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Commentationes Mathematicae Universitatis Carolinae

11,1 (1970)

ON AN EXPOSED ELEMENT OF A SET OF DOUBLY STOCHASTIC
RECTANGULAR MATRICES
Pavel CIHAK, Praha

In the present paper the notion of doubly stochas-
tic matrix of the type (ﬂnynl), the notion of U -expo-
sed element of any subset of a linear space and the
notion of a doubly stochastic unit matrix E of the
type (m,m ) are introduced. The main result of this
paper is to obtain some analogous properties to those
of the square unit matrix. It will be proved that the
matrix E is U-exposed, V -monotonic, V°-monotonic
and middle-symmetric. Moreover, these results are used
to obtain a necessary and sufficient conditions for
a m -vectcr to be a doubly stochastic image of am -

vector.
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1. Notations

The euclidean space of dimension m will be de-

m
noted by R .Define Lo xm 2 A Xy for £y xeR ,

e=(1,1,.,1), e®=(0,0,...,4,,0,.--, 0),

’

R =ixeR ; x"("%f-n X, =0, é.:a"‘b" 1% .
If 0.=(th )3'.,,&, is a matrix of the type (m,m)
then the matrix Q% = (%:é)*-,a'— of the type (m,m)
fulfils the inequality Q& .x =.&. @*x for all L€
€ R, ,xe R, if and only if f‘é =qja for
all 4, & (i.e. G* is the adjoint matrix to @& ).

Throughout this paper the term map (@ will be
used to mean a map from the euclidean space ‘Rw to 'Rm

such that

L4 4
a‘é’hszquhls’b tor b= (bj,f:"ekn, a=(ay) R, ,
a =08,

2. Doubly stochastic rectangular matrices

(2.1) A matrix @ =(g;4);,4 of the type (m,m) is
called doubly stochastic iff
ns =0, é.,‘i»h’ 1, o%; =1 %76 = %
for n=4,2,.,., m e&nd A= 4,2,...,m .
A set of all doubly stochastic matrices of the type

(m,m) is denoted by D, ,.
£

(2.2) If a matrix @ of the type (om m ) and a mat-
rix § of the type ( m, fo) are both doubly sto-
chastic then the product @S is a doubly stochastic
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matrix of the type (m, fn) -
2 Ak
(2.3) 1f Q€ Dy , then = A¥eD, ., -

(2.4) is a convex subset of R

J>'m., m m.m

3. Orderings
Define the following sets:

Vo=iteR s by24 2., 24

@} ?

U ={teRpu; oy >k >..> 4,73
WVe=ice R,5&:¢20 for a11 ke V, § .

Then V, is a convex wedge, V,0-V, = flel eand

U, is a convex cone, umn- U.m-'-‘ 2 131.

(3.1) Lemma. The convex wedge V. is generated by the

m
following elements:

Vet .. 4.00,.,00eB torn=1, 2,..rm

-m mn A
eand v = -V ,i.e. ¥ € Vm' for/g.-.-’l,z,.u,n‘b,—m

end it e Vm' then there are nonnegative numbers 7/
such that
» -
21 % v o+ ’[M’U' i
Proof. If e V,, then AU = o - )¢r+ o, -

2 -1
-,&;)2,1}’4—,,,4-(4-"_4-lr,,,)-(m.-ﬂ-qr +
w1 Ly oo M A
(3.2) Lemma. V7 is a convex cone generated by the

follov:‘mg elements: 3
¢'= (1-1,0,0,..., 0, 2= (0,4,-1,0,...,0),...,c* = 0,0,..., 0,1,~1).
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Proof. ClearlyV’=feeR ;% c 2 0for £=1,2,.sm,-m},

ice. ceV, iffceR, and ﬁcb 0 for p=A1,

1 .2
2,..,m, -‘“24 ¢, = 0 . It follows that €, e%,...
veey €1 are elements of Ve, V,: n- V”: = [0) .
1f we put ¢”= (0,0,...,0,1) € R, = Vj  then

o
{c 3 <4 i8 @ basis for the space R .1f C € Vn

XN

n
»
then ¢ abg., ¥, ¢” , where 3;-“% ez 0, 4,7 2%,

»

The proof is complete.
(3.3) Define a relation 2= on the set D, n
Q1 ->- Qz iff 04, Dz € D,m’,n and

qur-x 20.30.3( for all eV,

ms X € Vi ,ice.

If moreover

G,'D‘- G, L eV forall elV,.
QI x >@,L.x forall Lel,,xel, the
this property will be denoted by Qq‘> Qz

Clearly = is a quasiordering. Moreover,

this quasiordering is en ordering. Suppose G 2 @, ,
o o
0‘2 2 01 . 1f eV,  then 040'- Qalre V.-V, =

= (0] . Put c-cc”',,..a-a , Then C& = 0 for
all e V, . Hence (cih):’, VoNe-Ve)y = [0]

for ?'.-4,2,,.,,/»2. and we have C = 0, a,, = a,

4. Permutations
The group G, of all permutations of m elements
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can be considered as a subset of the set of doubly sto-
chastic matrices D,,,,,n . Define the identical permuta-

tion E '.E';x = X , the converse permutation E,’n

.E X= (X, X ,.cc, X, ) and the transposition
Pé’B;' = (X Xy ooe Xy X5 % 490003 X4 19 5 Xty os %)

for ell X = (X, X,,.0, %, ) € R,

(4.1) Theorem. Let P be a permutation in the group
G, . Then there is @ finite sequence P, € G, , « =
= 0’4’.,,, 2, having the following properties:

o

1 P € { },‘ -0 .

-1
2° For each reid,2,.,93, R_,' R,_ is
a transposition of the form 'P*H’ i€i4,2,... ,m-1%.

¥E,=R>P>..>F =E, .

© 1

Hence E, > P for P#% E, and P> E/ for P+ E,;-

For each sequence fulfilling the properties 1°,2° and

3° the inequality q = (—”‘—'Li%‘—-(-w holds.
Proof. Let I(P) ( I(P) resp.) be the

number of inversions (noninversions resp.) of the per-

mutation P, Hence L(P)+ I'(P)=(%3).1£ P+ E,

(P = E:” resp.) then I(P) >0 (I’(P)> O resp.).

Hence there is a number 4 €{1,2,.,.,m -1} such that

a; < @, (a; > a, . reep.)

for all a=Pl, el ,h a=(a, )y, , .Hence

R ey PO x-Plox= %4"‘4"’"4"‘&4- Ry = By Ky Gy im Q) %-%, )20
(£ 0 reep.) for all eV, x €V, , moreover the
strong inequality is fulfilled for all & € U, and
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xelu,,i.e.

|

9t +1

P>P (P>T

,i.HP resp.).

There is a maximal finite decreasing sequence {E‘?:'_a

of permutations satisfying conditions 1° and 2°. 1f
R+ E, or 'l; 4= E.'m then this sequence (by the
first part of this proof) is not meximal. Hence

B=E,, B =E,.

If X == (mm-1,..,,1)  then
Rl x-P_ &rx 21, Hence

g € E tnx-E, box= F M (2he-m-1) .

5. Doubly stochastic unit matrix E

Now, let us try to define some matrix E, e Dm . which
td

would have analogous properties to those of the unit

matrix and coincide with it in the case m = m . This

matrix E will be called doubly stochastic unit matrix.

Consider elements w"', n=1,2,..., m of the

set G,’;” N V,, ~which are defined in the following way:

x-m

Put 4 = - e s’ < H+ 1 we define

x x » 3
%:‘%7 forhé,s,rz%’1-4—-z7 endu/i‘-'a
A 1
for Mo > s +4 .Clearly 0 £ w,,, < % -
X
Put & = (g VW, for k= 4,2,...,m ,

r 1 g .
where 2, = -~  for & & n vy =0 for R>n.

Since the elements {2*j™

ewq are independent in the
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linear space Rm , there exists one and only one line-
ar map E*: R — R,  such that E*»* = w”® for
t=42,..., m.

(5.1) The matrix E = (E*)* is doubly stochastic,
E € D, -
25.0_0_.' If El - (eéh',é-- '1’ 2’0",/’"', h= 4’ 2,00-,’»))

()
€ '=1(0,0,..,0,1,,0,..,0) then “=nv”™~ (x-1)v*"",

1

* ) x -
Ee"sxw=(a-Dw*" (put v%v, w’= w! ),

d *_ 00 x &4
é,e‘»h'f' e.e=rw.e-k-Nw-.e=1 torn=1,2,...,.m.

On the other hand E*»™e ™= (7,1;’;4;“ ,.,,%),

e, L ¥ 1
i.e. mééeéa’ 7 for A=12.. . m.

It remains to show that all elements e;-h of the mat-
rix E, are nonnegative. This property is equivalent to
E‘*e“>= (eﬂh)z_,, are nonnegative vectors for x4 =
= 4’ 2, XX DY m .

If =1 then E,*e,"’ = ! is a nonnega-

tive vector. If

nem 4o (K=-1)-m
nei2,3,..,m}, &'=72= t'= "5

=5-2 5 tef0,..
cerym3, békl</b+'1’tét’< t+1thent €5 ende,=0
for Ao % T .

1° I1f ¢ = A then g‘,tﬁa/z('t—ﬁ)-(m-‘l)(*f- f; ) =

.4-%",:,+%"t =1 and e, q =0 fork>t+q.

2° 1f t <. then
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8- 1= )=vf‘\f 4+t -%’) = 0  and

&fﬁ m

q‘kaﬂw‘b‘)' O for o>+t +1. e proof is com-
plete.
(5.2) Note. 1° E*®, ¢

.

m

2° £*e‘”=w.. 1,0,0,...,0) form2m.
3° It m=m theno®= 20 for all & and
E  ie the unit matrix.

(5.3) Theorem. E 2@ = ,E,:m E forall QelD,, , -

Proof. 1° Suppose &€ V,,,a= Q&, n €{4,2,...,m3.
" ™ 4 ». m ib ”
Then Qbrvr=a-v's= 753%“91524 %,;; %’”E’E;ﬁ‘i , where
i »

Q= Qsndimr Ta=7%,2, Lse -

Choosing & number 4 € {0,1,2,..., m3% such that

rép = %@< » +1 we obtain the following inequalities:

L2 n i X m _ ﬁ
0tptZanet S ifd Ua s At 5
There is a number ,G'*éﬂ,;,_., such that

S bt (1 4,%4"*"

fesq
= %“% (g By + (- Yipg) < /og-( > (-2
| T ETCH SRy 2 it w®
e ap.r" s ow”
Since E*y*m o we cob Write @& vz 8. E%'% E b o”,

mw s m

1 m .
Moreover G”"Vm:“,z,%;éﬂih)%' ,T;,‘g,‘e’j,ﬂ Broa™ Using

- 106 -



(3.1) we obtain @&.-x £E 4. x for all X € Von and

eV ie. E2G.

m
2° 1f &re Va,yeV, then x=~E gy eV, .

Clearly . E;,‘G € -Daw,m. and E = E;“Q by 1°. Hen-
ce
E, Elroqu=Ef. E, p=-Eb.x £~ ¥, Qbux=Q0.E, x)=Qb:y
and .E,;”E £ Q.
(5.4) Definition. Let D be a subset of a linear spa-
ce R . Let W be a nonvoid subset of the space of all
linear furictionals on the space R . Then an element Qe
€ D will be called 1l-exposed iff

Z(Q)>Z(Q) for a11Q€ D, @+ G, end all Ze U.

IfZeRm.m, A= (zé'.)"* th‘:., t::e symbol Z-Q@

will denote the functional Z(Q)??;.‘ézj* Lis -

(5.5) Theorem. The matrix K € D, ,, isen U,® U,-
exposed element of the set Dm, m in the linear spa-

ce R, .. -
Proof. If x € R,, and & € R, then the symbol

% ® & will denote the matrix Z = (Xj ‘b'h.)g'.,.b of

the type (m,m ) . Hence

XQU Q=0 - X andx@Ob-Bex® &-E for

all xeV, , eV

”m " Qe»m’“

(by (5.3))..

Now, suppose x € U, , & € U, . Then there are real
m
x
numbers §» and 7, such that x-ﬁ}:." §,‘_'zr ,
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m » )
ra ’“21 M,V <+ We obtain

i”‘(‘x@‘\’ﬁﬂ7> 0 for £=41,2,...,m-1, §m= M %m s

Nentl-ty 1> 0 for n=4,2,u;m=1, = mh,
and
x @& =':: »iv g v e v”* .

If x@4:Q = X® &-E  for some matrix @, €

€ Dm,“ then

m m ” » m m ™ »
v’ Ld .
ESFERGTLES 3 TERTPES
Since '@ Q£ ®-E, ¥@ v §=v'®@+™ E  and
v Q, = +»"®v*-E for allx eand 5 , we obtain

mm  independent equalities:
o »”. Q,:nr"@ v.E forn=1,2,..,m eand p=
=1,2,...,m . Hence @ = E .The proof is complete.

(5.6) Note. Using the symbol > defined in (2.3)

which denotes a transitive and nonreflexive relation

on the set D and using theorem (5.5), we ob-

m,m >
tain the following statement:

The matrix E  is the unique element of the set
Dm’” having the following property: E > @ for
all @ € D, m ouch that Q% E .

(5.7) Definition. A matrix S = (%545 4 ©f the type
(m,m) will be called middle-symmetric iff

’ ’ s
E‘m S E’n = 6 ) 1€ bjk"“’m«-é#h m-M 4 1 for
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al 4, & .
(5.7) Remark. If a matrix is a product of two middle-

symmetric matrices then this matrix is also middle-sym-
metric.

(5.8) Theorem. Let E be the doubly stochastic unit
matrix of the set D, , . Then the matrix E is mid-
dle-symmetric and the matrix 7% E™  is the doubly-
stochastic unit matrix of the set ]}MW .

Proof. I1f E e D, , and E, EE, +E  then
by the note (5.6) E:, E E',w < E , Take an element
x eu, end e U . Then —E,;”xell,m and
-E;‘ & € U, Using theorem (5.5), we obtain the follo-
wing inequalities:
E&ix>E EE & xeE-E b E, x)>E] EE, (-E 6)E x)=Elx,
which is a contradiction.

Let E., be the doubly stochastic unit matrix
m
of the set 1, ., xel, , Lel,. IfE+ZE*

then by (5.6)
E,> 2 E*, E x> R x-br, FEEXix >Elx .

Hence —",::'— Er> E . Using (5.6), we obtain a con-
tradiction.
(5.9) Examples of doubly stochastic unit matrices of

verious types (m 6 m) :
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(m,mde (2,1), (3,2), (4,3), (5,3), (5,4), (65)
E= [11](1 0] (100][100)[1000][1 0000)
LJ 141 540|340t 2o0||h 4000
0o1)|0%4ll010||0%%0|[0%%00

001 |{0od%||loodf joo}0
l0o01){ooo1)]jooott

0 0004
6. Doubly stochas;;‘c' maps of the euclidean space

(6.1) Definition. A matrix @ e Dm’m_ is said to be
V -monotone ( V° -monotone resp.) iff
AVpcV, (QV, cV,, resp.).
(6.2) Lemma. The doubly stochastic unit matrix E e D,m,,,,,
is V°-monotone and V -monotone.

Proof. 1° By (5.2) E*V,, < V,,L‘ . Ifee V)
then 0 £ c-E*x for all x ¢ V,, . But ¢- E*x =
=Fc.x . Hence Ece V,

2° Define & matrix E, = & E* , Then by (5.8)
E, is the doubly stochastic unit matrix of Dm’,,._ .

Hence

EV, = X EXV, =EXV,cV, .

(6.3) Theorem. Let a be an element of the set V, |
let Ar be an element of the set Vj, and let E be

the doubly stochastic unit matrix in .'Dm, m - Then
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the following conditions are equivalent:
1° There is a doubly stochastic matrix @ e D, m
such that a = Qb .

o ]
2 Ebr-acV,; .
.2
° a2l w” for K =4,2,..,m,-m .

4° 1f refi,2,...,,m-1}, br 2 pe{0 e, M3, AL K<+ 1
then

14 4 & A f 4
néé%f;yté‘%"@-bl )'&b-m andﬁazd%z 7n "fﬂ .

5° There is a doubly stochastic matrix S € D,

that a = SE.Zr.

m,m such

Proof. 1%==p 2°, 2% 3°, 3 qmmmp 4°:
If the condition 1° holds then @ -X= Q& X £ Ef-x
for all x € V,, by (5.3). Hence Ef-a eV, . Using

(3.1) we obtain:
iZa_ =Q- V‘E!f V= ,&Ev-lrﬂrsb % 215-0-01—4, )2, ,

for n=41,2,..,m e&nd

- %’gaz -q. v e b’-w’m--—%,éq‘bfu

and the equivalence of conditions 2°, 3° and 4°.

2°=p 5° If @ ${SEL; Se Dm’m} then by the se-
paration theorem [6] there is an element 4 e R, such
that

a-y > SEL.n forall S€D,, .,

Let P be such permutation in G'm that X = P’&e\{n
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Then, using theorem (4.1), we obtain:

a-x2 a.szq-q->PEIﬁry.-E.O-P'z;.=£,o-.x .
Hence (Efr-a)+x < 0 which is a contradiction.
5°==> 1°: This follows from (2.2).
(6.4) Corgllary, Let T be a doubly stochastic mat-
rix of the type (m,m), lot' E be the doubly sto-
chastic unit matrix of the type (m,m) and let &
" be an element of the set V/, . Then there is a doubly
stochastic matrix S of the type (m,m) such that

SEf = ETL.
(6.5) Note. The equivalence of the conditions 1° and
4° in theorem (6.3) is well-known for a special case
m = m (see [4]), the condition 4° in the following
form: ‘

x A o
k%f'* ‘h% Ly for K =4,2,...,,m-1 end 3 g, =

P .
= 3 ,6)‘ . But the proof is given by another way. -

K=y
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