Essentially, this paper consists of the application of well-known fixed-point theorems, and others recently obtained in [4-6], to the existence problem of periodic solutions in abstract flows.

Section 1 gives the necessary definitions. The main part is section 2. Here there appear, first, two rather general theorems, 9 and 10; it will be apparent that theorem 9, in some form or other, is well-known; theorem 10 was suggested in [7]. The remaining theorems 11,12,15,16 treat more special situations, possibly not covered by the preceding results. Section 3 then contains only notes and remarks, and its latter part may serve as a link between flow theory and dynamical system theory. Its presence at the conclusion of the paper was dictated by the wish not to intersperse the preliminaries to section 2 with details not absolutely necessary.

For integral \(n > 0 \), \(\mathbb{R}^n \) denotes euclidean \(n \)-space, \(C^n \) its subset of points with non-negative integral coordinates, \((E^1)^\infty \) the Hilbert parallelepiped, \(S^n \) the \(n \)-sphere, all with their natural topology; the first two are also taken with their natural additive structure and partial order.

\(P \) usually denotes a topological space; if triangulable, \(\pi_q(P) \) is its \(q \)-th Betti number, and \(\chi(P) = \sum (-1)^q \pi_q(P) \) its Euler characteristic. The composition of maps say \(f \) and \(g \) is usually denoted by \(f \circ g \), so that \(f \circ g(x) = f(g(x)) \).
1. FLOWS.

Convention 1. A semi-group shall mean a topological quasi-ordered semi-group (in the usual sense) with unit element. (Also see section 3.)

Constructions such as "the semi-group R" will be preferred to the more correct (but, for our purposes, unnecessarily pedantic) "the semi-group $(R, +, \geq, t)$" with R a set and $+$, \geq, t the semi-group, quasi-order and topology structures on R. In a similarly vague, but possibly obvious, sense we will say that a semi-group R is, e.g., a group, or is discrete; if the maximal relation on R is taken as the quasi-ordering (i.e. $\alpha \geq \beta$ always; this is indeed a quasi-order), then R will be termed unordered. Typical examples: R^ω, C^ω, R^n taken unordered. The unit of a semi-group R is often denoted by e, elements of R by lowercase Greek letters.

Definition 2. Let P be a topological space, R a semi-group. A semi-flow T on P over R is a mapping with properties 1° - 3° listed below.

1° $T: \{[\alpha, \beta] \in R \times R : \alpha \geq \beta \} \times P \to P$ is continuous, in the induced topology. For fixed $\alpha \geq \beta$ in R, T defines a continuous map $P \to P$, standardly denoted as T_β^α; using this notation we require further that

$$2^\circ T_\alpha^\alpha = 1,$$

the identity map of P, for $\alpha \in R$,

$$3^\circ T_\beta^\alpha \circ T_\gamma^\beta = T_\gamma^\alpha$$

for $\alpha \geq \beta \geq \gamma$.

If R is unordered, T is called a flow.

Further terms: If R is discrete, T itself will be called discrete. If, for all $\alpha \geq \beta$, $\theta \geq e$,

$$\alpha + T_\theta^\beta + \theta = T_\theta^\beta,$$

- 166 -
then the semi-flow T will be termed stationary. For fixed $x \in P$, T defines a continuous map $T_\sigma x : \{\alpha \in R : \alpha \geq \sigma\} \rightarrow P$, assuming the value $T_\sigma x$ at $\alpha = \sigma$; this map will be called the solution (of T) through x.

Remark. Probably it is evident that a semi-flow is, essentially, a special type of covariant functor. Thus, let P, R be as in def. 3. Denote by R^\wedge the category with objects $\alpha \in R$, morphisms $[\alpha, \beta] \in R \times R$ with $\alpha \geq \beta$, and composition

$$[\alpha, \beta][\beta, \gamma] = [\alpha, \gamma].$$

Let P^\wedge be the category with P as sole object, and continuous maps $P \rightarrow P$ as morphisms. Then a semi-flow T on P over R defines a covariant $T^\wedge : R^\wedge \rightarrow P^\wedge$ by

$$T^\wedge[\alpha, \beta] = T_\beta;$$

conversely, a covariant functor $T^\wedge : R^\wedge \rightarrow P^\wedge$ similarly defines a discrete semi-flow on P over R (taken discrete).

Example 3. In a Banach space P, let

$$\frac{dx}{d\theta} = A(\theta)x \quad (x \in P, \theta \in R^1)$$

be a (homogeneous linear) differential equation with $A(\theta)$ a linear bounded operator $P \rightarrow P$ depending continuously on θ.

For α, β in R^1 let $U(\alpha, \beta)$ be the corresponding resolvent operator [10, p.150]; then $T_\beta = U(\alpha, \beta)$ defines a flow on P over R^1 (necessarily taken unordered).

Slightly more generally, let

$$\frac{dx}{d\theta} = f(x, \theta) \quad (x \in P, \theta \in R^1)$$

be a differential equation with $f : P \times R^1 \rightarrow P$ continuous, and with global existence and unicity of solutions, and con-
tinuous dependence of solutions on initial data (if \(P \) is finite-dimensional, the latter condition follows from the preceding). Take any \(x \in P, \alpha, \beta \in \mathbb{R}^1 \), and determine the unique solution \(y \) of (1) which satisfies \(y(\beta) = x \); then set
\[
\alpha / \beta x = y(\alpha).
\]
Obviously this defines a flow on \(P \) over \(\mathbb{R}^1 \); flows of this type may be termed differential. It may be noted that it is stationary iff \(f \) is independent of \(\theta \).

There are many other interesting and natural examples of flows, e.g. in ergodic theory (e.g. [9], or [2, chap. XVI]); (see also dynamical systems in section 3). However, example 3 is to be considered as the fundamental one for the purposes of the present paper.

Lemma 4. If \(T \) is a flow on \(P \) over \(\mathbb{R} \), then every \(\alpha / \beta \) is a homeomorphism \(P \approx P \) and
\[
\alpha / \beta \alpha / \beta^{-1} = \beta / \alpha.
\]
(Proof: \(\alpha / \beta \alpha / \beta^{-1} = \beta / \alpha = 1 \), \(\beta / \alpha \cdot \beta / \alpha = 1 \).)

Definition 5. Let \(T \) be a semi-flow on \(P \) over \(\mathbb{R} \), and assume given a \(\tau > \sigma \) in \(\mathbb{R} \). Then \(T \) is said to admit the period \(\tau \) if, for all \(\alpha > \sigma \),
\[
\alpha / \tau \sigma = \alpha / \tau \sigma \cdot \tau \sigma = \alpha / \tau \sigma.
\]

Examples 6. Every semi-flow admits the period \(\sigma \). A stationary semi-flow \(T \) admits all periods \(\tau > \sigma \);
\[
\alpha / \tau \sigma \cdot \tau \sigma = \alpha / \tau \sigma \cdot \tau \sigma = \alpha / \tau \sigma.
\]
As a partial converse, a flow admitting all periods is stationary: using lemma 4,
\[
\alpha / \beta = \alpha / \sigma \cdot (\beta / \sigma)^{-1}
\]
for all \(\alpha, \beta \), so that

- 168 -
A differential flow (cf. (1), example 3) admits a period \(\tau \geq \sigma \) iff, for each fixed \(x \in \mathcal{P} \), \(f(x, \theta) \) has period \(\tau \) in \(\Theta \).

(This may be proved by showing that the latter condition is equivalent to: \(\gamma (\theta + \tau) \) is a solution of (1) whenever \(\gamma (\theta) \) is.) In the first case of example 3 this is, of course, the familiar Floquet's theorem (e.g. [12, III, § 2]).

Lemma 7. Let \(\mathcal{T} \) be a semi-flow on \(\mathcal{P} \) over \(\mathbb{R} \), admitting a period \(\tau \geq \sigma \). Then \(\mathcal{T} \) also admits all periods \(n \tau \), \(n > 0 \) integral, and

\[
(3) \quad n \tau \sigma = \tau \sigma .
\]

If \(\mathcal{R} \) is an unordered (topological) group, then this holds for all integers \(n \) without restriction.

(Proof.) Using (2) thrice one obtains

\[
\alpha \cdot 2 \tau \sigma = (\alpha + \tau) \tau \sigma = \alpha \tau \tau \sigma = \alpha \tau \sigma = \alpha \sigma = \tau \sigma = \tau \sigma = \tau \sigma = \tau \sigma ,
\]

and by induction,

\[
(4) \quad \alpha + n \tau \sigma = \alpha \tau \sigma \quad \text{for} \quad n > 0 .
\]

Hence, for \(\alpha = \tau \),

\[
(m+1) \tau \sigma = \tau \sigma \quad \text{for} \quad (m+1) > 0 .
\]

so that, by induction, \(n \tau \sigma = \tau \sigma \quad \text{with} \quad (4) \) this completes the proof of the first statement.

Finally, if \(\mathcal{R} \) is an unordered group, then from (4)

\[
(5) \quad \alpha \tau \sigma = (\alpha - n \tau) + n \tau \sigma = \alpha - n \tau \sigma + n \tau \sigma ,
\]

and in particular \(-\tau \sigma = \tau \sigma - \tau \sigma \quad \text{(cf. lemma 4)}.\) Thus from (5),

\[
\alpha - n \tau \sigma = \alpha \tau \sigma = \tau \sigma - n \tau \sigma ,
\]

as was to be shown.

Remark. It may be remarked that for flows, property (3) is...
equivalent with stationarity of the "sampled" flow on P over \mathcal{C}^1, defined by
$$m \tau T_m \tau \quad (m \geq n \text{ in } \mathcal{C}^1).$$

2. PERIODIC SOLUTIONS.

Throughout this section P denotes a topological space and R a semi-group (cf. convention 1 and section 3).

As may be expected, a solution $T_\tau x$ is called τ-periodic (a semi-flow on P over R, $x \in P$, $\tau > \sigma$) if
$$T_{\theta + \tau} x = T_\tau x \quad \text{for all } \theta \geq \sigma.$$
(This is current usage if $R = R^1$ is taken unordered; if $R = R^1$ with natural order, the term is so used in Laplace transform theory.) Obviously, a τ-periodic solution is $n\tau$-periodic for all integers $n \geq 0$.

The main tool used to obtain conditions for existence of periodic solutions is the following

Proposition 8. Let T be a semi-flow on P over R admitting a period $\tau \geq \sigma$. For $x \in P$, the solution $T_\tau x$ is τ-periodic iff x is a fixed point of $T_\tau : P \to P$.

(Proof.) This is direct verification. If $T_\tau x$ is τ-periodic, then $T_{\theta + \tau \sigma} x = T_\tau x \quad \text{for all } \theta \geq \sigma$; for $\theta = \sigma$ one obtains $T_\tau x = x$, a fixed point of T_τ.

Conversely, if $T_\tau x = x$, then
$$T_{\theta + \tau \sigma} x = T_\tau x \quad \text{for all } \theta \geq \sigma,$$
i.e., $T_\tau x$ is τ-periodic.

Proposition 8 will be applied, without further reference, in reading off existence of periodic solutions from various fixed-point theorems. In each pair of theorems 9-10, 11-12, 15-16 there appear similar results under varied assumptions
Theorem 9. Let \(T \) be a semi-flow on \(P \) over \(R \), admitting a period \(\tau > \sigma \). If there exists an \(X \subset P \) which is a retract of \((E^4)^\infty \) and has \(T_\sigma^\infty X \subset X \), then there exists a \(\tau \)-periodic solution.

(Proof.) Partialised \(T_\sigma^\infty : X \to X \) is continuous; apply the Schauder-Tichonov fixed-point theorem [11, p.263].

Note that the conclusion obtains, in particular, if \(P \) itself is a retract of \((E^4)^\infty \).

Theorem 10. Let \(T \) be a semi-flow on \(P \) over \(R \), admitting a period \(\tau > 0 \); assume that \(P \) is triangulable with \(\chi(P) \neq 0 \), and that \(\{ \theta \in R : \theta > \sigma \} \) is connected.

(Proof.) Denote by \(J(f) \) the Lefschetz invariant of a continuous map \(f : P \to P \) (cf.[1, p.598], or [4]). By assumption, \(\tau_\sigma^{\infty} \) depends continuously on \(\theta > \sigma \); from [4, lemma 7] it then follows that \(J(\tau_\sigma) \) also varies continuously with \(\theta \). Since \(J(f) \) is integer-valued and \(\{ \theta \in R : \theta > \sigma \} \) connected, \(J(\tau_\sigma) \) is constant. Therefore

\[
J(\tau_\sigma) = J(\tau_\sigma^\infty) = J(1) = \chi(P) \neq 0 .
\]

By the Lefschetz-Hopf fixed-point theorem, there exists a \(\tau \)-periodic solution of \(T \).

Remark. Theorem 10 applies a fortiori if \(R \) is arcwise connected, e.g. for \(R = R^1 \). In this case the proof may be simplified, omitting all reference to [4] and lemma 17, as follows: use the assumed path from \(\sigma \) to \(\tau \) in \(R \) to show that \(\tau_\sigma = 1 \) is homotopic to \(\tau_\sigma^\infty \); then again \(J(\tau_\sigma^\infty) = J(1) \neq 0 \). This was the idea of [7, theorem].

Theorem 11. Let \(T \) be a flow on \(P \) over \(R \), admitting a period \(\tau > \sigma \); and assume that \(P \) is triangulable with...
1 \leq n \leq \sum \pi_q(P).

(Proof.) From lemma 4, \(T^\sigma \) is now a homeomorphism \(P \approx P \); apply corollary 5 of [6].

Theorem 12. Let \(T \) be a semi-flow on \(P \) over \(\mathbb{R} \), admitting a period \(\tau > 0 \); assume that \(P \neq \emptyset \) is non-odd. Then there exists an \(n \tau \)-periodic solution with \(1 \leq n \leq \sum \pi_q(P) = \chi(P) \).

(Proof: [5, theorem 2].)

Remark. Non-oddness is a concept introduced in [5, definition 7]: \(P \) is non-odd if \(\pi_{2q+1}(P) = 0 \) for all \(q \), i.e. if all odd-dimensional homology groups are periodic. In particular, then, each semi-flow on \(S^{2n} \) admitting a period \(\tau > 0 \) has a \(2\tau \)-periodic solution.

Before presenting the next two theorems, it will be necessary to introduce and illustrate another concept. A continuous map \(F: P \to P \) will be termed a symmetry of \(P \) if \(F^2 = 1 \); necessarily, then, \(F: P \approx P \) homeomorphically.

Definition 13. Let \(F \) be a symmetry of \(P \), and \(T \) a semi-flow on \(P \) over \(\mathbb{R} \). Then \(T \) will be termed \(F \)-symmetric if each \(T^\sigma \) commutes with \(F \).

Example 14. Let \(T \) be a differential flow on a Banach space \(P \) over \(\mathbb{R}^l \), defined by a differential equation (1) as in example 3. Also, let \(F \) be a linear symmetry of \(P \). Then \(T \) is \(F \)-symmetric iff \(Ff(x, \theta) = f(Fx, \theta) \) for all \(x \in P \), \(\theta \in \mathbb{R}^l \) (hint: show that \(Fy \) is a solution of (1) iff \(y \) is). E.g. the flow described by \(dx/d\theta = A(\theta)x \) is \(F \)-symmetric for \(F \) defined by \(Fx = -x \).

Physical systems with \(n \) degrees of freedom are often described by differential equations such as
These may be "reduced" to systems of type (1) by a familiar device,

\[
\frac{d^2 x}{d \theta^2} = f(x, \frac{dx}{d \theta}, \theta) \quad (x \in \mathbb{R}^n, \theta \in \mathbb{R}^1).
\]

with \([x, \mu] \in \mathbb{R}^{2n}\). If, as sometimes happen,

\[
f(-x, \mu, \theta) = -f(x, \mu, \theta), \quad ([x, \mu, \theta] \in \mathbb{R}^{2n+1})
\]

then (under the appropriate conditions on \(f\)) (6) defines a flow on \(\mathbb{R}^{2n}\) over \(\mathbb{R}^1\); this flow is then \(F\)-symmetric for \(F\) defined by

\[
F[x, \mu] = [-x, \mu].
\]

Theorem 15. Let \(F\) be a symmetry of \(P\), and \(T\) an \(F\)-symmetric semi-flow on \(P\) over \(R\), admitting a period \(\tau > \sigma\). If there exists a subset \(X \subset P\) with \(X\) a retract of \((E^1)^\infty\) and

\[
\tau \sigma X = FX,
\]

then there exists a \(2\tau\)-periodic solution of \(T\).

(Proof.) Recall that \(F = F^{-1}\). Partialised \(F \circ \tau^\sigma: X \rightarrow X\), so that (Schauder-Tichonov) there is a fixed point \(x\) of \(F \circ \tau^\sigma\). Then also \(\tau^\sigma x = FX\), and, using lemma 7 and \(F\)-symmetry,

\[
2\tau^\sigma x = \tau^\sigma x = \tau^\sigma x = \tau^\sigma x = \tau^\sigma x = x.
\]

is a fixed point of \(\tau^\sigma\).

Remarks. This is an abstract form of the Poincaré symmetry principle for dynamical systems in \(R^2\) [12, p.145]. Obviously (7) is satisfied if \(X = \sigma\), i.e. if \(P\) itself is a retract of \((E^1)^\infty\).

Theorem 16. Let \(F\) be a symmetry of \(S^{2n}\), \(T\) an
F-symmetric semi-flow on S^2 over \mathbb{R}, admitting a period $\tau > \sigma$. If F has no fixed-point, then T has at least two 2τ-periodic solutions.

(Proof.) From theorem 11, T has at least one 2τ-periodic solution. These are in 1-1 correspondence with the fixed points x of T. From F-symmetry there then follows $T^\tau F x = F x$, so that $F x = x$ if there is only one 2τ-periodic solution. This contradicts the assumption on F and concludes the proof.

Remarks. The assertion may also be formulated thus: either there is at least one non-constant 2τ-periodic solution, or there are at least two constant solutions. In the case that F is a negative symmetry (i.e. degree $F = -1$), the existence of one 2τ-periodic solution also follows from [5, theorem 3].

3. ADDENDA.

For definiteness in convention 1, a semi-group means some $(\mathbb{R}, +, \geq, t)$ where \mathbb{R} is a set and $+, \geq, t$ are structures as follows.

The $+$ is a semi-group operator, i.e. a binary associative operator on \mathbb{R}; there exists a unit $\sigma \in \mathbb{R}$ ($\alpha + \sigma = \sigma + \alpha = \alpha$ always). For integral $m > 0$ and $\alpha \in \mathbb{R}$ we write $m \alpha = \alpha + \alpha + \cdots + \alpha$ (n terms), $0\alpha = \sigma$.

The \geq is a quasi-order in \mathbb{R}, i.e. a reflexive and transitive relation (laxly speaking, a partial ordering less the anti-symmetry condition [2, I, § 4]). The advantage is that a single formulation serves for both the interesting cases, of \geq a
partial order, and also of the maximal relation on \mathbb{R} ($\alpha \geq \beta$ always); in the latter case the semi-group was termed unordered. Lastly, t is a topology on \mathbb{R}.

We require, further, these compatibility conditions:

(i) $\alpha \geq \beta$ and $\alpha' \geq \beta'$ implies $\alpha + \alpha' \geq \beta + \beta'$;

(ii) $+$ is continuous, considered as a map $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (in the induced topology);

(iii) the set $\{ [\alpha, \beta] : \alpha \geq \beta \}$ is closed in $\mathbb{R} \times \mathbb{R}$.

Since exchange of coordinates is a homeomorphism of $\mathbb{R} \times \mathbb{R}$, $\{ [\alpha, \beta] : \beta \geq \alpha \}$ is also closed.

Lemma 17. Let \mathbb{R} be a partially ordered semi-group. Then

1° \mathbb{R} is a Hausdorff space,

2° if \mathbb{R} is connected and $\{ \theta : \theta > \sigma \}$ open, then $\mathbb{R}^+ = \{ \theta : \theta \geq \sigma \}$ is connected;

3° for $\alpha \geq \sigma$ the set $\{ n\alpha \}_{n \in \mathbb{Z}^+}$ is discrete.

(Proof.) The diagonal in $\mathbb{R} \times \mathbb{R}$ is the intersection of closed sets

$\{ [\alpha, \beta] : \alpha \geq \beta \}$, $\{ [\alpha, \beta] : \beta \geq \alpha \}$,

and hence is also closed. Thus the Bourbaki condition is satisfied and one has 1° (cf. theorem 13 in [2, chap.IV]).

Next, assume \mathbb{R}^+ is not connected. Since it is closed, as a section of $\{ [\alpha, \beta] : \alpha \geq \beta \}$ over σ, there exists a non-trivial decomposition into closed sets,

$\mathbb{R}^+ = A \cup B$, $\sigma \in B$.

Set $C = \mathbb{R} - \mathbb{R}^+$, so that one has the decomposition

$\mathbb{R} = A \cup (B \cup C)$.

As \mathbb{R} is connected, to obtain a contradiction it suffices to show that $A \cap C = \emptyset$. Assume $\gamma_i \in C$, $\gamma_i \to \gamma \in A$. Since
\(\sigma \in B \), \(\gamma > 0 \) and hence is in the open set \(\{ \theta : \theta > \sigma \} \); then \(y_i > \sigma \) for some \(i \), contradicting \(y_i \in C \subset R - R_+ \).

This proves 2°.

For 3°, assume \(h_n \to + \infty \), \(h_n \alpha \to n \alpha \) with \(h_n \in \mathbb{N} \), \(n \in C^+ \), \(\alpha > \sigma \). Take any \(s > \alpha \); then \(h_n \alpha > s \alpha \) for large \(n \), and hence
\[
\alpha \leftarrow h_n \alpha > s \alpha > n \alpha .
\]
Therefore \(s \alpha = n \alpha \) for all \(s > \alpha \), and \(\{ n \alpha \}_{n \in C^+} \) is discrete.

Definition 18. Let \(P \) be a topological space, \(R \) a semi-group. A continuous map \(\tau : P \times \{ \theta \in R : \theta \geq \sigma \} \to P \) (to be written as a binary operator) with the properties
\[
x \tau \sigma = x, \quad (x \tau \theta) \tau \theta' = x \tau (\theta' + \theta)
\]
(for all \(x \in P \), \(\theta > \sigma \leq \theta' \)) is called a semi-dynamical system on \(P \) over \(R \); and, if \(R \) is unordered, a dynamical system on \(P \) over \(R \). (For the case \(R = R^1 \) see "unilateral" in [7], and "global semi-dynamical" in [8].)

Lemma 19. A stationary (semi-)flow \(\tau \) defines a (semi-) dynamical system \(\tau \) (both on \(P \) over \(R \)) by
\[
x \tau \theta = \tau \alpha \tau \beta \quad \text{for} \quad x \in P, \quad \theta > \sigma .
\]
If \(R \) is a group then every (semi-) dynamical system \(\tau \) defines a stationary (semi-) flow \(\tau \), both on \(P \) over \(R \), by
\[
\tau \alpha x = x \tau (\alpha - \beta) \quad \text{for} \quad x \in P, \quad \alpha > \beta .
\]
(Proof: direct verification).

On passing to a different space, even non-stationary flows may be described in terms of dynamical systems:

Lemma 20. If \(\tau \) is a (semi-) flow on \(P \) over \(R \), then
\[
\{ x, \alpha \} \tau \theta = \{ \theta + \alpha \tau x, \theta + \alpha \}
\]
(\(x \in P, \alpha \in R, \theta > \sigma \) defines a (semi-) dynamical system \(\tau \).
on $P \times R$ over R; the solution $T \times \theta$ is then the projection of $[x, \sigma] \times \theta$.

(Proof: direct verification)

In this connection, P is sometimes called the phase space of T, and $P \times R$ its solution space. The semi-dynamical system defined by (θ) is somewhat singular; thus, if $R = R^1$ then there are no critical points nor cycles (in fact, $P \times (0)$ is a section generating $P \times R^1$).

References