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ON SPECTEA OF NONLINEAR OPERATCRS
Slavomir BURYSEK, Praha

Introduction. In the present paper, some properties of
spectra of nonlinear operators are studied. Let A: X — X
be a nonlinear operator on a complex Banach space X such
that A(0)= 0. A complex‘ number A is called an eigenva-
lue of the operator A if there is a point ,xa‘c X, X, * 0
such that A(‘x.ﬂ.) = .h.xa . Some authors consider the
spectrum of the operator A as a set of its eigenvalues. In
this sense, the spectrum has been studied by Némyckij (11,
Krasnoselskij [3], Vajnberg [4] and others. Neuberger defi-
nes (in (2])at first,the resolvent as follows. A complex num-
ber A is called a point of resolvent of the operator A
if there is a Fréchet differentiable operator (A I - A1
(I is the identity operator on X ) satisfying the Lip-
schitz ‘s condition locally on X . A complex number A which
is not a point of the resolvent is called the point of spec-
trum of the operator A . We can find a similar definition
of the spectrum in [5], but, instead of the assumption on
Fréchet differentiability, the author requests the Lipschitz’s
condition on X .

This paper is divided into three sections.In the first
one, we give a general definition of a spectrum with respect

to a given set in ¥ and show some properties of this
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spectrum. In Section two, sufficient conditions tor the exis-
tence of the spectrum are given. Section three deals with
homogeneous operators on a Hilbert space. Some conditions
are shown for a symmetric operator to have merely a real
spectrum and boundaries of this spectrum are determined. Let
us remark that some of our results are related to the results

declared by Kadurovskij in [5] (but without proofs).

1. Definition and properties of a spectrum of nonlinear

operator with respect to a given set

In this section, let X ,Y denote complex Banach spa-
ces and let C be the space of complex numbeps.

Definition 1.1: Let G: XxC — Y be an operator such
that G(0,0) = 0. Let M « X be a given non-empty set.
We shall say that A € C is a point of the spectrum of the
operator G with respect to M if there is a sequence
{x,}eM, % +0,m=42,... such that

n%ﬂG(x“,ZH =0 .

Let us denote "c’-(M) the set of all points of the
spectrum of the operator G with respect to M . The set
%(M) is called the spectrum of the operator G with
respect to M . We shall say that A, e C, A, # 0 is the
eigenvalue of the operator G with respect to M if the-
re is an element X, € M, X,=* 0 such that G(x,,A,)=0.
The element X, 1is called the eigenvector of the operator G
with respect to M (corresponding to the eigenvalue A, ).

Remark 1.2: Every eigenvalue of the operator G with

‘respect to M  belongs to ‘;fé(M) . If G(x,A) = S(x) -
- AT(x), where S5, T: X — Y, A € C then the set
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:,s,'r'(‘Mj = £, (M) is called the spectrum of the couple
(s, T) with respect to M and the eigenvalues of the
operator G with respect to M are called the eigenva-
lues of the couple (S, T) with respect to M . (In case
X=Y, T=1 the eigenvalues of the couple (S, I) with
respect to X are the eigenvalues of the operator S in
the usual sense.) The spectrum "with respect to M " can be
useful in the problems of solving equations of the form
G(x,A) =0 whose solutions are subjected to some ot-
her conditions represented by a given set M .

Proposition 1.3: Let G: Xx C —> Y  be an operator,
McX,NcX MycX, h=41,2,... be non-empty sets.
Then the following assertionshold:

a) If Mc N, then £, (M) c .%(.N) .

B) If MAN# O, then L MAN) E L M)A & (N

o O M) = O £ .
The proof is evident.
We assume further that M ¢ X is a given non-empty
set and 5,T: X —> Y  are operators such that
$OAT " (0)AM e 503 .

Proposition 1.4: Let T be a bounded operator on X

(i.e., T maps bounded sets in X onto bounded sets in
Y ). Then it holds:
a) If M 1is a bounded set in X , then %,TCM’ is

closed in ¢ .

b) If M is an arbitrary set, then Y,

s,.'_(M) is a

FB’ -get.
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Proof: Let M be a bounded set and letiA s € 7, L ww)

T
be a sequence such that .ﬂ-“~+ A, as f—» . Then there
is, for any 4% = 4,2,... , a sequence {x::’l €M such

that “I_A’bz llS(a(f:’) - %“T(x.‘:’)l = (0 .  If we choose
f:" , then it holds:

15 (ygg,) = A, Ty, €180y, ) -2, Ty N + R Ty M- \2, - A 1,
hence

Lm NS (y,) - ao'r(,,,*)] = 0 , that is A, € .9;'Tcm

my a0
and the assertion a) is proved. If M 1is an arbitrary set

the "diagonal” sequence {ap, 3 = X

and m, the smallest natural number such thathbn M=*0,
where K, = {x €« X/Axll £ m } , then, using Proposition

1.3 c), we obtain

o) oo
ais For Kan M) = L [0 (KpaM)] = 8, (M) .

Thus, according to Proposition 1.4 a), ys,'r (M) isaFg-

set.

Proposition 1.5: Let M € X be a bounded set, S,T:

1 X — Y bounded operators and let dist (T(M),403)=d > 0.
Then .‘f,,.r (M) is a compact set in C .

Proof: According to Proposition 1.4 a) .f.'.r (M) is
closed. We show that %’s’T(M) is a bounded set. Assume,
on the contrary, that b:z,'r (M) is not bounded. Then for
any X > 0 there is A € S’S,TCM) such thatl';:l:dx .
Denote ISInzuwNS(x)ﬂ and letK-—:L———.
According to Definition 1.1, there is a sequence { x,}e M
such that fim 18 (x,) ~ AT(xp) 0 = 0. But
15(x,) = ATCx, M ZIA1 BT (X I -0S(x I 2 K-d ~ ASH, = 1
and we come to a contradiction which completes the proof.

Proposition 1.6: Let M ¢ X be a non-empty set such
that O ¢ M and let S T:s X—> Y be a couple of ope-
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rators. Then the following assertions hold: If M is a com-
pact and closed (weakly compact and weakly closed) set and
the operators S, T are cantinuous (strongly continuous),
then any non-zero element of 3:5,1' (M) is an eigenva-
lue of the couple (5,T) with respect to M .

Proof: Let A, € 35,1' (MY , A, % 0 . Then there is

a .sequence {xnieM such thatnl_m IS(.:(%) -A,T(x, )= 0.
Using compactness (weak compactness) of M  we can choose
a subsequence {x”‘i which converges (weakly converges) to
X, € M’ X, %+ 0 . Now, according to the triangular ine-
quality, we obtain

15 (x,) = A, Tix)H £ [|8(x,) - S(o(,,h)l+ll.‘5(a(,,‘*)'-.ab1'(.x%)l+
+ia,le ﬂ'l'(x,,m) - T(x,)0 . But tom N8(x,) ~ &(x, )l =
.n% NT(x,) -T(a{w‘,)ﬂ = 0 because §,T are conti-
nuous (strongly continuous) and thus KS(x,) — A, T (x,)l = 0.

Hence, 2, is an eigenvalue of the couple (8,T) with

respect to M .

Proposition 1.7: Let M ¢ X be a non-empty set and
let 5,T: X — Y be positive homogeneous operators of the

order o, 3 (i.e., there are o, B > 0 such that

S5(t.x) = t2°8(x) , T(t..x)=tﬁT(.x) for any t > 0
L4 . - *-A ( b d

and any x € X ). Then Jg . (t.M)=1 3;’1. M) for any

positive real number t -

Proof: If A & Y5, (t.M), then there is a sequence
{x,3e€M such that ”Rg;mwlS(t.'x“) -AT(t.x =20.
But NS (t.x,) = AT(t X )0 = 14%5(x,) = A7 T (x,)1
and thus ”% 1S(x,) = L L T(xp )N = 0. We see
that A+%"* o ¥y . (M). Assume, on the contrary, that
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et Yo (M) . Then there is 1 & ¥ . (M)
and a sequence iX e M such that @ = *p, % and
o 18(K,) ~ AT(X, )0 = 0. It follows that
nlm 18(K,) - @tP™ T (X, )l = 0 and also LmIS(tX,)-
- @«TtX ) = 0,  hence w e 35’.‘.({:.14).
Remark 1.8: The point A = 0 need not generally be-
long to :fs,'r (M) . But if at least one of the following
conditions a),b) holds:
a) 8-1(0)nMm contains a point X, # 0 ;

b) O M, dist (5°7(0),M)=0 =and $ is a Lip-
schitzian operator;
then 0 e :4”‘1_ M) .

Indeed: If the condition a) is satisfied, then for X, =
=X, m=4,2,..., we have IS(x,)~ 0.T(x, =0
and thus 0 e 8;1_ (M) . If the condition b) is satisfied,

2
then there are sequences X, e M , 4, e s="¢0) such that
M&}z %, - 4, I = 0. Finally, we obtain
L 18(x,,) - 0. Tx, M= tim IS(x,)-S(y M€ K. om N, -y, A= 0,

where X > 0 is a constant. Therefore 0 @ ¥, _ (M) .
k]

Remark 1.9: Let G: XxC— Y, 6(0,A)=0, AeC
be a Lipschitzian operator with respect to the variable A -
in some neighbourhood lla x A of a bifurcation point
(0,4,) (i.e., 16(x,A)~G(x, )l € K(x) I~ g |

for any x € U, , A, e A, vwhere K(x) is a boun-

’
ded functional on W, ). Then A, @ ¥, (W)  for any suf-
ficiently small neighbourhood W of the point 0 € X .

In fact: There are sequences {x,}e X, 6 x & 0, A,eC

such thatnm ﬂxﬂl - 0, M,_!_y’»& Ap = A, and
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G(xy,A,) = 0. Hence, for any sufficiently small
neighbourhood U of the point 0 @ X , there is a sequen-
ce {X,}e«WU, X, + 0  such that G (X, , 2, ) =0

and
16 (X, 2,01 =16(X,,2,)-G(X, , ALNEK (X 1A, -21.
That is, Mom IG(X, , A )0 = 0 and thus A, e f ().

Corollary 1.10: Let S,T: X — Y be operators
auch that S(0) = T((0) = 0 and let T be bounded
pn some neighbourhood ll.o of the point Q @ X . Then any
bifurcation point of the couple (8 ,T) (with respect to
zero) belongs to the spectrum .‘fs,,_ (u) with respect
to any sufficiently small neighbourhood U of the point
e X.

Proposition 1.11: Let $ T : X — Y Dbe positive
homogeneous operators of the order ec > ( defined and
strongly continuous in a reflexive Banach space X . Let
M c X be a bounded closed convex set such that 0 ¢ M.
Then any non-zero point of the spectrum 33’1. (M) of the
couple (S,T) with respect to M is a bifurcation
point of the couple ‘(S,T) . Further, any bifurcation point
of the couple (S,T) belénge to the spectrum b:,'r 8,
of the couple (S,T) with respect to the unit sphere
S=ixeX/Ixl=13 .

Proof: Let 0 s A, € ‘.'fs,.,. (M) . Then, according
to Proposition 1.7, it follows that ¥, (t.M) = Y . (M)
for any t > @ . Choose a sequence of positive real numbers
t, such that MLim ¢ = 0 . Then 4, € ¥, _(t.M) ,

oy

m=q1,2,... and, according to Proposition 1.6, &,
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is an eigenvalue of the couple (S ,T) with respect to M
Let X, € M be an eigenvector corresponding to .A.p . De~
noting X, =t x,6 , we see that  Lm Ix,l=0 and

5 (xy) = A, T (xy) =t (S(x,) = A, T(X,)) = 0. Therefo-
re, X, are eigenvectors of the couple (8,T) and A,
is the bifurcation point. On the other hand, if ¢, is a
bifurcation point of the couple (8,T) , then there is a
sequence {‘u,”} of eigenvalues with eigenvectors «, such
thatmﬁ'% S = Wy and”{éz Nx, I = 0. If we put X, - l—:i"—l'
then ﬁﬁc 84 and 57“ are also eigenvectors of the coup-
le (S,T) corresponding to the eigenvalues (. According

to Proposition 1.4, the set .‘f’T (8,) is closed and thus,
td
o € .‘f’;’_ 8.

2. The existence of a spectrum of the couple (S, T) of
bounded operators

In this section, let X denote a Banach space, Y a Hil
bert space and let (., -) denote the inner product in Y .

Theorem 2.1: Let S,T: X — Y be bounded opera-
tors such that S$¢0) = T(0) = 0 and let Mc X bea
bounded set. Let, further, the following condition hold:

(py) O<xwl(5(x), T =USK, - 1TH, ,
where §SH, = Jrugy Kscx)l; 1TR, = g FTC(xIN .
Then the couple of operators (3, T) has a non-empty spec-
trum .‘f,’.'. (M) with respect to M ' and if, in addition,
dist (T(M) , £03) > 0 , then Y, . (M) is a com-
pact set.

Proof: Assume ¢ > (0 an arbitrary positive real num-

ber. Then there is a point x, e M, x. & 0 such that
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I Ty

a1si, :

I(S(x,),‘r(.x, N> llSlM . III'IM - £
Denote further

.o 1S
Ao = et —l-.i.—l-'"— , where 6 is the argu-
M

ment of the complex number (S(x,), T(x,)) . Then it holds:

IS (x;) = A, T (x W= 18 (x, )0 = 2Re [A, (T(x,), $(x,0)] +

2 2 180y 2
+IJL°|1!I1'(x,)II £I8MM—2I(S(.:(°),T(.><,))Il."M + ISk, < e .

Now, it is evident that there are sequences {x,3 e M ,
X, 0,4 €C, 12, |= —'i-sf'i-:— such thatm&bzllsmﬁ)- A, TCx N=0.
At the same time we can assume that the sequence J\“ con-
verges to a point A, &= 0 . Using the triangular inequa-
lity we conclude that
1S(x,)) = A, T(X M&NS(x )=~ A, (x M+ 12 =R 1 1T (x, )0,
8o that “% 15(xpy) = A, T(x, )N = O and thus
2, € 35’1_ (M) . Finally, Proposition 1.5 completes the
proof.

Remark 2.2: Let. S,T: X — Y  be bounded operators,
Mc X a bounded set and let for any x € M the follo-
wing inclusion holad:
iy 6 Y/lgy Il = IT(x)I} c T(M). Then the following condi-
tion

= 1(S
(py) 0 < xbm 1(S(x), T(xNl rup (S(x), T(oy,))l
yeM
implies the condition (pl) from Theorem 2.1.

Proof: For any positive real number ¢ > 0 there are

points X, . 4 € M such that
1S(x)1 > ISh, —€, IT(y 20> 1Ty - e .
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5(Xg) |
Choose a point 2z, € M such that T (z,)# m

+ BT(yg, )0 . Then it holds that (S(x,), T(%,) =
= 1S ()0 U T (N> (USH-€)UT -¢) hence

oupy 1¢SCx), T(yN | 248K - KTH . On the other hand we

yeMm
have

< 15(x) BTy = IISK, * NTH, .
m!(é(u),'r(g.))l pupy Sxﬂm y " M

eM
Clearly, the condition (pl) from Theorem 2.1 is satisfied.

Remark 2.3: The conditions (pl) and (p2) from Theorem
2.1 and Remark 2.2 are equivalent (under the assumptions of
Remark 2.2). Especially, if T = 1 is the identity operator,
X =Y is a Hilbert space and S: X — X is a bounded
operator, then the conditions (p;) and (92) are equivalent
for M ={xeX/n éIxI€R, 0 <2 <« R3% . If, in addi-
tion, the operator S is a homogeneous polynomial and sym-
metric operator, then the ¢onditions (p,) and (py) are sa-
tisfied (see (6], Theorem 4.5). But these conditions can be
satisfied aven if the operator S ie not symmetric as the
following examples show.

Example 2 .4: Let E, be the Euclidean two-dimensio-
nal space. Define for x = (x;,%,) e ,E’_ , the ope-
rator P . by

Plx) = (x5 5 x2) .
Then

. 1¢Pc - )
Jirg 1PCON VZ = so [ (PCa), 5Ol = 2

Example 2.5: For any x @ L-z“o, 4]) define the opera-
tor P by
q .
Pex) = i (a)w [ 2. x2ceydt .
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Then

m"hl’(x)l-m = mup | (Px), 5)l= —‘%?- for any x > 0.

Theorem 2.6: Let 8; X —» Y  be completely continu-
ous, T: X — Y a continuous operator with the Lipschit-
zian inverse operator T"‘ ., Then any non-zero element of
the spectrum ‘%;r (M) with respect to a bounded clo-
sed set M c X such that O ¢ M is an eigenvalue of
the couple (8,T) with respect to M .

Proof: Consider A e ¥, (M), A% 0 . Then there
is a sequence {x 3e M such that ”.t_grz NS (x,)=AT(x =0
and we can assume that the sequence {5(«,,,)} is conver-
gent. Denote 2, = T (x,) , 8o that x, = T"(z,,,)
and for arbitrary natural numbers m, m we obtain

. ) 1
Ny = X, I = 1 T C,)~ Tz, M € K Nz, 2, 1% 57 KNSt ) ~Stox 1+
1 4 :
+ATKIS(4,)- A T+ KIS Gr) = AT )

Now, we see that {.xmj is a fundamental sequence and thus
there is a point x, e M , x, = M'xgn-” X, = 0 . Clear-
1y, it holds:

18(xe) =~ AT(X M £ 1S (x,) =~ S(x, M+ NS(x,)~ATCx, I +

+ 1T (x,) - T(x,)+ 121 . Using continuity of the opera-
tors S,T we conclude that 18(x,) = A T(x, )l = 0 .
Hence, A 1is an ‘eigenvalue of the couple (S ,T) with
respect to M .

Corollary 2.7: Let S: X — Y be completely continu-
ous, T: X — Y a continuous operator with an inverse ope-
rator T and let T"’ be a homogeneous polynomial ope-

rator of the order %¢ = 4 . Then the conclusion of Theorem
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2.6 holds.

Proof: According to {6 ] (Theorem 3.4), the operator
T-' is continuous. Being continuous polynomial operator,
-1 is a Lipschitzian operator. Using Theorem 2.6, we
complete the proof.

Remark 2.8: If S,T: X — Y  are analytical opera-
tors in a bounded domain ) ¢ X which are continuous and
bounded on the closure ) and satisfy the condition (py)
from Theorem 2.1, then the couple (S ,T) has a non-emp-
ty spectrum with respect to the boundary 8D of the do-
main D . ,

The proof follows immediately from the well-known “ma-
ximum modulus principle” for analytical operators and Theo-

rem 2.1.

3. Spectra of positive homogeneous operators with res-
pect to a sphere

In this section, let X denote a complex Hilbert spa-
ce. .
Definition 3.1: Let F: X — X be a bounded homogene-

ous operator of the order ¥ > 0 . Denote

NFIl = I:mll-"(x)l R

(FP(x M .
| HEN = m':‘l FP(x), x
We shall call IFH the norm of the operator F and HFN
the absolute norm of the operator F .

Remark 3.2: If F is a linear operator, then the norm

and the absolute norm of F are well-known. For a homogene-
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ous operator F of the order o > 0 it follows that
(P & HFN- Nxt? for any x « X and fIF N &
£ IFI . If F is a continuous homogeneous polynomial
operator of the order fe 2 4 and symmetric in X , then
HFEW= LIFI (see (61, Theorem 4.5).

We consider further the spectrum of the operator F
with respect to a given set Mec X (i.e., the spectrum of
the couple (F,I) with respect to M , where I is the
identity operator). The general case of the spectrum of a
couple (S5 ,T) with positively homogeneous operators S,

T of the order oo y R > 0 we can reduce to the above
problem assuming that the inverse operator T'  exists.
Really, then T‘4 is a homogeneou;‘i operator of the order
ﬁ"' and the operator F = T-18 is a homogeneous ope-
rator of the order o~ = %’- . It is evident that 4 «

e "-‘.’S,T (M) if and only if 2.% e &fax M) .

Definition 3.3: Let FF: X — X have the GAteaux dif-
ferential VF (x,# ) on the set M ¢ X . We shall say that
the operator F is symme:tric on M if

(VP(«,M),J&)-(M,VF(&,M)) for any x e M, b, e eX.

Lemma 3.4: Let Dc X be a set such that for any x ¢
e D and any positive real number t the point t'x « D,
0 ¢ D. Suppose F: X — X posesesses the GAteaux diffe-
rential YF (x, 2o on D . Then the operator F is ho-
mogeneous of the order oo > 0 on ) if and only if

YP(x,x) = «wF(x) for any x e D .

Proof: If F is homogeneous of the order o > 0 ,then
or any X @« D it holds
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. Flx+ta)-F(x) .. (1+tY%4
VP(N,X)St% —s —=Mm t F(x)= o F(x) .

On the other hand, if for any x @« D it holds VF(x,x)=

= o F(x) , then for the abstract function#(+)= ¢ “F(¢.x)-
~F(x), t>0, x«D , we obtain

) ==t Pt 3+ VR, 3 )= £ Fa Flte x) + VF(t o o))
Hence $'(t) = 0 and £(4) = 0, so that ¥(t) = 0
and thus F(t.x) = t°F(x) .

Theorem 3.5: Let F: X— X be a bounded homogeneous
operator of the order o > 0. Let HF A = Il F#l . Then the
operator F has a non-empty compact spectrum S,’._. (s, )
with respect to any sphere §, ={xeX/Ax¥ =, » > 0% ,
il € 471 1P for any A € :?F (S,) and there is
a A & 5L (S,) such that I, | = Pl - If, in
addition, F is completely continuous, then any non-zero e-
lement from 37, (St) is an eigenvalue of the operator F
with respect to S, .
Proof: We shall show that the condition NFH8 = WEFN

implies the condition (pl) from Theorem 2.1: Let & be a po-
sitive real number and let x € X, lx1 =41 . Then for 4 =
=nr.x , we have l4 l = ~ and

A KPCx), s MW - 2™ =

7+1 ¥+1 3 ,
e IFl.x -”:mﬂl:'(x)llm -‘m-f:*lif'(ﬂl-)l s

Now, using Proposition 1.7, Theorem 2.1 and 2.6, we obtain

the assertion.

Theorem 3.6: Let F': X — X be a bounded symmetric and

homogeneous operator of the order 7y > 0 satisfying the
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condition WF K = WF M . Then it holds:
a) The operator F has only a real compact speCtrum

?fp (5,) with respect to any sphere § ={xeX/lNxli=x,n>0%.

b) Sf’r_. (S,) is contained in the interval

J, =[x dm, 7M1 , Where m-.:‘blpi’q'(f‘(x),x) ,

M = sup (F(x), x) . Both 2 "m  andx
contained in &,} (s,) .

T"'M  are
c¢) If, in addition, the operator F 1is completely con-
tinuous, then any non-zero point of 5’,: (S,b) is an eigen-
value of the operator F with respect to &, .
Proof: According to Definition 3.3 and Lemma 3.4, we ob-
tain (VP (x,x),x )= (x,VF (x,% )= (VF(x,x),x) = (F(x), x)
for any x e S, . Now, we see that the expression(VF(x,x),x)
is real abd thus also (F'(x), x) is real. Assume A e C ,
A=a+idr, L& 0. Then for x € 5, andgy=F(x)~Ax,

we obtain
(y,x) = (F(x), x) = A (x,x) ,
(x, %) = (4, %) = (F(x), %) = A(x,x) ,

so that (X,ap) = (g, )= (A=A )x,x)= 2i0Nx 1= 2500 12,
It follows that 21&lx? = I(x, )~ Cap,x)| £ 204l n .
Hence Mgyl = IP(x)-A.x Il 2 1&lre > 0 and thus
A& % (S,) forany x > 0 . Further, using Theorem 2.1,
we obtain the assertion a). To prove b) let us suppose that
A.-M-xr"«l-d., where d > 0, Then

(Fx) = Ax, ) = CPx), ) = Alot,x) & M- x0T anx0®

8o that for x € 8, we obtain

.

(P(x)= A3,x) & CM-2”™ M- 2T d)In? =it d <0
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and thus | (F(x) =~ Ax, x)l 2d.x? , hence IF(x)~Axl-x2
2 [(F(x)-Ax,x) 2 d-n? . Finally, we have

IF(x)=-Axl2d.n >0 end thus A & % (S,) .
o-1 may be examined analogously. Using

o
the proof of Theorem 2.1, we can show that both m - Ibr 9

M. 271  bvelong to % (8,) and the proof of b) is fi-

The case A<m &

nished. The assertion c) follows immediately from Theorem
2.6.

Remark 3.7: The assumptions of Theorem 3.6 are satis-
fied if the operator F is a completely continuous symmet-
ric homogeneous polynomial operator of the order f$ = 1 .
Suppose, further, that 4, w < YF (s, . are two
different eigenvalues with eigenvectors x , ¢ € S,‘ . Then
the following inequality holds:

LCP ), ) = (F (), ) = 1A =g 1+ (¢ 4 s NP N Che= A R —gg o™
Especially, if e = 1 , then the eigenvectors X,y  are or-
thogonal.

Proof: If F(x) = Ax , F(y) = wy , then
(F(X), ) = (Fly)yx) m (A~ )(x, )= (F(x), o -~ x)+(F(x)

n-1 P
~(Fi,x) = (Z F* (™2 4% xagg), ),

hence

I, )~ (P, 30l = 1= gal 1Cx, g AF#0 1 t™

ﬂq.l'.lx-yl-
= (o= DIF*1 k™ x-yl = m=DIFI- x* M-y A,

where F'* is the polar operator to F , The last equality
follows from £6] (Lemma 4.2 and Remark 4.3).
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