
Evidently,
tm  Ix*-g ' zMu=0 .
N;ﬂn—?w e jid
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