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ON PROBLEMS CONCERNING UNIQUENESS OF THE EXTENSION OF
LINEAR OPERATIONS ON LINEAR SPACES

Franti3ek CHARVAT,Praha

The aim of this paper is the formulation of the so-
called ¢ -unique extensibility of linear operators (i.e.
linear transformations of linear space into another one)
which is a generalization of the traditional uniqueness of
the extensibility of linear functionals preserving the norm
(see [1]). The necessary and sufficient conditions for

® -unique extensibility and for the uniqueness of the
extensibility of bounded linear operators are proved. The
paper further contains a generalization of the Phelpe’ re-
sult (see [1]).

‘This note follows the paper (2], and the same conven-
tions are used here.

Definition 1. Let & be a mapping from P into

een Q (i.e. the set of all subsets of the linear spa-
ce @ ). The operator will be called ¢ -unique extensio-

nable, if there is one and only one operator B such that
def B = P,

X € def A = A(x) = B(x) ,
xeP = B(x)e & (x) .

- - - - -~ - -
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Remark 1. It is true that every & -unique extension-
able operator is a ¢ -extensionable operator (see Defi-
nition 2 in [21). '

Definition 2. Let ¢ be a mapping from P into

en G . The mapping is called a uniquely linearly cove-
ring P in respect to (@ , if the following astatement is
satisfied:

Let A be a ¢ -admisasible operator (see Definition 1 in
[2]), then for every Yy € P there is one and only one
a € @ such that

A+ xca € P (x+axqy)

for all x e def A and « € K

Remark 2, It is true that every uniquely linearly co-
vering mapping is a linearly covering mapping in respect to
a .

Theorem 1. lLet ¢ be a mapping from P into Q .
Then the following statements are equivalent:

(i) Every { -admissible operator is a $ -unique exten-
. sionable operator;

(ii) The mapping ¢ is a uniquely linearly covering P
in respect to @

Proof. Let (i) be true, but (ii) untrue. From Remark 1
and Theorem 1 in [2] it follows that ¢ ia linearly cove-
ring P  in respect to G . Then there is also a { -admis-
sible operator A and en element g4 € P as well as the

different elementa a,, o, & G such that

Alx)+x ay e dix+ang),
AlxY+ wa, e d(x + x q) for all X edefA and x € X.
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We define the operators B, , B, as follows:
def By = def By = [def Au 1,

if x =x+xn ,xedefA , <« €k , then

B, (z) = Alx) + xa, ,

B, (x) = A(x) + xa, -

B, and B, are ¢ -admissible operators. From Theo-
rem 1 in [2] it follows that there are $ -admissible ope-

rators 33 , B‘_ which are the extensions of the operators

B, 3B and def B, = def B, = P . It is true that
.‘B3 and B,‘. are different operators being the extensions
of the operator A . This gives a contradiction.

Let. (ii) be true, but (i) untrue. According to Remark 2
and Theorem 1 in [2] it follows that every ¢ -admissible
operator isa a ( -extensionable operator and that there is
also a § -admissible operator A such that it has two dif-
ferent extensions, i.e. there are B, , B, such that
def B, = cef B, = P,

Xxedef A=>A(x) = B, (x) = By (x) ,
xe€eP=>B,(x)e §(x), By(x) e P (x)

and there is o € P (resp. p & P - cdef A )such that
B, (y) = B, (%) .

If we denote o, =3B, (4), a, = B, () , it followe
AlXY+ca e dlx +xny ),

Alx)+xa,e P(x+xny) for all x e defA and xceX.
This is a contradiction. The proof is complete.

Convention. In the following X will denote a field
of real or complex numbers. Let P, Q@ be normed linear

spaces. We denote the norm on P by the same way as in (2]
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4|-|l, thenormon G- M- .

Amalogously, the symbol S (aj; € ) is used for the set
i e@; fla-L 1 €3, ¢ 20.
Definition 3. Let S & 0. Let P, @ be normed

linear spaces. The linear space (1 is called R -produc-

tively uniquely centred in respect to P , if the following
is satisfied:

Let A be such that

SCA(X), R Mx ey DN SA), & lx,+ 41+ 4

for all X € cdef A and g4 € P, then

1> X2

;Qd‘fA S(A(x), & 1 x +4 1) contains only one element

for every 4 € P .

Remark 3. It is true that every .k -productively uni-
quely centred linear space ( in respect to P is % -pro-
ductively centred in respect to P (see Definition 4 in [2]).

Theorem 2. Let & = 0. Let P, G be normed linear
spaces. Then the following statements are equivalent:

(i) The mapping @ from linear space P to ecp Q de-
fined by the following

xXeP=P(x)={a e B, Balg s Mxl}?
is uniquely linearly covering P in respect to Q@ ;

(ii) The linear space ( is .k -productively uniquely
centred in respect to P .

Proof. Let (i) be true, but (ii) untrue. Fromw Remark 2
and Theorem 2 in [2] @ is & -productively centred in
respect to @ and there is also A such that
S(A(x), & X, + 4D NSA(X), & Mx,+ 4 g
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for all x,, X, € def A and 4 € P and there is at
least one element ny € P such that

erfA S(A(X), & i x + 74 ll) contains at least two

different elements. We denote these elementa -, -a, .

It follows

2'.A(.x)+a.4ﬂé o Ux+rgl ,
2I|A(x)+a.2||§ % Mx+ gl for all x e def A .

From there it follows that for all < € K, o = 0

2lA(.x)+oca-1 h & s Mx+ el ,

AA) +xa, | £ & Mx+ gyl ,

in other words

Alx)+ta, e d(x+ an),

AX)+ xa, € P(x+cxay) for all xe def A and « € X

(for « = 0 trivially). However, this is a contradiction.
Let (ii) be true, but (i) untrue. From Remark 3 and

Theorem 2 in [2] it follows that @ is linearly covering

P in respect to @ and there is also & ¢ -admissible

operator A and 4 e P eand two different -, , -a,
such that

2]A(ac)+oca1ﬂéh4ﬂx+ocry,l,
21A(x1+acwlllék4l.x+cozg.l

for all x ¢ def A and x« € X .

From it
S (A(x), do llx + gD N SA), £Ux, + 1) + 7

for ell x, , X, € def A and gy € P because it follows
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b (Mx v le Mo gD Z g U -x, 1 2
2 MA (= x )1 = MA (X))~ A x )
and that

1
"“’1"“’2ex‘9,;AS(A("()"" 1x+ 4l .

This gives a contradiction. The proof is complete.

Definition 4. We call the linear space @ producti-
vely uniquely centred in respect to P if this linear spa-
ce is % -productively uniquely centred in respect to P
for every @ .

Theorem 3. Let P, G be normed linear spaces. Let
P be productively uniquely centred in respect to P .
Then every bounded operator from P into @ has only one
extension on the whole P preserving the norm.

Proof. This theorem is a result of Theorem 1.2 and De-
finition 4.

Remark 4. In the following we shall be concerned with
a slightly different problem formulated for linear functio-
nals in (1]:
Let P, G be normed linear spaces. Let R be a subspace
of the space P . Let Q Dbe productively centred in res-
pect to P . We want to formulate a necessary and suffici-
ent condition for the uniqueness of the extension preser-
ving the norm of every bounded operator such that def A =
= R ,more exactly, there is only one operator B such
that
def B =P, xe R=>A(x)=B(x), AN = 21BI
(in this way we denote the norm on a linear space of all

bounded operators from P into G ).
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It follows from Theorem 2, Remark 1 from [2] respectively,
that there is an extension of this operator. The problem
lies in the uniqueness of such an extension.

Convention. Let P, G be normed linear spaces. By
the symbol & we shall denote a normed linear space of
all bounded operators from P into @ such that their
domain is the whole P . Analogously, we denote by the sym-
bol & g @ normed linear space of all _bounded operators
from P into @ such that their domain is the subspace

R.

Furthermore, let A e & , By the aymbol AR , Wwe denote an
operator such that A, € & ,xe R = A (x) = A(x) .
The set {B e & ; x € R = B(x) = 0% we denote

GRJ' and call @ - anihilator of the product R .

Definition 5. Let P be a normed linear space. Let
R be a subspace of the space P . We say that K has
the Haar s characteristic (see [11), if the following is
valid:
if x € P , then there is at most one element 7 e R
such that -
Nx-gl = inf{Mx-21 xeR ¥ .

Lemma 1. Let P be a normed linear space. Let R be
a subspace of the space P . Then the following statements
are equivalent:
(i) R has not the Haar’s characteristic ‘;
(ii) there are x € P and 5 € R, 4 % 0 such that

xll='Ix-agl="Tx-2l forall zeR .

Proof. Let (i) be true. Thus, there are x, € P ,
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different 4, ny, € R so that
Mxy-agy = k= gy I = inf {Mx-zl; zeRS.
We denote x = X, - &, , 4 = Yy, = Y% ¢ It follows
Mxl=eMx-nl, 4 eR, g 0
Let z € R, then 2z + 4, € R and further
Wy - (2 + g0 E Mx, - 1
in other words,
' Tt & MTx -zt . Thus, (ii) is satisfied.
If (ii) is true, then (i) is trivially satisfied. The proof
is complete.
Lemma 2, Let P, G be normed linear spaces. Let Q
be productively centred in respect to P. Let R be a
subspace of the space P ., Let A € & . Then

MAN = imf { d; HA(x)I € £ Ix1, xeR? =

L

= mf{A-BIl, Be 4R
Proof. If B e oR' , then
AAN = inf{de; WCA-BYGONE 2 YIxl, xeRIZ HA-B I
Also, it follows that: 3IARR & mfF{MA-BI,B e aR’Li .
According to the assumption that @ is productively cen-
tred in respect to P; from Remark 1 in [2] it follows
that there is an operator C such that

HAN=21CH, x e R = Ap (x) = C (x) .
Since
MAN=*Ch = A - CA-C)I, and A-CegRt,

the proof is complete.
Theorem 4. Let P, 6 be normed linear spaces. Let
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G,  be productively centred in respect to P . Let R
be a subspace of the space P . Then the following state-
ments are equivalent:

(i) For every B e bp there is one and only one

Ce & such that

x e R =>B(x)=C(x), BN = HcH .

(ii) The linear space QIVL has the Haar s characteris-
tic ("in respect to the linear space & ").

Proof. Let (i) be true, but (ii) untrue. Froam Lemms 1
it follows that there is C € & and D caR'L, D+0
such that

ele MC-Dlwinfi%C-EN; E e kY.

From Lemma 2 it follows that

Ned = mfEMC-EN; Ee gRY 7 .

Also, the operator CR € :Gk has two different exten-
sions, i.e. C and C - D , on the whole P preserving
the norm but this is a contradiction.

Let (ii) be true, but (i) untrue. There is an opera-
tor B ¢ :ﬁ—R having at least two different extensions
on the whole P preserving the norm. We denote these ex-
, » It is true that C - C, € QRL ’
and, further, from Lemma 2 it follows that
e, 1= - (¢ ~C = 3Bl ~inf$¥C,-DI, DegR 3,

tensions C, , C

however, it is a contradiction (see Lemma 1).
The proof is complete.
Theorem 5. Let P , @ be normed linear spaces. Let
® be productively centred in respect toc P . Then the

following statements are equivalent:

- 279 -



(i) Every bounded operator is uniquely extensionable on
the whole P preserving the norm;

(ii) @ -anihilator of every subapace of the apace F
has the Haar’s characteristic.

The proof is easy.
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