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Commentationes Mathematicae Universitatis Carolinae 

13,3 (1972) 

A NOTE ON COMPATIBLE REFLEXIVE RELATIONS ON QUASIGROUPS 

Tom6S KEPKA, Praha 

Basic definitions used in this paper can be found in 

£1] or [23. 

A relation p on a groupoid (J will be called compa

tible if for all a , ^ e,«i€(j i 

(cv <p Jtr £t a p d ) -=*» cva p Srd . 

A reflexive relation p on G wil l be called semicompa-

t ible i f for a l l cvy 9ry c e G : 

a, m Sr =-> (cue p ire si ccv p cJtr ) -

A relation p on G i s called normal i f for a l l cv, ir7 a , 

d e Gf ; 

(o,cq> ird £& (cvpJlr/uel cpd))=s&>(a,pJ2r£tapct) . 

A reflexive relation p on G i s called seminormal i f 

for a l l a,9 ir, a & G : 

(cva p ire /uei CQ, p cir) ==£> cv p ir , 

The following lemma is evident. 

Lemma 1. Let G be a groupoid and p a reflexive re

lation on 6 • Then: 
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(i) if £> is compatible then q> is semicompatible; 

(ii) if q> is semicompatible and transitive then g> is com

patible; 

(iii) if a> is normal then g> is seminormal; 

(iv) if <p is seminormal, semicompatible, transitive and 

symmetric, then <p is normal and compatible. 

Theorem 1. Let G be a commutative groupoid and jo 

a reflexive relation on G , Then: 

(i) if £> is normal, then g> is symmetric; 

(ii) if tjD is compatible and seminormal, then £> is 

transitive; 

(iii) if <p is compatible and normal, then <p is a 

normal congruence relation. 

Proof, (i) Let a, Jlr e G and au q> Jlr . We have 

<tir p O/ir a,£r =: Srcu . Hence ir £> cu (since <p is 

normal). 

(ii) Let a, Jlr f o s G be such that a $> Jlr and 

ir f C . Hence cuSr f fire . But Jirc -= cJlr . Thus 

a p e . 

The statement (iii) follows from (i) and (ii). 

Theorem 2. Let ft be a division groupoid and (Z> a 

reflexive normal compatible relation on ft „ Then a> is a 

normal congruence relation on ft • 

Proof. At first we shall prove that <p is transitive. 

Let o>, Jlr7 c c ft be such that cu <p & and J2r jd c , 

There are oc, /y. e ft such that Jir** « a,/î  = a, . We 
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have a> f a, , that i s an# f Srx . Hence ty p x . Fur

ther , we have Xrx <p ex ? hence a>ty q> &X . But 

fifr <p x . Therefore a <p c - Now we shall prove tha t q> 

i s symmetric. Let a ? £r G Q and l e t a, <p 8r . There are 

x ^ / ^ , co such that <^x «• ir*^ » # - , irz ** a* < Thus 

we can write Arz, q> Jlr/u, . Hence x $> «fr , and hence, 

cuz f $r<y~ . Therefore ax <£> Hr . But J0r - oo< •Hen

ce ax (D Q,*X . Hence x p x . Further a> p Jlr , 

which means ^^5 £> ax . Since x ® x , we get J2r f) a* . 

In the remaining part of th i s paper we shal l prove that 

every cancellation groupoid can be imbedded in a quasigroup, 

every semicompatible and reflexive r e l a t ion of which i s se-

minormal. Such a quasigroup wi l l be cal led a JC -quasigroup. 

I t i s evident that every .K -groupoid i s a cancel lat ion 

groupoid and hence i t s every subgroupoid i s a cancel lat ion 

groupoid. 

Theorem 3. Let G be a J( -groupoid. Then every semi-

compatible equivalence relation on (J is a normal congruen

ce relation. Further, every semicompatible ordering on 6 

is a seminormal compatible ordering. 

Proofs By Lemma 1. 

Lemma 2. Let ft be a quasigroup. Then there are a qua

sigroup ft and mappings oc 7 (i of ft into ft such that 

ft is a subquasigroup of ft and for all x, n^ e ft it 

holds: 

o c f x ) C / 3 C x ) C x ^ ) ) - / ^ . 
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Proof. Select for every a,, Sr, c ., d e ft diffe

rent symbols &(a,), <v(Sr), 0 (c, d ) . Let R be the 

set oonsisting of. all elements of ft and of all symbols 

er(a,) , <v(Jlr) f (p(c,cL) . On the set 31 , we shall de

fine a partial binary operation * . Let a,, Sr e K . Then 

a* * Sr is defined only in the following cases: 

(i) a,, Sr e & . Then a, * Sr m a,Sr . 

(ii) There is c S ft such that a, = 6*Cc) and 

ir e (k . Then a, * Sr *? p (c, > ) -

(iii) There are c, d € 0, such that a, ** v (c ) -

ir* -= <p (c ,d) . Then a, * .i2r -r e , where & e Q, such 

that e e ~ d . 

J? ( * ) is a halfgroupoid and ft is a subquasi-

group of JJ.C* ) , We shall prove that & ( * . ) is a cancel

ation halfgroupoid. At first the left-cancellation law. 

Let cu7Sr,ceH(x), let a* # Sr, a**Q, be de

fined and 0/ * # « a, x c , Such cases can arise: 

(i) a, ts ft , Then necessarily Jtr, c e Q and a* # ^ *• 

=. â  ir =r a- # c * ci/C , Hence Sr *s c , 

(ii) There is d e ft such that <a> -= 0 (cL ) . Hence 

Sr, c e & and a* * 2r*= <p (d ,ir)x a * c -= p W , e ) . There

fore ir* sc C . 

(iii) There is d s fit such that a, » f (d) .Hence there are 

e ., £ e ft such that Sr s p (d, a), c m p(d,£ ) . Then 

a**SrzxO'z:<i*c>** SP , where da* -= e f d Sv » £ . But 

^ » <fe ,hence e -=* £ , and hence, Sr -= c . 

Now the right cancellation law. Let o,,Sr, c e .XC.*) 
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and Jbr x cu * e # a, .We must discuss the following cases: 

( i ) a,, Jlr9 c e Q> . The.6 £r # */ sr ^o^ * e * o . « ea ,* 

Hence i K a fl . 

( i i ) a/ e ft and there are d , e c (2 such that 

>&- « a'Cci), C r £ 5 ( e ) , Then 2/* a, =: f (d^) *r d # o , « 

= £>Ce,a,) .Therefore d s e , hence I K S d . 

(iii) There are dL7 & e ft such that a, = <p (d9 e ) . 

Then necessarily ir -= <v (cL ) = c . 

It is well known that every cancellation halfgroupoid 

can be imbedded in a quasigroup* (See R.H. Bruck:A survey of 

binary systems, Springer-Verlag,1966.) Hence there is a qua-

sigroup ft such that HC * ) is a subhalfgroupoid of ft ., 

If x,/^ are arbitrary elements of ft then 

f C x K e ' C x )(*<$,)) * * (x) * ($ (x) * Xty) -

-== r Cx) * <p Cx, x ^ ) ==• ^. * 

Now i t i s sufficient to put oc (x ) = <v(x), (b(x) ** er(x) . 

Lemma 3* Let ft be a quasigroup* Then there are a qua

s i group ft and mappings oc ̂  fi of ft into ft such that ft 

i s fa subquasigroup of 5 and for every x t ty € ft i t 

holds: 

(tyx ) fi(x )) cc (x ) ss /y. -

Proof• The proof is dual to that of Lemma 2. 

Theorem A« Any cancellation groupoid can be imbedded in 

an JV-quasigroup. 

Proof* Let ft be a given groupoid. Since ft can be 

- 597 -



imbedded in a quasigroup, we can presume without loss of ge

nerality that Q is a quasigroup. Put ft « flD , Q* » H i - .* 

for all odd ^ ^ 4 , fl^ =: fll^„^ for all even -6 2r 2 

( 3^, fi^ in the sense of Lemmas 2,3). We have A » Q0 & 

S Q̂ j £ $2 S *#• . There is a quasigroup F such that 
00 

P » AJQ ft^ and fl^, are subquasigroups of P . Be ̂> 

a semicompatible reflexive relation on P. Let a,Jlr,ecp 

and let cuAr p a^c , There is an even <£ > 2. such that 

a, ir. c 5 H^ . But ft^^ «• (*£ .Hence there are map

pings OCL , /S^ of 0,1 into $4,4.4 such that 

oc^ (*) (fa Cx ) Cx^)) =• /y. for all x , <y~ e fi^ # Hence 

we have c = <x^ Ca ) C/^ Co,) Ca,c )); ir « oĉ  Co,)C/3̂ (o,)Ĉ ir)). 

But cp is semicompatible. Thus 

oĉ  (oOCfo C<*Ka,ir»p <x,l(a,)((li (o,)(a*c)) . 

Hence JEr rf> c . Similarly i f Jlr a <p ca> . Therefore P 

i s an H-quasigroup. 

R e f e r e n c e s 
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