Commentationes Mathematicae Universitatis Carolinae

Jaroslav Blažek; Milan Koman
 On an extremal problem concerning graphs (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 1, 49--52
Persistent URL: http://dml.cz/dmlcz/105092

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
8,1(1967)
$$

ON AN EXTREMAL PROBLEM CONCERNING GRAPHS Jaroslav BLAŽEK, Milan KOMAN, Praha (Preliminary communication)

In this paper, a generalization of a problem proposed by P. Erdös (see e.g. [1, p.87]) and of a probiem proposed by P. Turán (see e.g. [2]) is studied. This generalization may be formulated as follows (see also [3]): Let G be a finite gr aph without loops and multiple edges, the complementary graph of which consists of k components (of connecticity), each having the form of a complete graph 〈 $\left.n_{i}\right\rangle$, $i=1,2, \ldots, k$. The problem is to find the minimal number of intersection points of edges for all immersions x of G into the Euclidean plane E_{2}. This number will be denoted by $p_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

1. Upper estimate of $\tau_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
a) In a particular case (the problem of P. Erdös), for $m_{1}=n_{2}=\cdots=n_{A}=1$, the following upper hound has begn proved (see [4] and [3]):
(1) $p_{k}(1,1, \ldots, 1) \leqq \frac{1}{4}\left[\frac{k}{2}\right]\left[\frac{k-1}{2}\right]\left[\frac{k-2}{2}\right]\left[\frac{k-3}{2}\right]$.
b) In another particular case (the problem of P.Turañ _for $k=2$, K. Zarankiewicz proved in his paper [2] $x)$ The term "immersion" is used in the same sense as in
[1].
(2) $n_{2}\left(n_{1}, n_{2}\right) \leq\left[\frac{n_{1}}{2}\right]\left[\frac{n_{1}-1}{2}\right]\left[\frac{n_{2}}{2}\right]\left[\frac{n_{2}-1}{2}\right]=K\left(n_{1}, n_{2}\right)$.
c) For $k=3$, by using a generalization of Zarankiewick's construction from [2], it can be proved that

$$
\begin{aligned}
n_{3}\left(n_{1}, n_{2}, n_{3}\right) & \leq K\left(n_{1}, n_{2}+n_{3}\right)+K\left(n_{2}, n_{1}+n_{3}\right)+K\left(n_{3}, n_{1}+n_{2}\right)- \\
& -K\left(n_{1}, n_{2}\right)-K\left(n_{1}, n_{3}\right)-K\left(n_{2}, n_{3}\right)
\end{aligned}
$$

where $K(a, b)$ is the symbol defined in (2).
d) In general, for $k \geq 4$ we may suppose that in the sequence $n_{1}, n_{2}, \ldots, n_{k}$ all odd integers are preceded by all even integers. We shall use the following notations:

$$
\begin{aligned}
\bar{m} & \left.=\left[\frac{m+1}{2}\right], m=\left[\frac{m}{2}\right] \quad \text { (for any integer } m\right) ; \\
a_{1} & =\bar{n}_{1}, a_{2}=\underline{n}_{2}, a_{3}=\bar{n}_{3}, \quad a_{4}=n_{4}, \ldots ; \\
b_{1} & =\underline{n}_{1}, b_{2}=\bar{n}_{2}, b_{3}=\underline{n}_{3}, b_{4}=\bar{n}_{4}, \ldots ; \\
N_{i} & =\sum_{\substack{j=1 \\
j \neq i}}^{n} n_{j} \quad(i=1,2, \ldots, k) .
\end{aligned}
$$

Then it is possible, by using a generalization of the constriction B from [3], to prove this upper estimate:

$$
\begin{aligned}
p_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right) & \leqq \sum_{i=1}^{k} K\left(n_{i}, N_{i}\right)-\sum_{i, j=1}^{k} K\left(n_{i}, n_{j}\right)+ \\
& +L\left(n_{1}, n_{2}, \ldots, n_{k}\right)+\varepsilon M\left(a_{i}, b_{i}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& L\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\sum_{\substack{n, n, t, \mu=1 \\
n<s<t<\mu}}^{n_{n}}\left(a_{k} a_{n} a_{t} a_{\mu}+a_{k} a_{k} b_{t} b_{\mu}+\right. \\
& \left.+a_{k} b_{n} b_{t} a_{\mu}+b_{n} a_{k} a_{k} b_{\mu}+b_{n} b_{n} a_{t} a_{\mu}+b_{n} b_{n} b_{t} b_{\mu}\right)
\end{aligned}
$$

and where $\varepsilon=1$ if in the number of odd integers in the sequence $n_{1}, n_{2}, \ldots, n_{f}$ is odd, and $\varepsilon=0$ otherwise; $M\left(a_{i}, b_{i}\right)$ is a function of degree 2 in $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$. 2. Lewer estimate of $\eta_{k}\left(n_{1}, n_{2}, \ldots, n_{l e}\right)$. It seems to us that all upper bounds mentioned in part 1 do not differ essentially from the number $p_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. But the establishment of a precise enough lower bound seems to be rather difficult.

In case $n_{1}=n_{2}=\cdots=n_{k}=1$ is proved in [4] and [3]
(3) $k p_{k-1}(1,1, \ldots, 1) \leq(k-4) p_{k}(1,1, \ldots, 1)$
and

$$
\frac{3}{280} k(k-1)(k-2)(k-3) \leqq p_{k}(1,1, \ldots, 1)
$$

For $k=2$, in [2] the proof of the inequality

$$
\begin{equation*}
K\left(n_{1}, n_{2}\right) \leqq p_{2}\left(n_{1}, n_{2}\right) \tag{4}
\end{equation*}
$$

is not correct because of an incorrect application of Lemma 2 (see [2],p.139). We do not know (if $\min \left(n_{1}, n_{2}\right) \geq 5$) any proof of (4). We can only prove the following inequality analogous to (3):
(5) $\quad n_{1} p_{2}\left(n_{1}-1, n_{2}\right) \leq\left(n_{1}-2\right) n_{2}\left(n_{1}, n_{2}\right)$.

In general, we can prove

$$
\begin{aligned}
\sum_{i=1}^{k} n_{i} n_{k}\left(n_{1}, \ldots, n_{i-1}, n_{i}-1, n_{i+1}, \ldots, n_{k}\right) & \leqq \\
& \leqq\left(n_{1}+n_{2}+\cdots+n_{k}-4\right) n_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)
\end{aligned}
$$

which is a generalization of (3) and (5).
References
[I] G. RINGEL: Extremal problems in the theory of graphs, Theory of graphs and its applications.

Proceedings of the Sympos. Prague (1963), 85-90.
[2] K. ZARANKIEWICZ: On a problem of P.Turan concerning graphs, Fundamenta Mathem., XII(1955),137-145.
[3] J. BLAŽEK, M. KOMAN: A minimal problein concernine complete plane graphs, Theory of graphs and its applications. Proceedings of the उympos. Prague (1963) ,113-117.
[4] R.K. GUY: A combinatorial problem, Bull. of the Malayan Math. Soc. ,I,2(1960),58-72.
(Received December 1,1966)

