Karel Najzar

Error-estimates for the method of least squares of finding eigenvalues and eigenfunctions

Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), No. 3, 463--479

Persistent URL: http://dml.cz/dmlcz/105292

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ERROR - ESTIMATES FOR THE METHOD OF LEAST SQUARES OF FINDING EIGENVALUES AND EIGENFUNCTIONS

K. NAJZAR, Praha

In [1], [2], we considered the approximation of eigenvalues and eigenfunctions of a DS-operator. In this paper, we shall present a priori and a posteriori error estimates for the method of least squares of finding eigenvalues and eigenfunctions. Upper and lower error bounds are found.

We assume throughout that A be a DS-operator with its domain in a real separable Hilbert space H, i.e., A is a symmetric operator in H such that the set of its eigenvalues is of the first category on the real axis and the spectrum $\sigma(A)$ is the closure of this set. Let $\{Y_i\}_{i=1}^{\infty}$ be a totally complete system. Suppose A is such that the eigenvalues $\{\lambda_i\}$ of A satisfy the relations

\[(I) \quad 0 < |\lambda_1| < |\lambda_2| \leq |\lambda_3| \leq ... \]

and λ_i is simple.

Let R_n and R_m be subspaces of H determined by functions $\{Y_i\}_{i=1}^{n}$ and $\{AY_i\}_{i=1}^{m}$, respectively. Let g_i be a normalized eigenfunction of A correspon-
ding to the eigenvalue λ_i. We shall denote the orthogonal projection of φ_i on R_m and R_{m-1} by $\varphi_i^{(m)}$ and $\varphi_i^{(m)}$, respectively. By T we shall mean the restriction of A to R_m. Since $0 \in \sigma(A)$, it follows that T and T^{-1} are continuous linear operators on R_m and R_{m-1} respectively.

It has been shown in [1] that q_∞ is an approximation to $|\lambda_i|$, where

$$q_\infty = \min_{\mu \in R_m} |A\mu|.$$

From Theorem 3 of [2] it follows that there exist $\{\mu_n\}_{n=1}^\infty$ such that the following conditions are satisfied:

1) $\mu_n \in R_m$, $|\mu_n| = 1$,

(II)

2) $|A\mu_n| = q_\infty$,

3) $\lim_{n \to \infty} \mu_n = \varphi_i$,

4) $(\mu_n, \varphi_i) > 0$ for $n = 1, 2, 3, \ldots$.

1. In this section, we shall derive upper and lower bounds for $q_\infty - |\lambda_i|$. Before going further we note this useful fact:

Since $|\varphi_i| = 1$, it follows from the definition of orthogonal projection that

$$|\varphi_i - \varphi_i^{(m)}|^2 = 1 - |\varphi_i^{(m)}|^2,$$

$$|\varphi_i - x\varphi_i|^2 = 1 - |x\varphi_i|^2.$$

- 464 -
Now, we present a group of two results, which is useful to have on record for later use.

Lemma 1. With the assumption of (I), the following inequalities are valid for each positive integer n:

a) $\lambda_1^2 \cdot \| T^{-1}(m) q_1 \|^2 \geq 2 \cdot \| T^{-1}(m) q_1 \|^2 - \| q_1^{(m)} \|^2$,

b) $| \lambda_1 \| T^{-1}(m) q_1 \| \geq 1 - \| q_1 - q_1^{(m)} \|$

Proof. a) It follows from the definition of $q_1^{(m)}$ that

$$\| q_1 - q_1^{(m)} \|^2 = \| q_1 - \lambda_1 T^{-1}(m) q_1 \|^2 .$$

We have therefore

(2) $1 - \| q_1^{(m)} \|^2 \leq 1 + \lambda_1^2 \cdot \| T^{-1}(m) q_1 \|^2 - 2 \lambda_1 \cdot (q_1, T^{-1}(m) q_1) .$

The proof of a) follows at once from (2), because

$$\lambda_1 (q_1, T^{-1}(m) q_1) = (A q_1, T^{-1}(m) q_1) = (q_1^{(m)} q_1) = \| q_1^{(m)} \|^2 .$$

b) By Theorem 2 of [1] we have

$$| A \mu | > | \lambda_1 | \cdot | \mu |$$

for any $\mu \in \mathcal{E}(A)$.

Letting $\mu = q_1 - \lambda_1 T^{-1}(m) q_1$, we see that

$$| \lambda_1 | \cdot \| q_1 - q_1^{(m)} \| = | A \mu | ,$$

whence follows

(3) $\| q_1 - q_1^{(m)} \| \geq \| q_1 - \lambda_1 T^{-1}(m) q_1 \| .$

It follows from $\| q_1 \| \leq | A \mu | + | \lambda_1 | \cdot \| T^{-1}(m) q_1 \|$ that

(4) $| \lambda_1 | \cdot \| T^{-1}(m) q_1 \| \geq 1 - \| q_1 - \lambda_1 T^{-1}(m) q_1 \| .$

Now, if we insert (3) in (4), we obtain the sta-
Corollary 1. For any n, we have $\|q_n\|^2 \leq \|q_n^{(m)}\|^2$.

Hence $\|q_n - q_n^{(m)}\|^2 \geq \|q_n - q_n^{(m)}\|^2$.

Proof: By the definition q_n, we have $q_n \geq |\lambda_n| > 0$ and

\begin{equation}
\|T^{-1}(q_n)\| \leq \frac{1}{q_n} \cdot \|q_n\|.
\end{equation}

The corollary follows easily from (5) and Lemma 1.

Remark 1. From the totally completeness of $\{q_i\}_{i=1}^\infty$ and the assumption $0 \in \sigma(A)$ it follows that

$$\lim_{n \to \infty} \|q_n^{(m)}\| = \lim_{n \to \infty} \|q_n\| = 1$$

and therefore

$$\lim_{n \to \infty} q_n^{(m)} = \lim_{n \to \infty} q_n = q_1.$$

Consequently, from Lemma 1 it follows $\lim_{n \to \infty} |\lambda_n|$.

$$\|T^{-1}(q_n)\| = 1.$$

Remark 2. There exists some $m_0 \geq 0$ such that

$$2 \cdot \|q_n\|^2 - \|q_n^{(m)}\|^2 \geq (1 - \|q_n - q_n^{(m)}\|)^2$$

for $m \geq m_0$.

Proof. From Remark 1 it follows that there exists m_0 such that $\|q_n - q_n^{(m)}\|^2 \leq \frac{2}{3} \cdot \|q_n - q_n^{(m)}\|^2$ for $m \geq m_0$. It follows that

$$\|q_n\|^2 \geq 1 - \frac{2}{3} \cdot \|q_n - q_n^{(m)}\|^2$$

for $m \geq m_0$.

When this is substituted in

$$2 \cdot \|q_n^{(m)}\|^2 - \|q_n^{(m)}\|^2 \geq 2 \cdot \|q_n\|^2 - 1 = 3 \cdot \|q_n\|^2 + \|q_n - q_n^{(m)}\|^2 - 2,$$

we obtain the statement.

An important tool in the proof of the next theorem is furnished by the following lemma.
Lemma 2. If we denote the product (u_n, q_j) by $\alpha^{(m)}_i$, then under the assumption (I) we have
\[
(\alpha^{(m)}_i)^2 \geq 1 - \frac{q^2 - \lambda^2}{\lambda^2 - \lambda^2} \quad \text{for any } n.
\]

Proof. By Lemma 1 of [1], we have
\[
(6) \quad q^2 - \lambda^2 \geq \varepsilon \left(\lambda^2 - \lambda^2 \right) \| u^{(m)}_i \|^2,
\]
where $u^{(m)}_i$ is the orthogonal projection of u_m on H_i and H_i is the closure of linear manifold generated by the eigenfunctions of A associated with the eigenvalue λ_i. Since $|\lambda_2| > |\lambda_1|$ and $\| u_m \| = 1$, it follows from (6) that
\[
q^2 - \lambda^2 \geq \varepsilon \left(\lambda^2 - \lambda^2 \right) \| u^{(m)}_i \|^2,
\]
so that
\[
\| u^{(m)}_i \|^2 \geq 1 - \frac{q^2 - \lambda^2}{\lambda^2 - \lambda^2}.
\]
Now $u^{(m)}_i = (u_m, q_j) \cdot q_j$ and thus the proof is complete.

The following theorem is of fundamental importance.

Theorem 1. Let A be a DS-operator and $\{ \mathcal{Y}_i \}_{i=1}^\infty$ a totally complete system. Suppose the eigenvalues $\{ \lambda_i \}_{i=1}^\infty$ of A satisfy the relations $0 < |\lambda_1| < |\lambda_2| \leq |\lambda_3| \leq \ldots$ and λ_i is simple. Construct the sequence of numbers $\{ q_n \}_{n=1}^\infty$ such that
\[
q_n = \min_{\| u \| = 1} \| Au \|
\]
where $R_n = \mathcal{X} \mathcal{I} \{ \mathcal{Y}_j \}_{j=1}^n$.

Let $u^{(m)}_i$ be the orthogonal projection of a normalized eigenfunction q_j corresponding to λ_i on R_n. - 467 -
Let $\{q_i\}_{i=1}^\infty$ and m_0 be a positive integer such that $\langle q_i, q_1 \rangle = 0$ and $\langle q_i, \phi_1 \rangle = 0$. Then there exist constants C_1 and C_2 such that $C_1 \langle q_i, \phi_1 \rangle \leq C_2 \langle q_i, \phi_1 \rangle$ for $m \geq m_0$.

Proof. Suppose $m \geq m_0$. Then $\|q_i\| = 0$. By the definition of q_m, we have

$$q_m - |\lambda_1| \leq C \langle q_i, \phi_1 \rangle^2 \leq \langle q_i, \phi_1 \rangle^2 \leq \langle q_i, \phi_1 \rangle^2,$$

where $C = \|T^{-1}q_i \|^{-1} \langle q_i, \phi_1 \rangle^2$. From Lemma 1 and (8) it follows that

$$q_m - |\lambda_1| \leq C \langle q_i, \phi_1 \rangle^2 + \langle q_i, \phi_1 \rangle^2 \| q_i \| \leq \langle q_i, \phi_1 \rangle^2 \leq \langle q_i, \phi_1 \rangle^2,$$

for $m \geq m_0$. Since

$$\frac{\langle q_i, \phi_1 \rangle^2}{\|q_i, \phi_1 \|^2} \geq |\lambda_1|,$$

we have

$$C \leq \frac{1}{2 |\lambda_1| \|q_i, \phi_1 \|^2}.$$

From this and Lemma 1 we obtain

$$C \leq \frac{|\lambda_1|}{2 \langle q_i, \phi_1 \rangle^2 \|q_i, \phi_1 \|^2} \leq \langle q_i, \phi_1 \rangle^2 \|q_i, \phi_1 \|^2 \|q_i, \phi_1 \|^2.$$

Letting $C_1 = \frac{1}{2} |\lambda_1| \langle q_i, \phi_1 \rangle^2 \|q_i, \phi_1 \|^2$, from (9) and (1) it follows
To prove the second part of (7) we construct \(u_m \)
such that the conditions (1) are satisfied. Then

\[
q_m - \lambda_1 = \| A u_m - \lambda_1 \varphi_i \|^2 + 2 \lambda_1 (u_m - \varphi_i, \varphi_i) \geq \\
\geq \lambda_1^2 \| \varphi_i - (m) \|^2 + 2 \lambda_1^2 (\alpha_i^{(m)})^2 - 1,
\]

where \(\alpha_i^{(m)} = (u_m, \varphi_i) \).

Using Lemma 2, we have

\[
q_m - \lambda_1^2 \geq \lambda_1^2 \| \varphi_i - (m) \|^2 - 2 \lambda_1^2 (q_m - \lambda_1^2) \cdot (\lambda_2 - \lambda_1^{-1})
\]

whence with the notation

\[
x = q_m - \lambda_1, a = (\lambda_2 - \lambda_1^2) (\lambda_2 + \lambda_1^2)^{-1}, \lambda_1^2 \| \varphi_i - (m) \|^2, b = 2! \lambda_1
\]

one finds

\[
(x + b) \geq a.
\]

After some computation we find that the solution

of (10) satisfies the inequality

\[
x = q_m - \lambda_1 \geq \\
\geq C_2 \cdot \| \varphi_i - (m) \|^2,
\]

where

\[
C_2 = 2! \lambda_1 \cdot (\lambda_2 - \lambda_1^2) \cdot (5 \lambda_2^2 + 3 \lambda_1^2)^{-1}.
\]

Thus the proof is complete.

Remark 3. Theorem 1 is valid in the case when \(\lambda_1 \)
is a multiple eigenvalue of \(A \).

Remark 4. From the proof of Theorem 1 it follows

that the right hand side of the inequality (7) is va-

lid for any DS-operator such that \(0 \not\in \sigma(A) \).
2. Bearing in mind the considerations of the previous section, we now find a priori bounds for the approximations u_m to an eigenfunction φ_i. To establish these bounds we require the following Lemma 3.

Lemma 3. Under the hypotheses as in Theorem 1, we have for $m \geq m_*$

(a) $\| A u_m - A \varphi_i \| ^2 \leq (q_m^2 - \lambda_i^2) \cdot (\lambda_2^2 + \lambda_i^2) \cdot (\lambda_2^2 - \lambda_i^2)^{-1}$,

(b) $\| u_m - \varphi_i \| ^2 \leq (q_m^2 - \lambda_i^2) (\lambda_2^2 - \lambda_i^2)^{-1}$,

(c) $\lambda_2^2 - \lambda_i^2 \leq D \cdot \| \varphi_i - c_2 \varphi_i \| ^2$,

where $D = \lambda_2^2 \cdot (1 - \| \varphi_i - c_2 \varphi_i \| ^2)^{-1}$.

Proof. In a similar way, by methods analogous to those employed in the proof of Theorem 1, we can obtain

(11) $q_m^2 - \lambda_i^2 \leq \| T^{-1} c_{i1} \varphi_i \| ^2 \cdot (\| c_{i2} \varphi_i \| ^2 - \| c_{i1} \varphi_i \| ^2)$.

From Lemma 1 and (1) it follows the inequality (c).

To prove (a) we write

$\| A u_m - A \varphi_i \| ^2 = \| A u_m \| ^2 + \lambda_i^2 - 2 (A u_m, A \varphi_i) = q_m^2 - \lambda_i^2 + 2 \lambda_i^2 (1 - \alpha_{i1})$.

where $\alpha_{i1} = (u_m, \varphi_i)$.

Since $\alpha_{i1} \in (0, 1)$, we see that

$\| A u_m - A \varphi_i \| ^2 \leq q_m^2 - \lambda_i^2 + 2 \lambda_i^2 (1 - (\alpha_{i1})^2)$,

and the inequality (a) follows from Lemma 2.

The proof of (b) follows at once from Lemma 2, because $(\alpha_{i1})^2 \leq \alpha_{i1}$, $\| u_m \| = 1$ and $\| \varphi_i \| = 1$.

The following theorem is a consequence of Lemma 3.
Theorem 2. Under the hypotheses as in Theorem 1 there exist the constants C_2 and C_3 which do not depend on m such that for $m \geq n_0$

\[|\lambda_1| \cdot \| \varphi - (m) \varphi \| \leq \| A \mu_m - A \varphi \| \leq C_2 \cdot \| \varphi - (m) \varphi \| \]

\[\| \varphi - (m) \varphi \| \leq \| \mu_m - \varphi \| \leq C_3 \cdot \| \varphi - (m) \varphi \| , \]

where $\varphi^{(m)}$ is the orthogonal projection of φ on $R_m = \mathcal{L} \{ \varphi_i \}_{i=1}^m$.

Proof. The right sides of these inequalities follow at once from Lemma 3. Since $\lambda_1 \neq 0$ from the definition of orthogonal projection it follows

\[\| A \mu_m - A \varphi \|^2 = \lambda_1^2 \frac{A \mu_m}{\lambda_1} - \varphi \|^2 \geq \lambda_1^2 \cdot \| \varphi - (m) \varphi \|^2 \]

Thus all is proved.

Remark 5. Theorem 2 is valid in the case when λ_1 is a multiple eigenvalue of A.

3. In this section, we find a posteriori bounds for the errors in the approximations φ and μ_m to the eigenvalue λ_1 and the eigenfunction φ, respectively.

Under the hypotheses as in Theorem 1, we construct the sequence $\{ \mu_m \}_{m=1}^\infty$ such that the condition (I) is satisfied. To simplify our notation in this section let $\epsilon_m = \| A \mu_m - \epsilon \varphi \|$, where $\epsilon = \text{sign} \lambda_1$.

Our next principal result is Theorem 3. An important tool in the proof of this theorem is furnished by the
Lemma 4. Suppose \(n \) is such that \(\alpha_i^{(m)} > 0 \) and \(|\lambda_2| > q_n \). Then

(a) \[q_n - |\lambda_2| \leq D_1 \sigma_n^2, \]

where \[D_1 = \frac{4q_n^2 + \lambda_2^2 - \lambda_1^2}{q_n \cdot (\lambda_2^2 - \lambda_n^2)} \]

(b) \[q_n - |\lambda_2| \geq D_2 \sigma_n^2, \]

where \[D_2 = \frac{1}{2} (\lambda_2^2 - \lambda_1^2) \cdot q_n \cdot (\sqrt{2} + \sqrt{\frac{\lambda_2^2}{\lambda_1^2}} + 1)^2 \]

(c) \[\|A u_m - A \varphi_i\| \leq D_3 \sigma_n', \]

where \[D_3 = 5 \lambda_2^2 \cdot [\left(\lambda_2^2 - \lambda_1^2\right) \left(\lambda_2^2 - q_n^2\right)]^{-\frac{1}{2}} \]

(d) \[\|A u_m - A \varphi_i\| \geq D_4 \sigma_n', \]

where \[D_4 = (\lambda_2^2 - \lambda_1^2) \cdot [\sqrt{2} \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_2^2}]^{-1} \cdot \left(\frac{|\lambda_2|}{q_n}\right)^{\frac{1}{2}} \]

(e) \[\|u_m - \varphi_i\| \leq D_5 \sigma_n', \]

where \[D_5 = 5 \cdot |\lambda_2| \cdot \left[\left(\lambda_2^2 - \lambda_1^2\right) \left(\lambda_2^2 - q_n^2\right)\right]^{-\frac{1}{2}} \]

Proof. Since \(\lambda_{i} = |\lambda_i| \) and \(\|A u_m\| = q_n \), we have

(12) \[\|A u_m - e q_m \varphi_i\|^2 = 2 q_n (q_n - |\lambda_i| \cdot \alpha_i^{(m)}) \]

where \(\alpha_i^{(m)} = (u_m, \varphi_i) \).

If we subtract the following identity
from (12), we obtain

\[2 \sigma_1^{(m)} q_m (Q_n - \lambda) = y (\gamma + 2 q_n \cdot q_m - \mu_n) \],

where \(y = \| A u_m - e q_n \| - q_n \cdot q_m - \mu_n \| \).

Since \(q_n \geq \lambda \), it follows that \(y \geq 0 \) and

\[c_n' = \| A u_m - e q_n \| + \gamma q_n \cdot q_m - \mu_n \| \geq y \).

Hence we have from (13)

\[2 \sigma_1^{(m)} (Q_n - \lambda) \leq c_n' (c_n' + 2 q_n \cdot \mu_n) \).

It follows immediately from Lemma 3

\[\| u_m - q \| \leq 2 \cdot \sqrt{\frac{q}{\lambda^2 - \lambda^2}} \cdot \sqrt{q - 1 \lambda_n} \cdot \sqrt{q - 1 \lambda_n}.\]

Using this in (14), we obtain

\[a x^2 \leq c + b x, \]

where

\[x = \sqrt{q_n - 1 \lambda_n}, \quad a = 2 q_n \sigma_1^{(m)}, \quad b = 4 q_n \sigma_1' \cdot \sqrt{\frac{q_n}{\lambda^2 - \lambda^2}}. \]

After some computation we may find that

\[x \geq \sigma_n^2. \] This proves (a).

To prove (b) observe that

\[c_n' = \| A u_m - e q_n \| + q_n \cdot \mu_n \| \).

By the definition of \(m_n \) in Theorem 2, we have that

\[m_n \geq m_n. \] Since \(q_n \geq \lambda_n \), it now follows from Lemma 3 that

\[\| q_n - \mu_n \| \leq 2 \cdot \sqrt{\frac{q_n}{\lambda^2 - \lambda^2}} \cdot \sqrt{q_n - 1 \lambda_n}. \]
Assume that \(q_n > |\lambda_1| \). Then, by (15) and (12)

\[
(16) \quad c_n' \leq C \cdot \sqrt{q_n - |\lambda_1|},
\]

where

\[
C = 2 \cdot \sqrt{\frac{q_n^2}{\lambda_2^2 - \lambda_1^2}} + \sqrt{2q_n} \cdot \sqrt{1 + \frac{|\lambda_1|(1 - \alpha_{m}^{(m)})}{q_n - |\lambda_1|}}.
\]

Since \(\alpha_{m}^{(m)} > 0 \), we see from Lemma 2 that

\[
(17) \quad 1 + \frac{|\lambda_1|(1 - \alpha_{m}^{(m)})}{q_n - |\lambda_1|} \leq 1 + \frac{|\lambda_1(q_m + |\lambda_1|)}{\lambda_2^2 - \lambda_1^2} = \frac{\lambda_2^2 + |\lambda_1^2| \cdot q_m}{\lambda_2^2 - \lambda_1^2}.
\]

The inequality (b) now follows from (16) and (17) in the case of \(q_n > |\lambda_1| \). It is readily verified that (b) is also valid in the case of \(q_n = |\lambda_1| \).

The proof of (c) and (e) follows at once from (a) and Lemma 3 because \(q_n + |\lambda_1| \leq 2q_n \). It is readily verified that

\[
|A u_n - Aq_1|^2 \geq q_n^2 - \lambda_1^2 \geq 2 \cdot |\lambda_1| \cdot (q_n - |\lambda_1|)
\]

and from (b) it follows the inequality (d). This completes the proof.

From Lemma 4 (c) and from \(c_n \to 0 \) it follows

\[
\lim_{n \to \infty} A u_n = Aq_1. \quad \text{Consequently, there exists } m_1 \quad \text{such that for } n \geq m_1
\]

\[
(18) \quad \text{sign} (A u_m, u_m) = \text{sign} \lambda_1 = e.
\]

Therefore

\[
(19) \quad \|A u_m - e q_n u_m\|^2 = 2q_n \cdot (q_n - |(A u_m, u_m)|) \quad \text{for } n \geq m_1.
\]

From Lemma 4 and (19) we deduce the following
Theorem 3. Under the hypotheses as in Theorem 1 there exist the constants K_1, K_2, K_3, K_4, K_5 which do not depend on m and an integer n_1 such that for $m \geq n_1$

\[K_2 \cdot \varepsilon_m^2 \leq q_m - |\lambda_i| \leq K_4 \cdot \varepsilon_m^2 , \]

\[K_5 \cdot \varepsilon_m \leq ||A_{\mu_n} - A_{\mu_i}|| \leq K_3 \cdot \varepsilon_m , \]

\[||\mu_n - \mu_i|| \leq K_6 \cdot \varepsilon_m , \]

where $\varepsilon_m = q_m - |(A_{\mu_n}, \mu_n)|$.

Remark 5. From (18) it follows that

\[\lim_{n \to \infty} \left[q_n \cdot \text{sign} (A_{\mu_n}, \mu_n) \right] = \lambda_i . \]

4. In all previous sections we have been concerned with setting up error bounds of approximations for λ_i and μ_i. In order to obtain error bounds for $\lambda_i, i > 1$, we shall assume that

(III) λ_i is not an accumulation point of the spectrum $\sigma(A)$.

For the sake of simplicity, we shall suppose that

(IV) λ_i is simple and $0 \not\in \sigma(A)$.

Select μ in such a way that

1) $\mu \in \sigma(A)$,

(V)

2) $|\mu - \lambda_i| < |\mu - t|$ for any $t \in \sigma(A), t \neq \lambda_i$.

From Theorem 3 of [11] it follows that $\lim_{n \to \infty} q_n =$
Then \(\mu + q_m \) or \(\mu - q_m \) is the approximation to \(\lambda_i \).
Denote this approximation by \(\lambda^{(m)}_i \). Let \(\varphi_i \) be a normalized eigenfunction corresponding to \(\lambda_i \), and \(\varphi^{(m)}_i \) and \(\varphi^{(m)}_i \) orthogonal projections of \(\varphi_i \) on \(R_m = \mathcal{L}\{\varphi_i\}_{i=1}^m \) and \(R_m = \mathcal{L}\{A\varphi_i\}_{i=1}^m \), respectively.

If we apply the above results with \((A - \mu I) \) in place of \(A \), then we obtain error bounds of approximations for \(\lambda_i \) and \(\varphi_i \). As an immediate consequence of Theorems 1, 2, 3 and the following Lemma 5, we have

Theorem 4. Under the assumptions (III) - (V) we construct \(\{\mu_m\}_{m=1}^M \) such that the following conditions are satisfied:

1) \(\mu_m \in R_m, \|\mu_m\| = 1 \),
2) \(q_m = \|A\mu_m - \mu\mu_m\| \),
3) \(\langle \mu_m, \mu_{m+1} \rangle \geq 0 \).

Then there exist an integer \(m_1 \) and the constants \(C_1, \ldots, C_4, C_3, C_1, K_1, K_2, K_3, K_4 \) which do not depend on \(m \) such that for \(m \geq m_1 \)

(a) \(C_2 \sigma_n^2 \leq |\lambda_i - \lambda_i^{(m)}| \leq C_4 \sigma_n^2 \),
(b) \(\kappa_m \leq \|\mu_m - \varphi_i\| \leq C_3 \sigma_n \),
(c) \(C_4 \kappa_m \leq \|A\mu_m - A\varphi_i\| \leq C_4 \sigma_n \),

where \(\sigma_n = \|\varphi_i - \varphi^{(m)}_i\| \) and \(\kappa_m = \|\varphi_i - \varphi^{(m)}_i\| \).
Lemma 5. Let \((\cdot)_{\lambda_i} (\mu)\) be the orthogonal projection of \(g_i\) on \(R_{\lambda_i} = \mathbb{L}(A - \mu I) Y_{i_j} j=1\). Under the assumptions (III) - (V) we have

\[\| g_i - \omega_i^{(\lambda)} \| \leq \| g_i - \omega_i^{(\mu)} \|^2 \leq D_1 \cdot \| g_i - \omega_i^{(\lambda)} \| , \]

where

\[D_1 = \frac{1}{\lambda_i - \mu} \cdot \inf_{t \in \sigma(A)} \left| 1 - \frac{\mu}{t} \right| , \]

\[D_2 = \frac{1}{\lambda_i - \mu} \cdot \sup_{t \in \sigma(A)} \left| 1 - \frac{\mu}{t} \right| . \]

Proof. It follows by the definition of \((\cdot)_{\lambda_i} (\mu)\) that

\[(20) \| g_i - \omega_i^{(\lambda)} \| = \min_{\mu \in R_{\lambda_i}} \| g_i - (A - \mu I) \mu \| . \]

Since \(0 \notin \sigma(A)\) and \((\mu) \notin \sigma(A)\), there exist \(A^{-1}\) and \((A - \mu I)^{-1}\). Then

\[(21) \| g_i - (A - \mu I) \mu \| = IB[(A - \mu I)^{-1} g_i - A \mu] \| , \mu \in R_{\lambda_i} , \]

where \(B = (A - \mu I) A^{-1}\) and \(I\) is the identity operator.

Letting \(\mu = A^{-1} \omega_i (\cdot)_{\lambda_i} (\mu) \cdot \frac{\lambda_i}{\lambda_i - \mu} \), it follows from

(20) and (21) that

- 477 -
(22) \[\| \varphi_i - \langle m \rangle \varphi_i \| \leq \frac{\lambda_i}{\lambda_i - \mu} \cdot \| B (\varphi_i - \langle m \rangle \varphi_i) \| . \]

Then, since \(A \) is a DS-operator, we have

(23) \[\| B \| \leq \sup_{t \in \sigma(A)} \left| 1 - \frac{\mu}{t} \right| . \]

(24) \[\| B v \| \geq \| v \| \cdot \inf_{t \in \sigma(A)} \left| 1 - \frac{\mu}{t} \right| \text{ for any } v \in \mathcal{R}(A) . \]

Thus, by (23) and (22)

\[\| \varphi_i - \langle m \rangle \varphi_i \| \leq D_i \cdot \| \varphi_i - \langle m \rangle \varphi_i \|. \]

It is readily verified that

(25) \[\| \varphi_i - \langle m \rangle \varphi_i \| = \min_{\mu \in \mathcal{R}_m} \| B [\varphi_i - A \mu] \| \cdot \left| \frac{\lambda_i}{\lambda_i - \mu} \right| . \]

It follows now from (24) and (25) that

\[\| \varphi_i - \langle m \rangle \varphi_i \| \geq D_i \cdot \| \varphi_i - \langle m \rangle \varphi_i \|. \]

Remark 6. In the case of multiple eigenvalue Theorem 4 is valid, if \(\mu_m \) satisfies \(3^\circ \) \((\mu_m, \mu_{m+1}) \geq \varepsilon > 0 \) in place of 3).

References

Matematicko-fyzikální fakulta
Karlová Universita
Malostranské nám. 25
Praha 1, Československo

(Oblatúm 26.2.1970)