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Commentetiones Mathematicae Universitatis Carolime

7, 1 (1966)

ON THE MINIMAX PRINCIPLE FOR K-POSITIVE OPERATORS
(Preliminary communication )

Ivo MAREK, Praha

The purpose of this note is a generslization of the .
well known Frobenius theorem on matrices with non negative
elements, and in particular of the corresponding minimax
principle.

The definitions snd propositions will only be form- .
lated here; full proofs will appesr in [2].

We shell investigate a limear bounded operstar T on
& real Banach spece Y with a closed cone K . As usual this
cone induces an ordering of Y , defined by letting x < y
iff y - x € K . It will be sssumed that K has the follo-
wing two properties: l

() Every x € Y can be expressed in the form x =
TX ~% where X1y X5 € K3

(f) lIx+ylzlUxi for x,yeK.

The space dual to Y will be denoted by Y’, and the
space of continuous linear mappings of Y into itself bty [Y],

An operator T € [ Y] is called K-positjive,'if xe K
implies Tx =ye K § u,-positive, if it is K-positive and
there is a vector u € K, llugl =1, such that for every
xe K, xm#%o0, there exist positive numbers « = «(x) ,

A = (3 (x) end a positive integer p = p(x) with
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wuy < x4 flug ;
uniformly wu -positive, if it is uo—positive and the positi-
ve integer p does not depend on x .

The value of o form x € Y  at x e Y will be denoted
by (x,x" ).

A set H’c K’, where K’ is the cone sdjoint to K , is
called K-total, if ( x, x ) 2 O for all x'e H’ implies
xekK,

Theorem 1. Under the essumptions

(i) KC Y has properties (o) and (3);

(11) H’c K" 1s a K-total set;

(i11) T 1is s u,-positive operator;

(iv) There is only e finite number of singularities
(Mogyeeey (U, of the resolvent R (A, T) =
=(AI-m1 ,» for which l(wa; [ = r(T) , where
r(T) 1is the spectral radius of T .

Moreover let all (W, ,..., L, be poles & R (A, T);

then
(Tx,x’>

1, = n(T)= Min »up —"—— =
(Ha xeK x%eH' (x,x7>

xX£0
= Max wmf ..._<.___.r§_l.§_’_>_- .
xe K x'eH’ , < x, x'> ’
My y XD X, %> >0

2. The point (%4 is a proper value of T and to it there
corresponds a uo-positive proper vector SO Every mroper
vector x € K of the operator T has the form x = cx,
where ¢ > 0,
The vector X € K 1is called extremal with respect to
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T, if

~

ax = or Mum n* = xX
le:K " g xe K n ?
X% 0
where
/
n = imf --—-—-——-——-—< Tx, x>
X xe W X, x>
Clhgy X7 34Ky X 7> = 0
and
’
P LT, XD .
n = /‘D’(L{D .
x'e H ( X, x>
Theorem 2. Let the assumptions of Theorem 1 be fulfilled.

Moreover let T be a uniformly uo-positive operator. Then éve-

ry vector extremal with respect to T has the form cX, whe-

re x, il xoll =1) 4is the unique proper vector of T 1lying

in K .

The applicetions of these theorems are similar to those

of the Frobenius theorem. For example, one can obtain the infi-

nite-dimensional snalogue of the Stein-Rosenberg theorem [1,

p. 105)], also some theorems on localization of spectra, and

other related results. Even in the finite-dimensional case,

Theorems 1 and 2 are slightly more general than the known

thearems, since a uo-poaitive matrix need not be necessarily

irreducible. ) .
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