Miloš Zahradník
On the common fixed point for commuting Lipschitz functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 4, 713--721

Persistent URL: http://dml.cz/dmlcz/105379

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON THE COMMON FIXED POINT FOR COMMUTING LIPSCHITZ FUNCTIONS

Miloš ZAHRADNÍK, Praha

Introduction. This note deals with the existence of solution of the equation \(f(x) = g(x) = x \), where \(f, g \) are commuting and lipschitz functions.

Let \(f \) be a real-valued function defined on the set \(M \subset E \) and \(\alpha \geq 0 \). \(f \) is said to be a lipschitz function on \(M \) with the constant \(\alpha \), if the inequality
\[
| f(x) - f(y) | \leq \alpha | x - y |
\]
holds for each \(x, y \in M \).

Let \(f, g \) be two real-valued functions defined on the interval \(I \subset E \) with values in \(I \). \(f \) and \(g \) are said to be the commuting functions (we abbreviate \(f \circ g = g \circ f \)) if
\[
f(g(x)) = g(f(x))
\]
holds for each \(x \in I \).

In [1] there was proved

Theorem A. Let \(f \) and \(g \) be two commuting lipschitz functions with the constants \(\alpha \) and \(\beta \), respectively, defined on \(< 0,1 \rangle \) with values in \(< 0,1 \rangle \).

Suppose that one of the following conditions holds:

AMS Primary: 47H10
Secondary: 26A16
a) $\alpha > 1, \beta < \frac{\alpha + 1}{\alpha - 1}$,

b) $\alpha \leq 1, \beta \geq 0$.

Then there exists $x_0 \in (0, 1)$ such that

$$f(x_0) = g(x_0) = x_0.$$

In this note, the previous theorem will be proved for

$$\alpha > 1, \beta = \frac{\alpha + 1}{\alpha - 1}.$$

Preliminary lemmas.

Lemma 1. Let f be the real-valued lipschitz mapping on an interval $I \subset \mathbb{R}$ with a constant $\alpha \geq 0$. If there exist two points $x_0, \psi_0 \in I$, $x_0 < \psi_0$ such that

$$|f(x_0) - f(\psi_0)| = \alpha |x_0 - \psi_0|$$

then f is a linear function on (x_0, ψ_0).

Lemma 2. Let f, g be the real-valued functions defined on the interval I with values in I. Let $\alpha \in \mathbb{R}$ and $\beta \in (0, \infty)$. Denote $x^* = \frac{x - \alpha}{\beta} = T x$ for $x \in I$ and set

$$f^* = T \circ f \circ T^{-1}, g^* = T \circ g \circ T^{-1}$$

on $I^* = T(I)$.

The following assertions hold:

(I) $f(x) > x$ iff $f^*(x^*) > x^*$,

(II) $f(x) > g(x)$ iff $f^*(x^*) > g^*(x^*)$,

(III) $f \circ g = g \circ f$ on I iff $f^* \circ g^* = g^* \circ f^*$ on I^*,
Proofs are obvious.)

Main theorem.

Theorem. Let f, g be two commuting mappings of any compact interval I into itself. Suppose that f and g are lipschitz functions with the constants α and β, respectively, on I.

Let $\alpha \geq 1$, $\beta = \frac{\alpha + 1}{\alpha - 1}$.

Then there exists $x_0 \in I$ such that

$$x_0 = f(x_0) = g(x_0).$$

Proof. I. (This part of the proof and the next one are the same as a part of the proof from [1].) Suppose $\beta \geq \alpha$ and let f, g have not a common fixed point in I. Let $N_f = \{ x \in I; f(x) = x \}$ and $N_g = \{ x \in I; g(x) = x \}$.

It is obvious that $N_f \neq \emptyset$, $N_g \neq \emptyset$. Using the commutativity property of functions, we have $f(N_g) \subseteq N_g$ and $g(N_f) \subseteq N_f$.

Denote $a = \inf N_g$, $\xi = \sup N_g$. Then $a < \xi$ and since N_g is closed, a, $\xi \in N_g$. This fact implies $f(a) > a$ and $f(\xi) < \xi$.

Denote

$$x_0 = \sup \{ x \in N_g; f(x) > x \},$$

$$x_1 = \inf \{ x \in N_g; x > x_0, f(x) < x \}.$$

Then x_0, $x_1 \in N_g$ and
(1) \((x_0, x_1) \cap N_\varphi = \emptyset\).

Evidently

(2) \(f(x_0) > x_0, f(x_1) < x_1\).

According to (1) we can suppose that

\(\varphi(x) > x\) for \(x \in (x_0, x_1)\).

Since \(f(x_1) \in N_\varphi - (x_0, x_1), f(x_0) \in N_\varphi - (x_0, x_1)\),

we have

(3) \(f(x_1) \leq x_0, f(x_0) \geq x_1\).

(1), (2) and (3) imply that the set

\[M = \{x \in (x_0, x_1), f(x) = x\}\]

is not empty and

denote \(\rho = \sup M\). Then \(x_0 < \rho < x_1\) and \(f(\rho) = \rho\).

Let \(q(\rho) = t\). Then \(t \in N_\varphi, t > \rho\) and \(t > x_1\).

II. The next relations are valid:

\[t - x_0 = q(\rho) - q(x_0) \leq \beta(\rho - x_0),\]

\[\rho - x_0 \leq t - f(x_1) = f(\rho) - f(x_1) \leq \alpha(x_1 - \rho),\]

\[\rho - x_0 = \frac{\alpha}{\alpha + 1}(x_1 - x_0),\]

\[t - x_0 \leq f(t) - f(x_1) \leq \alpha(t - x_1),\]

\[\frac{\alpha}{\alpha - 1}(x_1 - x_0) \leq t - x_0,\]

\[t - x_0 \leq \frac{\alpha \beta}{\alpha + 1}(x_1 - x_0) \leq t - x_0.\]

The last inequality implies

\[t - x_0 = q(\rho) - q(x_0) = \beta(\rho - x_0),\]

\[\rho - x_0 = f(\rho) - f(x_1) = \alpha(x_1 - \rho),\]

- 716 -
\[
t - x_0 = f(t) - f(x_1) = \alpha (t - x_1),
\]
\[
\gamma = \frac{\alpha}{\alpha + 1} (x_1 - x_0) + x_0, \quad t = \frac{\alpha}{\alpha - 1} (x_1 - x_0) + x_0,
\]
\[
t - x_1 = g(\alpha) - g(x_1) = \beta (x_1 - \alpha).
\]

Hence, using Lemma 1, we have:

(4) \[g(x) = \beta (x - x_0) + x_0 \quad \text{for} \ x \in (x_0, \alpha), \]
(5) \[g(x) = \beta (x_1 - x) + x_1 \quad \text{for} \ x \in (\alpha, x_1), \]
(6) \[f(x) = \alpha (x - x) + \beta \quad \text{for} \ x \in (\alpha, x_1), \]
(7) \[f(x) = \alpha (x - x_1) + x_0 \quad \text{for} \ x \in (x_1, t). \]

III. We can suppose (without loss of generality) - see Lemma 2 - that \(\gamma = -\alpha \) and \(x_1 = \beta \).

Then \(x_0 = -\alpha^2 \beta, \ t = \beta^2 \alpha \) and

(8) \[g(x) = \beta (x + \alpha^2 \beta) - \alpha^2 \beta \quad \text{for} \ x \in (-\alpha^2 \beta, -\alpha), \]
(9) \[g(x) = \beta (\beta - x) + \beta \quad \text{for} \ x \in (-\alpha, \beta), \]
(10) \[f(x) = \alpha (-\alpha - x) - \alpha \quad \text{for} \ x \in (-\alpha, \beta), \]
(11) \[f(x) = \alpha (x - \beta) - \alpha^2 \beta \quad \text{for} \ x \in (\beta, \beta^2 \alpha). \]

Using (8), we have \(g(-2\alpha - \beta) = \beta \).

The next relations are valid:
\[f(q(-2\alpha - \beta)) = -\alpha^2\beta, \]
\[(12) \quad q(f(-2\alpha - \beta)) - q(-\alpha) = \frac{f(q(-2\alpha - \beta)) - q(-\alpha)}{\alpha^2} = -\alpha^2\beta - \beta^2\alpha, \]
\[|q(f(-2\alpha - \beta)) - q(-\alpha)| \leq \beta |f(-2\alpha - \beta) + \alpha|. \]

Using \[f(-\alpha) = -\alpha, \]
we obtain
\[(13) \quad |f(-2\alpha - \beta) - f(-\alpha)| \leq \alpha - \beta^2. \]

But
\[(14) \quad |f(-2\alpha - \beta) - f(-\alpha)| \leq \alpha + \beta^2. \]

From (13) and (14) we obtain:
\[f \text{ is a linear function on } <-2\alpha - \beta, -\alpha> \text{ and } \]
\[|f(x) - f(-\alpha)| = \alpha |x + \alpha|. \]

After a simple calculation we obtain that \[f(-2\alpha - \beta) = -\alpha^2\beta \text{ is not possible. Thus} \]
\[f(x) = \alpha(-\alpha - x) - \alpha \text{ for } x \in <-2\alpha - \beta, -\alpha>, \]
\[(15) \quad \begin{cases}
 f(-2\alpha - \beta) = \alpha^2 + \alpha\beta - \alpha.
\end{cases} \]

According to (12) we have
\[(16) \quad \alpha^2\beta + \beta^3\alpha = -(q(\alpha^2 + \alpha\beta - \alpha) - q(-\alpha)) , \]
and
\[(17) \quad |q(\alpha^2 + \alpha\beta - \alpha) - q(-\alpha)| \leq \beta |\alpha^2 + \alpha\beta|. \]
Hence, using Lemma 1, it is

\((18) \quad \varphi(x) = \beta(-\alpha - x) + \beta^2 \alpha \text{ for } x \in \langle -\alpha, \alpha^2 + \alpha \beta - \alpha \rangle. \)

Similarly as in (15), (18), we obtain

\((19) \quad \varphi(x) = -\beta(x - \beta) + \beta \text{ for } x \in \langle \beta, 2\beta + \alpha \rangle, \)

\((20) \quad f(x) = \alpha(\beta - x) - \alpha^2\beta \text{ for } x \in \langle -\beta^2 - \alpha\beta + \beta, \beta \rangle. \)

IV. In the previous parts of this proof we proved under assumption \(\beta \) and \(\varphi \) have not a common fixed point that the relations (8) - (20) are valid. In the next step we show that it is not possible.

Suppose, for example \(\beta > 3 \).

Then \(\beta - \alpha \beta - \beta^2 < -\alpha^2 \beta \) and

\((20) \) implies \(f(-\alpha^2 \beta) = \alpha^3 \beta + \alpha \beta - \alpha^2 \beta \),

\((19) \) implies \(\varphi(2\beta + \alpha) < -\alpha^2 \beta \),

\(\varphi(\alpha^3 \beta + \alpha \beta - \alpha^2 \beta) = \varphi(f(-\alpha^2 \beta)) = \\
= f(\varphi(-\alpha^2 \beta)) = \alpha^3 \beta + \alpha \beta - \alpha^2 \beta \)

and thus

\(\alpha^3 \beta + \alpha \beta < (\varphi(\alpha^3 \beta + \alpha \beta - \alpha^2 \beta) - \varphi(2\beta + \alpha)) = \\
= \beta | \alpha^3 \beta + \alpha \beta - \alpha^2 \beta - 2\beta - \alpha | , \\
\alpha(\alpha - 4) < | \alpha^2 - 2 | . \)

The last inequality is not true for \(\beta > 3 \).

Suppose \(2 \leq \alpha \leq 3, 2 \leq \beta \leq 3 \). The relations (11) and (18) imply

\(f(\alpha^3 + \alpha \beta - \alpha) = \alpha^3 - \alpha^2 - \alpha \beta, \)
\(f(\alpha^2 - \alpha^2 - \alpha \beta) = -\beta \alpha + 2 \beta^2 \alpha + \beta \alpha^2 - \beta \alpha^3 \).

Thus

\[
 f(-\alpha^2 \beta) = f(g(\alpha^2 + \alpha \beta - \alpha)) = g(f(\alpha^2 + \alpha \beta - \alpha)) = \\
= -\beta \alpha + 2 \beta^2 \alpha + \beta \alpha^2 - \beta \alpha^3,
\]

(21) \(|f(-\alpha^2 \beta) - f(\beta - \alpha \beta - \beta^2)| = \beta \alpha (\alpha^2 + 1 - \alpha - \beta) \).

(22) \(|f(-\alpha^2 \beta) - f(\beta - \alpha \beta - \beta^2)| \leq \alpha |\alpha^2 \beta - \alpha \beta + \beta - \beta^2| \).

From (11), (22) and Lemma 1 we have

\[
f(x) = -\alpha (x + \alpha \beta + \beta^2 - \beta) + \beta^2 \alpha
\]

(23)

for \(x \in (-\alpha^2 \beta, \beta - \alpha \beta - \beta^2) \)

and similarly

\[
f(x) = \beta (x - \alpha^2 - \alpha \beta + \alpha) - \alpha^2 \beta
\]

(24)

for \(x \in (\alpha^2 + \alpha \beta - \alpha, \beta^2 \alpha) \).

It is easy to show that under assumption that the relations (8), (9), (10), (11), (15), (18), (19), (20), (23), (24) are valid, \(f, \varphi \) are not commuting.

The proof is completed.

Remarks: P. Huneke in [2] proved that in the case \(\alpha = \beta > 3 + \sqrt{6} \) the problem about common fixed point for the commuting and lipschitz functions has no solution in general.

I wish to thank S. Fučík for calling my attention to this problem and for his help with the solution.
References

Matematicko-fyzikální fakulta
Karlove universita
Praha 8, Sokolovská 83
Československo

(Oblatum 15.3.1971)