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Conmentationes Mathemsiicae n!versitatis Cavolinae
19,1 (2969

A ROTE ON COMPLEPELY DECOMPOSABLE TORSION FREE ABELIAN GROUYS
Ladislav PROCHAZKA, Praha

Let G be a torsion free abelian group containing a

completely decomposable subgroup H with torsion factor
group G/H . In this note we shall f£ind some cchditions '
under which the group G is likewise completely decomposab-
le; all these conditions are related with the notion of 42 -
rank of a torsion free group,

In what follows, by & group we shall understand an addi-
tively written abelian group, and the latter .2 will be re-
served for a prime number. If G is & torsion free group them
by & basis of G we sball mesn any maximal independent set
of G ;ift M € G then {M}: represents the minimal
pure subgroup of G containing M, If all non gero ele-
ments of G  are of the same type 4« then G is said
to be homogeneous of the type «¢ ; in general the symbol

Y (G) will denote the set of all types of non zero ele-
ments in G . ©Por a type .4x  the relstion «x(fz) = o0
means that in any height belonging to «% the . ~height
is co . If G is a torsion group them G.,, stands for
the fi -primary component of G- . Other notation and termi-
nology will be essentially that as in [2].

Since many of the following investigations are based on
the notion of 4 -rank of a torsion free group we begin the
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Proof. Evidently we can assume H + 0 . ILet A=
=(X,yXgwy%g) D& @ n% -basis of H . Tne purity of H

in G implies the H ™ -independence of A in G .
Thus A can be extended to a ﬂ”-basia A¥= (Xyyeeer %5
x* (LelI)) of G. Let B beabasisof H with
Abg B ; therefore, B = (X, Xy, .cey Xgyrr, X, ) « Por
the set B = (X;500.,% 3 X¥ (L €1)) we shall show that B
is independent. In the contrary case we should have & re-

latior

x *
(1) Ay X oo ey Xy Yy Xy e Y X = 0

where Ai; Y, are integers and 1§.x:_:._=# 0 (g=1,0c,m) -
It H= {x,,...,xw,x:,...,x:n 3 them by (1) it is
n =n(H)< m +m. From the % -independence of the
set (X,...,%X, o&:,...,xfm) in H it follows by [4,Theo-
renm 1] that Itp(ﬁ) eH-(kh+m)l<mem—(+m)=m-f.
Simul taneously H,h(H)=fn.—»k end H € H which is in con-
tradiction with [5,Theorem 5]. Thus we have established ac-
t)nlly the independence of B . The set B may be exten-
ded to a basis B¥ of G. By [4,Theorem 1] it is /cﬁ_CC:r)z
=card (B*- A*) and also , (H) = card (B ~A) . Prom
the inclusion B -A & B* - A* 1t follows the sta-
tement of lemma,

Corollary 2. Por & forsion free group G it holds
H, (G) = Q .1if and only 1if k.ﬂ(H) = 0 for each its pu-
re subgroup H of finite rank.

This is an immediate consequence of the previous asser-
tions.

Lemma 3. Iet G Dbe a torsion free group snd H any

of its pure subgroups of finite rank. Then %, (G) = K, CH)
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present note with several assertions concerning this notion.
For the definition of 4 -rank and % -independence see
[4).

Lemma 1, Let G be a torsion free group. If ﬁ,ﬁ(H)z- 0
for each its pure subgroup H of finite rank then /Lp (DOF
=0 as well,

Proof. Suppose that x, (G) > 0, It A 1sa p°-
basis of G (then A 1is independent) and if B is a ba-
siein G with A S B  then by [4,Thecrem 1] it is
card (B-A) =1, (G) > O ; therefore, B- A4 8 .Thus B
18 not M % -independent in G, which implies that some
finite subset (X,, X, :0c) X, ) of B 18 fz,w -dependent
in G. Izweput H = £x,,X,),..., %X, 3] then the ele-

ments X, X,,..., X form a basis of H  which is 1™~

n

dependent in H (H 48 pure in G ) ; this means in view
of [4,Lemma 3] that 0 < hofr':, (H/{X, ..., %,3) .5ince His

of finite rank the Theorem 4 of (7] can be applied. Thus we
obtain

0y CH/AX  0n, Xy 3) = &y (H)

vhich is in contradiction with the hypothesis. Consequently,
the validity of 1, (G)= 0 is established,

Corollary 1. If G is 8 .1 _reduced completely de-
composable torsion free group then ", @G)= 0.

Proof. From [5,Lemma 6,1 and Theorem 6] it follows that
/(,ﬁ(H)= 0 for each pure subgroup H of finite rank in G.

Lemma 2, Let G be a torsion free group and H a
pure subgroup of finite rank in G. Then th(H) s 7, @).
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if and only if M#CG-/H) = 0.

Proof, Assume firstly 4, (G)=x, (H) and x, (G) >0
where G =G/H. By Lemma 1 there exists a pure subgroup K
in G of finite rank with 4,(K)> 0; K may be expres-
sea 88 K= K/H where H S K and K 18 a pure subgroup
of finite rank in G , According to (5,Theorem 6] one can
write s, (K)=#,(H)+# (Ky># (H)= #,(6) which 1s a con-
tradiction with Lemma 2. Thus the validity of x,(G/H) = O
is proved. ‘

Conversely, let 4 (G/H)=0 hold. If A= (X ; L€ 1)
is a »fi’o-baais of G = G/H then in view of [4,Theorem 1)
A 1is a basis of G as well, Now we take in each coset X,
(Lel) an element X  and put A= (x ; L€I),It 18 ea-
8y to see that A 1is 41“ -independent in G ;furthermore,
if B is any basis of G with A € B then card (B- A)=
=n(H)=m, Let A1= (@1,-..,%) be a ﬁ“-baais and B1 = (%’,_,
""'%k"“’%) a basis in H . Clearly, the set A,=A UA,
is ,pw-independent in G ,therefore, Az can be extended to
a zpw—basia A* of G . 1If B is a basis of G such that
A¥c B then we have by [4,Theorem 1] #, (G) = caxd (B- A%)<
§M(B-Az)=n-k=/%(H).This last inequality with

Mf,CH) £ %, (G) (see Lemma 2) give the desirable relation
%, (G) = &f.(H).

In what follows, we shall use the notion of Baer ‘s clas-
ses [, of torsion free groups (see (1] and also [2],§ 48).
We recall that E," is defined as the class of all countabdble
torsion free groups; for oo > 1 a torsion free group G
belongs to [ if G ¢ [ (B < oc) and there exists
& pure subgroup S S G of finite rank such that G/S 1isa
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direct sum of groups belonging to classes with indices less than a.
If G 1is & torsion group themdby TT(G) we shall de-
note the set of all primes with G"f,) + 0.
Theorem 1. Let G be a torsion free group containing

a homogeneous completely decomposable subgroup H with
torsion factor group G/H . Let the set T(S/S N H) be
finite for each pure subgroup S of finite rank in G .
Then G & H 1f and only if 7, (G) = 0 for each f1 €
€T(G/H) and G Dbelonge to some class [ . '

Proof. At first we suppose that G & H , Thus G is
again completely decomposable, therefore, G € [ (o = 2).
Clearly, for n € TT(G/H) the subgroup H cannot be - =~
divisible. This fact together with the homogeneity of H im-
ply that H 1is p1 -reduced. Now by Corollary 1 we obtain
0= 1, (H =t (G).

For the proof of the sufficiency suppose that R (&F)=20
whenever n € TT(G/H) and that G belongs to some class
[;' . Take an arbitrary pure subgroup S in G of finite
rank end put T = SN H ; thus T is a pure subgroup in
H of finite rank and T (S /T) 1is finite 1in view of

the hypothesis in theorem . From the relations

(2) S/T = S/(SAH)X£S,HI/HSG/H

it followa that TT(S/T)Y € TT(G/H) , In view of t, (G)=0
foreach e TM(S/T)s M(G/H) we infer by Lemma 2
that »LﬂCS)=0 whenever .2 € TT(S/T).Hence, by [5,Theoren
5] the group S/T 1is reduced and, therefore, finite.

Next T as a pure subgroup of the homogeneous completely
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decomposable group H 1is again completely decomposable (see
(2,Theorem 46.6] ) and homogeneous of the same type as H .
Theorem B of [3] gives the relation S = T . The subgroup
S Dbeing arbitrary, we have shown that G 1s homogeneous
of the type of H and that each pure subgroup of finite
"rank in G 1s completely decomposadble. Thus, if K i L
are two pure subgroups of finite rank in G  them by [2,
Theorem 46.8 and Theorem 46.6] the group L /K 18 complete-
ly decomposable and homogeneous of the type of G . Conse-
quently, for each pure subgroup S of finite rank in G
the group G/ S is homogeneous of the same type as G
(and also H ) . According to [2,Theorem 48,2] G 1is comple-
tely decomposable. Finally, the equality » (G) = £ (H) im-
plies the desirable relation G = H .
Corollary 3. Let G be & torsion free g:;oup containing
a homogeneous completely decomposable subgroup H with redu-
ced torsion group G/H . Let TT(S/SA H) bve finite when-
ever S 1is a pure subgroup of finite rank in G . Then
G = H 1f and only if G Dbelongs to some class [} .
Proof. Let S be a pure subgroup of finite rank in G
and o € TT(G/H). The subgroup H cannot be 4 -divi-
sible, therefore, it is f» -reduced; thus by Corollary 1 we
have )r,ﬂ(H)a 0. Itweput T=SNnH then T 1is pure
in H and of finite rank, Thus Lemma 2 implies that rtf,(T)=
= 0. Por the group S/ T we have the relation (2), the-
refore, S/ T 1is reduced. Hence by [5,Theorem 5] it follows
#p (S ) = "tf,(T') = 0. In view of Lemma 1 this means that
%, CG)=0 for each f2€ TI(G/H), S being taken arbit-
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rary. Now we may apply Theorem 1.

Corollary 4. et G be a homogeneous torsion free
group such that for almost all primes fz it 18 pG =G,
Then G 18 completely decomposable if and only if G
belongs to some class [_: and /‘Lﬂ (G) = 0 whenever
nG * 6.

Proof. Evidently the above mentioned conditions are
necessary for the complete decomposability of G .

For the proof of sufficiency take any basis B= (x‘_;
tel) of G, set J,,’{‘x.,;; (L € I) and define H=

=L£ZI J . Them G/H 1s torsion, H 1is houmugeneous
of the same type as G and hence 1 H = H for almost
all primes {1 ; it is obvious that 5 € M(G/H) imp~-
lies f1H 3+ H (and also G = G) , therefore, the set
TT(G/H) is finite. Thus we may apply Theorem 1 and we get
G=H.

The following theorem is also a consequence of Theo-
rem 1. For the definition of the groups H(w) and H*(«)
(it H is a torsion free group and «¢ & type) see [2],
§ 42,

Theorem 2. Iet G be a torsion free group contai-
ning a completely decomposable subgroup H and let G/H
be a torsion group with finite set TT(G/H)., Let ¥ (H)
be inversely well-ordered and put Gun)={H CUL)}; and
G*(un) = §H*(m )3  for wx & Y(H) . If for esch
#t € Y(H) the group G(w)/ G*(«r) belongs to some

class [  and nﬂcG(m/G'* (x)) = 0 whenever
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/nen’(@—/H) then G = H .

Proof. If H = "Z‘.J J, is a complete decomposition

of H and if & € ¥Y(H) thenwe denote by H, the direct
sum of a1l J (L € I) of the type 4% ; hence, H =

= % Hw and Huwe) = H“-l'- H*(w) for £ € YCH) .In
view of the definition of G*(«#£) we have

(3)  {H), TXw)t={H, ,G*r)} =H, + G*(w) .

We msy also write
(4) G =[G r)/G* )]/ L{H W), G )}/ G )] =

2 [G)/Hw) 1/ LAH(), G* ()3 /H )] -

The purity of H(#z) in H implies the equality H(tz)=
= G(M) A H and hence

)/ Hiw)= G/ LGN HIZS {G (), H3/H = G/H .

Thus we have shown (see (4)) that Trcgw) s MM(G/H) .
Prom (3) it follows

(5) {Hw), G* )3/ G*w) = H,

v

this means that {H (), G*(wx)}/G*n) 18 = homogeneous
completely decomposable subgroup of the group G («e)/G *ox).
It is eayy to see that Theorem 1 may be applied to

G (we)/ G*Cur) , From this fact we conclude ( see also (5))

the isomorphism relatiom G/ G* ) = H, ; there-

fore, G(4t)/G*(w) is completely decomposable and homo-
geneous of the type 4 . From Glw) = {HWLM: it
follows the inequality ta;.fw X = whenever
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04 x € G (4e); thus type x = 4  for each X €
€ GUr) - G*(x).1f we apply the Baer s lemma (see [2,the
note following Theorem 46.5]1) we can write a direct decom-

position
(6) Gw)= G + G*wm) where G, = Gun)/G*m) = H, -

Now by & transfinite induction on 4 € ¥ (H) we shall
show that G (&) = Z& Gg , for emch « € YCH) . Por
ws

the greatest element 44, of ¥(H) wo have H¥*(4x,) =

= 0= G*(w,) , therefore, under (6) G(ur,) =G, =“’§_b G,

Let ¢ € Y(H), o, < o and let us suppose that

our assertion holds whenever « € Y (H) and M <N AL
* * G

Evidently H*(«r) ==“’L<J“HC0L) and hence G (wq)sw'L‘JwG(m).

Prom this fact, by the inductive hypothesis we conclude that
x
G (0L4)=""<Z&Gj, , and in view of (6) we have G‘(wq)ﬂ“’% G -

Thus the proof by induction is finished. Since stL‘Jm, H ()

and G={H3: we get G = G_Cw)’therefore, G =

n Ehew)

}'%m)% . This implies (see also (6))

= G 2 H, =H

TwERMH) ® T weww)
which proves our theorem.
Next we shall prove two elementary statements concer-
ning Baer’s classes I .
Lemma 4. It G, (i=1,2,...,m) are torsion

free groups such that Gy e [, (i =1, 2,...,m) tren
1
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there exists an ordinal oo £ mat [or, o,,..c, or, 1 with
G,"'Gb_+"'+G,,,_= Ge I -

Ppoofs If ot = X, =...= 0C, = 4 then G € [} .
So let us suppose that 41 < oc; for some < ; Wwithout loss
of generality we may assume that d == G (k= m)
and o, < of = of, for R <1 .If G &[] for some x < =

=max Lo, ,0¢,,...,0¢ ] then our lemma is proved. Thus sup-
pose that G ¢ [} whenever 3 < oc, . Por each 4 (1 £
£ 1 & A ) there exists a pure subgroup S; in G;
of finite rank such that G; /S; 1s a direct sum of groups
belonging to Baer’s classes with indices less than <, .
Hence S = S, -3—'52 +...+ S, is a pure subgroup in G
of finite rank and G/S is a direct sum of groups from
classes of indices less than oc . Thus Ge f;1 snd lemma
is proved.

lemma S. Let H be a pure subgroup of finite rank in
a torsion free group G . If G € [}, then G/H € Iy,
for some ordinal B3 £ of .

Proof. For oc > 1 the assertion is trivial. Next we
shall proceed by induction on or .

Assume o« = 1 and let our lemma hold whenever the
corresponding group belongs to a class with index less than
o . In G there exists a pure subgroup S of finite rank
withG/S=L:%GL where G:‘e r’"; for <o (L e I).

Then S*={S, H?: is likewise of finite rank and we
have




&P (G/H)/(S*¥/H) = G/S*= (G/S)/S*/8),

where S*/S (S*/H resp.) is a pure subgroup of finite
rank in G/5 (in G/H resp.). Thus S5*/S is con-
tained in a direct sum of & finite number of groups G,

(L €l) and in view of Lemma 4 we may suppose that S*/S

lies in some a‘,’ (Lel).

Hence
(8) (G/5)/(S*/5) = §_/(S*/5)+ 2 &,
where
(9) G, /(s*/s)ely Bsh < x ,

following the induotive hypothesis. Now, if G/H ¢ l;', for
each /3 < o¢ then from (7),(8) and(9) 1t follows that
G/H €& [ . Thus the proof by inductiom is finished.

Now we are in position to prove the following theorem.

Theorem 3, Iet G be a torsion free group containing
& homogeneous completely decomposable aui)gronp H euch that
G/H 1is a torsion group with finite set T (G/H) . 1t
n.ﬂ(G)< N, for each s e TT(G/H) amdif G  belongs
to some class [ then G =G, + G, , where G, 18 of
finite rank and G'z is completely decomposable and homoge-
neous of the same type as H .

Proof. If S 1is any pure subgroup in G of finite
rank then by Lemma 2 it is nhCS)é Ky (G)< ¥, <for each
prime 2 € TN =TT (G/H) I we put

R(S) =ﬂ§" "y CS)

then we have ( TT being finite )
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= (G) < &,

R(S) _1}“ "y

for cach such pure subgroup S . Consequently, among the

pure subgroups S S G  of finite renk there exists one
with the greatest R (S) ; we dencte it by G, .

Hy=Hn G,

Thus

is a pure subgroup of finite rank in H and
by [2,Theorem 46.8] H, is a direot sumsand in H
shall write H = H + H, end put G*={(G,, H,}

. Ve
; since

G AH=GAHAH,=H AnH, =0, we have G*= G, + H, -
If we denote G = G/G, then we show that %, (G)=0 for
each . € TN . On the contrary, sssume that r, (G)>0 tor
some 47 € TT. Lemma 1 implies the existence of a pure sud-
group 5 in G of finite rank with P, (3)>0 .™me S

may be written as 3 = 5'::/(":1 where S ispure in G and

of finite rank as well, By [5,Theorem 6] it is rLﬂCG;') £r, (s)
for each 11 € T and simultaneously /L”CG;)< ”"'%CG; )+ l‘g,.(S)s
= )tﬂoCS) which means that R(G,) < R(S) , The last inequa-
1ity contradicts the choice of G, , therefore, (G)=0
whenever f1 € TT . Wow, by Lemm 5 G/G, belongs to some
olass [} . Prom the inclusion H S G* we conclude
M(G/G*)STT(G/H) =T and at the same time we have

G/G* = (G/G)/(G*/G,) .

The group H, (a&s @ direot summsnd of H ) 1is likewise
completel y decomposable and hémoseneouu of the type of H .
Since G*/ G71 = Hz we can apply Theorem 1 and we get

G/G, ¥ G*/G,= H, . Thus we have shown that G/ G, 1s com-

Pletely decomposable and homogeneous of the same type 4« as
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H. Since G/H 4is torsion we have «z & lype X for
esch X € G, X # 0 ; therefore, it is precisely tyne X =

= UL whenever X &€ G -G, . This means that the Baer’s
lemma may be applied (see [2,Lemma 46.31) to the group G
and its subgroup G, . Hence, G= G + G, , where G, =
«G/G, = H, . This completes the proof of our thecrem.

. It G 18 a torsion free group then by GL 1> ] we
shall denote the maximal f -divisible subgroup of G .

Theorem 4. Let G be a torsion free group of fini-'

te rank containing a homogeneous completely decomposable ~
subgroup H such that G/H 1ie a torsion group with fi-
nite set TI (G/H) ., If the type set VY(G) 4s ordered
then G 4is completely decompossble just 1!/;1,(6):/:(6[11.’1)
for each ft & IT(G/H)

Proof. If G is completely decomposable then for e-
very prime number N2 it is /L”(G')stCG[ﬂ.”J) ( see [5,Theo~
rem 6 and Lemma 6.17),

Oonversely, assume that /z,(G)=%x(G[121) whenever fne
€ IT(G/H) and show that G 4is completely decomposable.
We shall proceed by induction on the cardinality of Y (G).
It Y(G)={4y} then G 4is a homogeneous group of the

"
type 4r, . Iet H= &§1 J; Vbe a complete decomposition of

H and put ‘j-i*"" {3, };‘ (i=1,2,...,m) ;thus we have G* =
={3F..,I*3 =4% Jx and type Jf= x (C=1,.,m) .
Since H = G*, G/G* 1is a torsion group with IT(G/G*) S
€ M (G/H) . We shall show that the group G /G* 1s redu-
ced. On the contrary, assume that G/ G* contains a sub-
group C(n¥) for some s,e M (G/G*) . By [5,Theorenm 5]
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this impliee the inequality 04 %4, (G*) < #, (G) . The

group G is homogeneous, therefors, G[n"I=0 orGLn~l=
= G for every prime - . By hypothesis it is e (G)=
= 2(GLNn 1) and hence in view of the inequality O< kx, 6)

we conclude that G [27]1 = G. Prom the purity of J* in
G 1t follows J¥[n"] = J}, hence 1, (JF)=1 (P=4,..,m)
(see [5,Lemma 6.1]) , therefore

K, (GX)= M = 1(6) = Ky (O

thus we get a contradiction with X, (G*) < /'Lp.( G). Tmis
already proves that G/G* is reduced, as stated, Since
TT(G/G*) 1is finite, we have shown that the group G/G*
is finite as well., By Theorem B of [3] we have G & G* , the-
refore, G is completely decomposable.

Next suppose that caxd Y (G) =4 2 2 and the
theorem holds whenever the corresponding type set contains
less than & elements. Let N, <, <.... <ty ., be the
sequence of all elements of Y (G), If we set G,, = Glw,)
then G, 1spure in G and ¥(G,) ={x,..., 4 , ¥ . The
subgroup H,=G, N H 18 pure in H , therefore, H, 1is
a direct summand of H ( see [2,Theorem 46.8]); thus we may
write H= H, + H, . Iet H2=¢§4 J; e a complete decom~

position of H, and put Q:“z{J‘;: (t=1,.0.,m) . Evi-

J»:f:

dontly tyne Jf=t, (i=1,c,m) anaH*={J%...,

= > oF, Since H} N G, = 0  we may define a group G*

1421 A

by setting G*= G + H: 3 therefore G*/G[, gHI =

-154 .



leis™
= .2 J¥ . We have also
1= 71

(10) (G/G)/(G¥G)H)= G/G*

and TI(G/G*) & TT(G/H) a8 a consequence of H & G*.
" Next we shall prove the following assertion:

(A) If for a prime number 4t there exiasts sn index 3

(02 4 2 £-1) with ay (fr) = co and if 4 1is the

smallest of such 1 ‘s them G[p~1 = G(«;) -

Indeed, 4%, (fr)=co implies the inclusion G(s,) < GIn 1.
On the other hand, if 0+ g € G{n™] and type g = ;
then ua:(»n)= 00 and hence 1 % 7 . Thus we have £; %

= J/La; therefore, g € G(a.a;) & G(«;) . This means

that the inclusion GLn™] € G («;)  likewise holds,

and the proof of (A) is complete.

Now we shall show that the group G/G* 1is redu-
ced, On the contrary, suppose that C(n*) is a subgroup
of G/G¥. By [5,Theorem 5] we have
(1) 0 £ 1, (G*) < nry, (G)

Since %, (G) =« (GLn>1), from (11) we conclude that there

exists an element @, 0% g € GLn*1 | Ifu;}.: type g
then ULJ;({L) = 00 . Let 1 Dbe the smallest among the
indices 4 ‘s with .y (f2)= 00 ; then by (A) it is

GLp®1=Gt,). It i =0 then G=G(et)=G L]
and the group G is 4 -divisidble. Hence, the group G*=

- G1 + 3_‘?:, 3;-‘ as a direct sum of pure subgroups of
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G is likewise .f1 -divisible; therefore,
”'4» (G¥)= £ (GX)= 1 G)= ‘Lﬂ G)
which is in contradiction with (11), Por

1
under (A) GIn®1= G;) € G(OL,) = G, , and hence

= 1 we have

’Lﬂ(G') =1 (GLp%])= )Lﬂ(G[p“J) £ mr,(c‘r,) £ K, (G*)

which agein contradicts to (11). Thus we have shown that
G/G* 1is really reduced, This fact together with the fi-
niteness of TI(G/G*) 4imply that the group +/G* it~
self is finite, G  being of finite rank. Since G*/G,
is homogeneous and completely decomposable, in view of (10)

we may apply Corollary 3 snd we get

G/G = G*/G, & Hf = 5 I*

=1
Thus G/G, is homogeneous of the type iz, , tyne g =1,
for each g € G - G, , theretore, G= G, + G, ond G =
& = 3 g
G/G:l - -i.z-'»t J—“.
mna ( [Z,I‘m 4603 ] ) .

which is & consequence of Baer's lem-

For the complete proof of our theorem it remains to
prove that G,, is completely decomposable. We have alrea-
dy remarked that H,= G, A H 1is a homogeneous and comple-

tely decomposable subgroup of G, . Since
G,/H = G /(GAH) X {G,,H} /H & G/H ,

G,/H1 is a torsion group with TT(G,/H,) € TT(G/H) .
Because G, is of finite rank and the set T(G,/H,) 1s
finite, under [5,Theorem 1] G, /H, 1e a direct sum of

& finite group and of a divisible group. Thus, there exists
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in G; @ subgroup K, such that H, € K, K,/H, 1is
finite and G,/ K,  is divisible; evidently TI(G, /K&

sn(G;,/H,,)ETT(G'/H). As a consequence of Corollary 3 we
geot K1 = H,1 and hence K, 1is a completely decomposab-
le homogeneous group. Por TT(G,/K, )= 8 it is G, = K,
and G., is really completely decomposable, Thus, suppose

TG,/K,)# 8 endtaxe g€ T1(G/K;) ; we shall ve-

rify that i, (G )= £(G,Ln*1). since C(n®) is a sud-
group of G, / K1 , in view of [5,Theorem 5 and 6] We have

08 Ky (Ky) < 2, (Gy) £ £, (G)m £ (GLR™T)

Hemce GLNn™] == 0  and there exists an index 4

(064 4 R-1) with M.i_(»fb)- ©0 ; wagein denote dy
1 the smallest of such 4 ‘s . By the statement (A) 1%
must be GINn“l=G(g) .1t i = 0 thnGLn®1=G(u,)=G,

therefore, G,(n“J=G, and in this case /cr; (G)=n(G)=
=n(GL[A¥D).12 1 =21 thenG[n®1=G(,) < Glu,) = G,

and we conclude GLn®] = G, [n*1. Since GIn®1 G, ,we
have also (see [ 5,Theorem 6])

1,(G)=n(G[n%]) = 1, (GIn=1) & 1, (G) 4 (G)

which implies that «, (G;)=n(GLa*])= 1(G [n*]1) . Thus
we have shown that 1, (G )=x(G LN 1) for each 11 c

e (G, /K, ) .Because ¥(G,) = {4x,,..., 4, _ 3 , by inductive
hypothesis the group G1 is completely decomposable. The
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proof by induction is thus finished.

From Theoreme 3 and 4 we may conclude the following
statement.

Theorem 5. Iet G be a torsion free group contain-
ing a homogeneous completely decomposable subgroup H
such that G/H is a torsion group with finite set
TT(G/H) . Suppose that the type set Y (G) is ordered
and that 4, (G)< #A, for each prime £ e M (G/H) .

Then the group G is eompletely decomposable if and only
it G velongs to some class [I  and s (G)=nx(GLNA™])
for each nn e MM(G/H) .

Proof. Bvidently if G  is completely decomposable
then Ge [0 (x £ 2) and #,(G)=1(GLNn"1) for eve-
ry prime n .

Next assume that G € [  and %(G)-ﬂ(ﬁ[ﬂ”l) for
each 11 € T(G/H), and show that G  1is completely de-
composable., If G is of finite rank then it suffices to

apply Theorem 4. For ~ (G) = X, by Theorem 3 we have

?
G=Gy+0G, where n(G,)< &, and G, is completely
decomposable and homogeneous of the same type as H ; evi-
dently G, + 0. Ifweput H = G n H then H,
is pure in H ond in view of [2,Theorem 46,61 H, is

likewise homogeneous and completely decomposable. Since

G, /H,= G, /(GAH) =G, H3/H & G/H

it 1e TI(G,/H,) € TT(G/H)  and henoe TT (G, /H ) is
finite. Clearly, for any»neTT(G_,/HﬂE MC(G/H) the
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groupp H and G, are i -reduced, This means that
GLn®1s G, , therefore, G [A®l= G, Ln*“] . From the
complete redncibility of G, 1t follows (see Corollary 1)

0=nr,(G)=#,(6G/G);

Thus, by Lemma 3 (see also the hypothesis of our theorem),
we have nﬂ(é‘;).—: MﬂCG)ssrtCGETL”J) = (G L[n*]) . In view

of the inclusion VY (G,) € ¥ (G) , Theorem 4 mey be app-
lied to the group G, and its subgroup H1 . Hence G,’
is completely decomposable which comple tes the proof of the
theorem.

Coroll . Iet G ©bve a torsion free group with or-
dered type set U (G), let G =G ve for almost all

primes N2 end let x4, (G) < H, whenever n G + G .

Then G  is completely decomposable if and only if G  be-
longs to some class [ ond 7, (G)=n(GLNn®1) for

every prime 1 with n G + G .

Proof. Remark at first that the conditions of theorem
are necessary for the complete decomposability of G . To
verify their sufficiency we shall construot a suitable subd-
group H in G. Let «t denote the type satisfying «x(sn)=
= 00 vwhenever G =G and we(f) 4 00  for every
h with £ G + G ; thw if 0 + X € G then &« £
& type X . Consider a vasis B=[x (L€ I)1] of G
and take the subgroups Jb € G (L € 1) of rank 1 sueh
thet tyne J = 1 and x € J, (L € I). It we define

H = Lg.l J; then the factor group G/H  1is torsionm,
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TM(G/H) is finite and 2 € M (G/H ) implies
,ﬁ,s*ﬁ. Thus for f2e TT(G/H) we have fL,,CG') =
=x (GL*1). Now in view of Theorem 5 we may state that

G  is completely decomposable.
Now we give another formulation of the preceding
theorem,

Theorem 5% ., Let G be a torsion free group satie-
fying all conditions of Theorem 5. Then the group G is
completel y decomposable if and only if G belongs to so-
me Baer’'s class (  and % (G/GLn®1)= 0  for ench
NLeTM(G/H) .

Proof. By hypothesis, we have rLP(Cr)< &, whenever
£ € TT(G/H).8ince 2(GLp™1) & 2, (G) we conclude
that ~(GIN¥1)< A, for 2 € TT(G/H) . Thus, in view

of Lemma 3, the condition ltﬁ(G’/G [(2%])= 0 1is equiva-
lent to f, (G)= "1& (GL[1*1) , and Theorem 5 may be applied,

To conclude this nots we mention one simple example.

Example. If f. is a fixed prime then by R ,, we
denote the additive group of all rationals with denomina-
tors prime to 1 . Let U, (m=1,2,...) be an infinite

sequence of groups satistying U, = R‘ﬂ-’ (m =1,2,... ) and

a0
set G =m§* U, ; thus G 1s a o -reduced torsion free
group that is qv-divisible for every prime Q #+ n , This
means that G 1is nomogeneous of the same type as R(m . By
[1,Theorem 12.61 the group G 1is separable, therefore, e-

very its pure non gero subgroup of finite rank is a di-
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rect sum of finitely many groups R According to

@
Corollary 3 and Lemma 1 we have x, (G)Y=0. 1t

Lx, (LeI)] is a bvasis of G and if we put J = {\x‘_?;‘

(L,el) end Ha= ;?ﬁ J, , then H is a homogeneous

completely decomposable subgroup' of G with torsion 12 -

primary factor group G/H . Nevertheless, G  is not

comple tely decomposable (see [1,Theorem 12.41), therefors,

in view of Theorem 1 G belongs to no Baer’s class l°" .

But first of all this example shows that the Theorems 1, 5

and 9 in [6] do not hold if the hypothesis on countability

is omitted,
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