Karel Najzar
On the method of least squares of finding eigenvalues and eigenfunctions of some symmetric operators. II.

Persistent URL: http://dml.cz/dmlcz/105291

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON THE METHOD OF LEAST SQUARES OF FINDING EIGENVALUES AND EIGENFUNCTIONS OF SOME SYMMETRIC OPERATORS, II

K. NAJZAR, Praha

In [1], we studied the method of least squares for approximating the eigenvalues of a DS-operator. From the results of [1] it follows that the approximation $\lambda^{(n)}$ to an eigenvalue λ depends on a parameter μ, i.e., $\lambda^{(n)} = \lambda^{(n)}(\mu)$ and we can obtain upper or lower bounds of λ for appropriate choice of μ. In this paper, we shall consider the problem of the optimum choice of the μ which leads to an error $\lambda^{(m)}(\mu) - \lambda$ of minimum absolute value. For the case in which A is a bounded below operator we shall show that the Ritz's approximation to the smallest eigenvalue of A is "a limit's case" of the approximations obtained from applying the method of least squares. Finally, we shall consider the problem of approximating the eigenfunctions of a DS-operator using the method of least squares.

We assume throughout that A be a DS-operator with its domain a real separable Hilbert space H, i.e., A is a symmetric operator in H such that the set of its eigenvalues is of the first category on the real a-
xis and the spectrum $\sigma(A)$ is the closure of this set. Let λ_i, $i = 1, 2, \ldots$ be an enumeration of distinct eigenvalues of A. Further, we assume that $\{\lambda_i\}_{i=1}^{\infty}$ is a totally complete system.

1. In this section we shall consider the problem of the optimum choice of μ. Let $\lambda^{(m)}(\mu)$ be defined by

\begin{align*}
(1) \quad \lambda^{(m)}(\mu) &= \begin{cases}
\mu + q_m(\mu) & \text{for } \mu < \lambda_j, \\
\mu - q_m(\mu) & \text{for } \mu > \lambda_j,
\end{cases}
\end{align*}

where

\begin{equation}
q_m(\mu) = \min_{\|u\| = 1} \frac{||Au - \mu u||}{\|u\|}
\end{equation}

and λ_j is a fixed eigenvalue of A.

We remark that $\lim_{m \to \infty} q_m = \inf_{t \in \sigma(A)} |t - \mu|$ (Theorem 3 of [11, p.318]). Before proving Theorem 1, we establish the following lemma.

Lemma 1. The function $\lambda^{(m)}(\mu)$ is monotone increasing in each of the intervals $I_1 = (-\infty, \lambda_j)$ and $I_2 = (\lambda_j, + \infty)$.

Proof. Firstly, assume that $\mu < \mu_0$, $\mu_0 \in I_1$. It follows from the definition of $q_m(\mu)$ in (2) that there exists $u_1 \in \mathcal{L}\{\mathcal{Y}_i\}_{i=1}^{\infty}$ such that $\|u_1\| = 1$ and $q_m(\mu_0) = ||Au_1 - \mu_0 u_1||$. Then

\begin{equation}
(3) \quad \lambda^{(m)}(\mu_0) = \mu_0 + ||Au_1 - \mu_0 u_1|| = \mu_0 + \sqrt{||Au_1||^2 - 2\mu_0 (Au_1, u_1) + \mu_0^2}.
\end{equation}

Let $f(\lambda)$ be defined by
where $\lambda = \|A\mu_1\|_2$ and $b = (A\mu_1, \mu_1)$. As $a \geq b^2$, the function $f(\lambda)$ is real and monotone increasing in $(-\infty, +\infty)$. Evidently, $\lambda^{(m)}(\mu_1) = f(\mu_1)$. Therefore, we find

\begin{align*}
(5) \quad f(\mu_0) \leq f(\mu_1) = \lambda^{(m)}(\mu_1) .
\end{align*}

Now, we note that

\begin{align*}
\|A\mu_1 - \mu_0 \mu_1\| \geq \varphi_m(\mu_0)
\end{align*}

and from (4) it follows

\begin{align*}
f(\mu_0) \geq (\mu_0 + \varphi_m(\mu_0)) = \lambda^{(m)}(\mu_0)
\end{align*}

so that $\lambda^{(m)}(\mu_0) \leq \lambda^{(m)}(\mu_1)$.

In the case $\mu_0 < \mu_1$, $\mu_0 \in I_2$ one finds similarly

\begin{align*}
\lambda^{(m)}(\mu_0) \leq \lambda^{(m)}(\mu_1) .
\end{align*}

An immediate consequence of Lemma 1 and Theorem 3 of [1] is the following

Theorem 1. Suppose an eigenvalue λ_1 of A is not an accumulation point of $\sigma(A)$. Let μ_1, μ_2, μ_3, μ_4 be real numbers such that

\begin{align*}
\frac{1}{2}(\lambda_1 + t_{j-1}) < \mu_1 < \mu_2 < \lambda_j < \mu_3 < \mu_4 \leq \frac{1}{2}(\lambda_j + t_{j+1})
\end{align*}

where

\begin{align*}
t_{j-1} = \sup_{t \in \sigma(A)} t, \quad t_{j+1} = \inf_{t \in \sigma(A)} t .
\end{align*}

Then

\begin{align*}
a) \quad \lambda^{(m)}_-(\lambda_j) \leq \lambda^{(m)}(\mu_3) \leq \lambda^{(m)}(\mu_4) \leq \lambda_j \leq \lambda^{(m)}(\mu_1) \leq \lambda^{(m)}(\mu_2) \leq \lambda^{(m)}_+(\lambda_j) ,
\end{align*}

where
\[\lambda^{(m)}_-(\lambda_j) = \lambda_j - q_n(\lambda_j), \]
\[\lambda^{(m)}_+(\lambda_j) = \lambda_j + q_n(\lambda_j), \]

b) \[\lim_{n \to \infty} \lambda^{(m)}_-(\lambda_j) = \lim_{n \to \infty} \lambda^{(m)}_+(\lambda_j) = \lambda_j. \]

In words, this theorem says that the best upper approximation to \(\lambda_j \) is obtained when \(\mu = \frac{1}{2} (\lambda_j + t_{j-1}) \) and the best lower approximation when \(\mu = \frac{1}{2} (\lambda_j + t_{j+1}) \).

2. Let \(A \) be a DS-operator which is bounded below. Let \(\lambda_1 < \lambda_2 < \lambda_3 < \ldots \) be an enumeration of its distinct eigenvalues with an increasing order of values and \(\mu \) be such a real number that \(\mu < \lambda_1 \). It follows from Theorem 1 that we shall obtain the best approximation to \(\lambda_j \) from above when \(\mu \to -\infty \). The next theorem gives an important information on the limit of the function \(\lambda^{(m)}(\mu) \) when \(\mu \to -\infty \).

Theorem 2. Let \(A \) be a DS-operator which is bounded below. Let \(\lambda_1 \) be the smallest eigenvalues of \(A \). Then

\[\lim_{\mu \to -\infty} \lambda^{(m)}(\mu) = \min_{\mu \neq \lambda_1} \frac{(A\mu, \mu)}{1|\mu|^2}, \]

where \(\lambda^{(m)}(\mu) \) is the approximation to \(\lambda_1 \).

Proof. Suppose that \(\mu < \lambda_1 \). Therefore, from (1) and (2) we see that
for each \(u \in \mathcal{L}\{\psi_i\}_{i=1}^n \) such that \(||u|| = 1 \).

Select \(u \in \mathcal{L}\{\psi_i\}_{i=1}^n \), \(||u|| = 1 \) and define \(f(\lambda) \) by

\[
f(\lambda) = \lambda + \sqrt{a - 2\lambda \nu + \lambda^2}
\]

where \(a = ||Au||^2 \) and \(\nu = (Au, u) \).

It follows from (8) and (7) that

\[
\lim_{\mu \to -\infty} \lambda^{m,\mu}(u) \leq \lim_{\mu \to -\infty} f(\mu).
\]

It is easily verified that

\[
\lim_{\mu \to -\infty} f(\mu) = (Au, u).
\]

Since \(u \) is an arbitrary element of \(\mathcal{L}\{\psi_i\}_{i=1}^n \) such that \(||u|| = 1 \), it follows from (9) and (10) that

\[
\lim_{\mu \to -\infty} \lambda^{m,\mu}(u) \leq \min_{||u|| = 1} (Au, u).
\]

By Theorem 4 of [1], we have

\[
\lambda^{m,\mu}(u) = q_{m,\mu}(u) + \mu \geq \min_{||u|| = 1} (Au, u).
\]

Therefore, by (9) and (10) we find

\[
\lim_{\mu \to -\infty} \lambda^{m,\mu}(u) = \min_{||u|| = 1} (Au, u)
\]

Remark 1. Under the assumptions of Theorem 2, let \(\lambda^{(n)} \) be the approximation to \(\lambda \) obtained from applying the Ritz's method to the subspace \(H_n = \mathcal{L}\{\psi_i\}_{i=1}^n \).

By Theorem 4 of [1], we have
\[\lambda^{(m)} = \min_{\mu \in \mathbb{C}, \|\mu\| = 1} (A\mu, \mu) \]

and \(\lambda_1 \leq \lambda^{(m)} \leq \lambda^{(m)}(\mu) \) for every \(\mu \) with \(\mu \leq \lambda_q \).

From Theorem 2 we can deduce that the approximation to the smallest eigenvalue \(\lambda_q \) by the Ritz's method is "a limit's case" of the approximations by the method of least squares, i.e.,

\[\lim_{\mu \to \infty} \lambda^{(m)}(\mu) = \lambda^{(m)} \]

for any positive integer \(n \).

3. In this section we shall consider the problem of approximating the eigenfunctions of DS-operator.

Without loss of generality we may assume that \(\mu = 0 \).

We shall suppose that the eigenvalues \(\{\lambda_i\}_{i=1}^{\infty} \) of \(A \) satisfy the relations

\[0 < |\lambda_1| < |\lambda_2| \leq |\lambda_3| \leq \ldots \]

and \(\lambda_q \) is a simple eigenvalue.

The following lemma is needed.

Lemma 2. With the assumption (13), let \(\{v_n\}_{n=1}^{\infty} \) be a sequence of normalized functions belonging to \(\mathcal{D}(A) \) such that \(\lim_{n \to \infty} \|A v_n\| = |\lambda_q| \). Then there exists a convergent subsequence \(\{v_{n_k}\}_{k=1}^{\infty} \) such that its limit is an eigenfunction of \(A \) belonging to \(\lambda_q \).

Proof. By Lemma 1 of [1]

\[v_n = \frac{v_{n}^{(m)}}{\|v_{n}^{(m)}\|}, \quad \|A v_n\|^2 = \sum_{i=1}^{m} \lambda_i^2 \cdot |v_{n}^{(m)}i|^2, \]

where \(v_{n}^{(m)} \) is the projection of \(v_n \) on \(\mathcal{H}_n \) and \(\mathcal{H}_n \) is the closure of a linear manifold generated by the
eigenfunctions of A associated with the eigenvalue λ_i. Since ν_m is a normalized function, we have

$$|A
\nu_m|^2 - \lambda_i^2 = \sum_{i=2}^\infty (\lambda_i^2 - \lambda_i^2) \cdot \|\nu_m^{(m)}\|^2 \geq (\lambda_2^2 - \lambda_1^2) \cdot \sum_{i=2}^\infty \|\nu_i^{(m)}\|^2 \geq 0.$$

It follows that

$$\lim_{n \to \infty} \sum_{i=2}^\infty \|\nu_i^{(m)}\|^2 = 0 \quad \text{(14)}$$

and

$$\lim_{n \to \infty} \|\nu_i^{(m)}\|^2 = 1 \quad \text{(15)}$$

Now, let φ_i be an eigenfunction corresponding to the eigenvalue λ_i such that $\|\varphi_i\| = 1$. Then $\nu_i^{(m)} = (\nu_m, \varphi_i) \varphi_i$ and from (15) it follows $\lim_{n \to \infty} |(\nu_m, \varphi_i)|^2 = 1$.

This implies that the sequence $\{\nu_m^{(m)}\}_{m=1}^{\infty}$ contains a subsequence $\{\nu_m^{(m)}\}_{m=1}^{\infty}$ such that

$$\lim_{n \to \infty} (\nu_m, \varphi_i) = e, \quad |e| = 1 \quad \text{(16)}$$

Now,

$$|\nu_m^{(m)} - e \varphi_i|^2 = \sum_{i=2}^\infty \|\nu_i^{(m)}\|^2 + |(\nu_m^{(m)}, \varphi_i) - e|^2.$$

Hence, by (15) and (16) the subsequence $\{\nu_m^{(m)}\}_{m=1}^{\infty}$ has the limit $e \varphi_i$ and the proof is completed.

Remark 2. In this argument we have assumed that the λ_i is a simple eigenvalue of A. However, multiple eigenvalues do not give rise to any special difficulties.

Remark 3. Lemma 2 is not valid in the case when $\lambda_2 = -\lambda_1$. To prove this we denote φ_1, φ_2 the normalized eigenfunctions corresponding to λ_1, λ_2, respectively. Now, let us make a special choice of ν_m as
follows:
\[v_n = \frac{1}{\sqrt{2}} (\varphi_1 + \varphi_2), \quad n = 1, 2, \ldots \]
Then \(|v_n| = 1 \) and \(A v_n = \frac{1}{\sqrt{2}} \lambda_n (\varphi_1 - \varphi_2) \),
whence \(|A v_n| = |\lambda_n| \) and \(v_n \) is not an eigenfunction of \(A \).

Corollary. Let \(\mu_n \) be a normalized function belonging to \(L^2 \left[a, b \right] \) such that
\[|A \mu_n| = \min_{\mu \in L^2 \left[a, b \right]} ||A \mu||. \]
Under the hypotheses of Lemma 2 the sequence \(\{\mu_n\}_{n=1}^{\infty} \) contains a convergent subsequence and every convergent subsequence has a limit normalized eigenfunction of \(A \) associated with the eigenvalue \(\lambda_n \). It follows that the sequence \(\{\mu_n\}_{n=1}^{\infty} \) contains at most two accumulation points. These points are \(\varphi_1 \) and \(-\varphi_1 \), where \(\varphi_1 \) is a normalized eigenfunction of \(A \) associated with the eigenvalue \(\lambda_1 \). If we assume that \(\{\mu_n\}_{n=1}^{\infty} \) has one accumulation point, it follows from Lemma 2 that the sequence \(\{\mu_n\}_{n=1}^{\infty} \) is converging.

The next theorem gives a useful information on the construction of the approximation of the eigenfunction \(\varphi_1 \).

Theorem 3. Let \(A \) be a DS-operator and \(\{\psi_i\}_{i=1}^{\infty} \) a totally complete system. Suppose the eigenvalues \(\{\lambda_i\}_{i=1}^{\infty} \) of \(A \) satisfy the relations
\[0 < |\lambda_1| < |\lambda_2| \leq |\lambda_3| \leq \ldots \]
and that the eigenvalue \(\lambda_1 \) is simple. Consider the
functions $\mu_m \in L^2_{\int_{t_0}^{t_1} d t}, m = 1, 2, \ldots$ with the following properties

1) $\| A \mu_m \| = \min_{\mu \in L^2_{\int_{t_0}^{t_1} d t}} \| A \mu \|,$

2) $\| \mu_m \| = 1,$

3) $(\mu_m, \mu_{m+1}) \geq 0.$

Then the sequence $\{\mu_m\}_{m=1}^{\infty}$ converges to a normalized eigenfunction of A associated with the eigenvalue λ_1.

Proof. To prove this theorem, assume the contrary. Let φ_1 be an eigenfunction of A corresponding to λ_1 such that $\| \varphi_1 \| = 1$. Suppose that $\{\mu_m\}_{m=1}^{\infty}$ is not converging. Then by Corollary it follows that $\{\mu_m\}_{m=1}^{\infty}$ has two accumulation points φ_1 and $-\varphi_1$.

Define the sets M, N as follows:

- M consists of all μ_m for which $(\mu_m, \varphi_1) \geq 0,$
- N consists of all μ_m for which $(\mu_m, \varphi_1) < 0.$

From Corollary it follows that M and N have the accumulation points φ_1 and $-\varphi_1$, respectively. Since $\{\mu_m\}_{m=1}^{\infty} = M \cup N$, there exists $\mu_m \in M$ and $\mu_{m+1} \in N$ such that

$$\| \mu_m - \varphi_1 \| < \frac{1}{2}, \quad \| \mu_{m+1} + \varphi_1 \| < \frac{1}{2}.$$

But

$$(\mu_m, \mu_{m+1}) = (\mu_m - \varphi_1, \mu_{m+1}) + (\varphi_1, \mu_{m+1} + \varphi_1) - 1 \leq$$

$$\leq \| \mu_{m} - \varphi_1 \| + \| \mu_{m+1} + \varphi_1 \| - 1 < 0$$

and this contradicts the assumption 3).
Remark 4. Theorem 3 is not true for the case
\[\lambda_2 = -\lambda_1. \]

Remark 5. In the case of the multiple eigenvalue \(\lambda_1 \), Theorem 3 is valid, if we assume that \((\omega_m, \omega_{m+1}) \geq \varepsilon > 0 \) for \(m = 1, 2, \ldots \).

Remark 6. Let \(A \) be a DG-operator and let \(\lambda_{\text{sc}} \) be a simple eigenvalue of \(A \). Suppose \(\lambda_{\text{sc}} \) is not an accumulation point of the spectrum \(\sigma(A) \). Let \(\mu \) be a real number such that
\[|\mu - \lambda_{\text{sc}}| < \inf_{t \in \sigma(A)} |\mu - t|. \]
Then a convergence theorem similar to Theorem 3 can be established, if we apply Theorem 3 with \((A - \mu I)\) and \(\lambda_j - \mu \) in place of \(A \) and \(\lambda_j \), respectively.

Under the assumptions as in Theorem 3, we now study the problem of determining \(\{\omega_m\}_{m=1}^{\infty} \). Without loss of generality we may assume that the system \(\{\Psi_i\}_{i=1}^{\infty} \) is orthonormal and \(\omega_1 = \Psi_1 \).

Let \(q_m^2 \) be the smallest eigenvalue of the matrix \(\lambda_m = \{(A\Psi_i, A\Psi_j)\}_{i,j=1}^{\infty} \), i.e., \(q_m^2 = \min_{\lambda_m \in \sigma(A)} \|A\mu\|^2 \).
To find \(\omega_m = \sum_{i=1}^{\infty} \alpha_i^{(m)} \Psi_i \), \(m > 1 \), we must determine the solution of the equations
\[\sum_{i=1}^{\infty} \alpha_i^{(m)} [(A\Psi_i, A\Psi_j) - \delta_{ij} q_m^2] = 0, \quad j = 1, \ldots, n \]
for the \(m \) unknowns \(\alpha_1^{(m)}, \ldots, \alpha_n^{(m)} \) such that
\[\sum_{i=1}^{n} (\alpha_i^{(m)})^2 = 1. \]
and

$$(19) \sum_{i=1}^{n-1} \alpha_i^{(m)} \sigma_i^{(m-1)} \geq 0.$$ \hspace{1em}

It is evident that the solution $\alpha^{(m)} = (\alpha_1^{(m)}, \ldots, \alpha_n^{(m)})$ of (17) is an eigenvector of A_m corresponding to q_m^2.

If the rank of the matrix $B_m = A_m - q_m^2 \cdot I_m$ (where I_m denotes the identity matrix) is equal to $n - 1$, it follows from (17), (18) and (19) that the conditions 1) - 3) of Theorem 3 determine a unique function μ_m.

Now, we discuss the rank κ_m of the matrix B_m.

Let $\kappa_m = n - \kappa$ and let $\{\varphi^{(m)}_{\kappa}, \varphi^{(m)}_{\kappa+1}, \ldots, \varphi^{(m)}_n\}$ be an orthonormal basis for the space of the solutions of (17). Define V_{κ} to be a κ-dimensional space spanned by $\{\varphi^{(m)}_i\}_{i=1}^{\kappa}$, where $\varphi^{(m)}_i = \frac{1}{\sqrt{2}} \varphi^{(m)}_{\kappa+i}$. Then we have

Lemma 3. Under the hypotheses as in Theorem 3, let the rank of the matrix B_m be equal to $n - \kappa$, $1 \leq \kappa \leq n$. Then

$$(A\mu, A\nu) = q_m^2 \cdot (\mu, \nu)$$

for any $\mu, \nu \in V_{\kappa}$.

Proof. Let $q_m = \min_{\mu \in V_{\kappa}} \|A\mu\|$. Using the definition of $q^{(m)}$, we have

$$\frac{1}{2} A\mu^{(m)} = \frac{1}{2} q_m \varphi^{(m)}_i, \quad \frac{1}{2} A\nu^{(m)} = \frac{1}{2} q_m \varphi^{(m)}_i, \quad i = 1, \ldots, \kappa$$

and hence

$$(20) (A\mu^{(m)}, A\nu^{(m)}) = \sum_{\kappa=1}^{\kappa} \alpha^{(m)}_i q_m^2, \quad \alpha^{(m)}_i = q_m \cdot \sigma_i.$$
Since \(\{ \mu^n_m \}_{i=1}^{\infty} \) is an orthonormal basis for \(V_k \), it follows from (20) that \((A\mu, A\nu) = q^n\mu, (\mu, \nu) \) for any \(\mu, \nu \in V_k \). This proves the lemma.

As a consequence of Lemma 3, we have

Theorem 4. With the assumptions of Theorem 3, let the system \(\{ \gamma_i \}_{i=1}^{\infty} \) be orthonormal. Then there exists a positive integer \(n_0 \) such that the rank of the matrix \(B_m = \{ (A\gamma_i, A\gamma_j) - q^{-1} \gamma_i, \gamma_j \}_{i=1}^{\infty} \) is equal to \(n - 1 \) for \(m > n_0 \), i.e., \(q^2 \) is a simple eigenvalue of the matrix \(B_m = \{ (A\gamma_i, A\gamma_j) \}_{i=1}^{m} \) for \(m > n_0 \).

Proof. Let us denote the rank of \(B_m \) by \(\kappa_m \). Suppose that there exists an infinite set \(N \) of positive integers such that \(\kappa_m < n - 1 \) for \(m \in N \).

Now, it follows from Lemma 3 that there exist \(\mu_m, \nu_m \) such that

1) \(\mu_m, \nu_m \in \{ \gamma_i \}_{i=1}^{\infty}, \| \mu_m \| = \| \nu_m \| = 1 \),

\[(\mu_m, \nu_m) = (A\mu_m, A\nu_m) \]

2) \(\| A\mu_m \| = \| A\nu_m \| = q^n \)

for any \(m \in N \). Consequently, \(\lim_{m \to \infty} \| A\mu_m \| = \lim_{m \to \infty} \| A\nu_m \| = |\lambda_1| \).

It follows from Lemma 2 that we can choose convergent sequences \(\{ \mu^n_i \}_{i=1}^{\infty} \) and \(\{ \mu^n_i \}_{i=1}^{\infty} \) from \(\{ \mu^n_m \}_{m=1}^{\infty} \) and \(\{ \nu^n_m \}_{m=1}^{\infty} \), respectively, such that \(\lim_{m \to \infty} \mu^n_m = \mu \).
and \(\lim_{i \to \infty} v_{n_i} = v_0 \), where \(u_0 \) and \(v_0 \) are the normalized eigenfunctions corresponding to \(\lambda_1 \). From this we obtain

\[(21) \quad (u_0, v_0) = 0.\]

On the other hand, \(\lambda_1 \) is a simple eigenvalue of \(A \). Consequently, \(|(u_0, v_0)| = 1 \) and this contradicts (21).

Remark 7. With the assumptions of Theorem 3, the number \(q_{n_0}^2 \) is the smallest eigenvalue of the algebraic eigenvalue problem \((A_m - \theta B_m)u = 0\), where

\[
A_m = \{ (A\xi_i, A\xi_j) \}_{i,j=1}^{n} \quad \text{and} \quad B_m = \{ (\xi_i, \xi_j) \}_{i,j=1}^{n},
\]

and there exists a positive integer \(m_0 \) such that the \(q_{n_0}^2 \) is simple for \(n \geq m_0 \). From this it follows that the conditions 1) - 3) of Theorem 3 determine a unique function \(u_m \) for \(n \geq m_0 \).

References

Matematicko-fyzikální fakulta
Karlová universita
Malostranské nám.25
Praha 1, Československo

(Oblatum 26.2.1970)