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Comment at iones liathematicae Universitatis Caroiinae 

13,4 (1972) 

A NOTE OH VOLTERRA INTEGRAL EQUATIONS WITH DEGSFERATE 

KERNEL 

JiH CBRHA, Praha 

In the paper several relations between the linear 

vector - valued Volterra integral equation 

(I) xCt) «* a,Ct) + jth(t,*)x(*)cL* t 
and the i n i t i a l - value problem 

x - PCt)x *» oCt ) , 
(D) * 

X(0) m X0 

are investigated. Particularly it is shown that under so

me weak assumptions the following 'three assertions are 

equivalent: 

(i) the kernel B of the equation (I) is degenerate; 

(ii) there exists a matrix FCt) such that the 

function BC#,*>b) satisfies the equation in (D) with 

(iii) the solution of the equation (I) satisfies so

me special initial - value problem of the type (D). 

Analogous results are obtained for the case of an 

AMS, Primary: 45D05 Ref. 2. 7.948.323 
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initial - value problem for a differential equation of a 

higher order. 

The results generalize those obtained by J. Nagy and 

E. Hovakova in [2 J for a special type of the kernel 3 . 

1* notation. Let for m,aim 4, 2,„, f**** (%«**<* ) 

denote the space of all real (complex) matrices of the ty

pe an, *> tfi . The mt -dimensional vectors will be identified 

with the column matrices (of the type tiu x. 4 ) for mv m 

m 4,2,... , and R.mt, X""' will stand for &"*** , It"**4 

respectively. Analogously for vector valued functions. We 

shall denote the identity matrices by 1 and the zero mat

rices by 0 . 

Let G c £** be a domain in &** , let G be the 

closure of G . Then C^^CG) for m.,m, m 4,2,... % Jk> » 

-r0,4,2,... denotes the space of all tm x m, complex Jk-

times continuously differentiable matrix-valued functions 

on G . (The function is 0 -times continuously differenti-

able if it is continuous; we define the 0 *-th derivative 

of a given function to be equal to the function itself.) 

Let <tti^ > 0, /rtjj. > 0 for <t m 4,2,... , & j £ « 4 , 

2f", ?, be integers r Y.y 6 x'
m4*K'n* .We shall identify 

the matrix 

4n мa 
J
<г 

7*í У
22 • • •

 Y
-Ч 

Xи Xм. • • * Ve 
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with the corresponding element of K***** where M m 

-« rni^ + mi-a + ... + tm.^ , Jf m m.̂  -*- .*i,a 4.... .4. *t . 

The partial derivatives of a function £ with the 

domain in JL*' will be denoted by 

where * sr Cj^ ,., *., ^^) denotes some multiindex, jp, m 

m 49t,„. . Further, the set itifA>l c Jia : t Z /o fc 0} 

will be denoted by A and the interval < 0, e& ) by X.̂  . 

Finally, in v/hat follows, the symbols /nt , m, will stand 

for integers, mv 2* \, «, 25 <. J(» J 0 and P, B will be 

elements of C ^ ^ C X ^ . ) , C ^ ^ C A ) respectively. 

2« Problem. The main purpose of the paper is to find 

some assumptions on the kernel 3 and the forcing function 

a so that the solution of the Volterra integral equation 

(I) xCi)«o,Ct)4. f*BCt,*)xC*)cU, t 2 0 

Jo 

may satisfy some special i n i t i a l value problem for an ordi

nary dif ferent ia l equation. 

The following theorem i s well known. 

3. Theorem. Let P e C^H/ru CK+), <*, e l*?nm, CR+) , 

A> £ 0 9 *£ m K<TWK/m' • Then there exists a unique 

solution # « C ^ ^ C<*, co ) ) of the i n i t i a l value pro

blem 

C3.4) £ - P C ± ) x « <a,Ci), i > * , 
( D ) (3.2) *C*) « * A . 
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4» Remark. The following well known variation of con

stants formula: 

(4.D x(t)~H(t)}i(*r\A>+ ftHct)Hc^rV^)d'tt> t* * , 

holds for the solution x of CD) where H 6 C^ < W VCK +) is 

the solution of the square-matrix initial value problem (X 

is a regular square matrix) 

(4.2) X - PCt)X , X(0)~X. . 

The f o l i o : ing theorem holds fo r the equat ion ( I ) . (See 

R.K. Mi l l e r [11 . ) 

5 . Theorem. Let a e C £ * ^ C £ + ) , B € C ^ ^ CA) . 

Then t h e r e e x i s t s a unique s o l u t i o n * c C^ ,* , , CX.+ ) of the 

equat ion ( I ) f which i s g iven by 

(5 . 1 ) * C i ) * a,(t) + f * ] U t , * > * C * ) c U f t ž s O 

where R is the resolvent kernel of the kernel B . This 

kernel X. is the unique solution of the resolvent equation 

(5.2) RCt,*)-«BCt,*)4. \t3(i}w)K(u,^)dAi, , 0 * A & i . 

6* Rgroark. In what follows we shall be interested espe

cially in the case of degenerate kernels, i.e. kernels B of 

the form 

(6.1) BCt,*)- thi.^>*^Z*~i 

with XKC^ CtfA>) m wi^Ct)«r4^(h) y t & A> & 0 j i,$** 4f2,.,<,m •, 

4JU,J , t(J » being some sufficiently many times continuously 
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differentiable matrix functions of the type 4 * k.4 

Jkj/s x> \ respectively, defined on R + . 
*• » 

\M ?• kemma. Let B € C>nK<rt(«d) be the degenerate ker

nel (6,1). Then there exist an integer /nt S 1 and 

li « C & L CX +), Vc C * U (R+) so that 

(7.1) a c t , * ) - i t c t m * ) , . t 2 * í O 

It is possible to choose mv 25 m, and the matrix It in 

the form 

11 - L I, II4 3 . 

Proof. Obviously, we can choose It in the form 

.0 0 ...0 

,.0 Q ... 0 
U 

*<« ̂ a * " "*<•* 0 0 ... 0 

û 0 ... 0 a^ u,гг~- »l< ' 

0 0 ...0 0 0 ... 0 ... ̂
л < ř д^ r

.. ІІ, 

and the transposed matrix V of the matrix V in the 

form 

nľл 
I 0 ... 0 *1 0 . . . 0 . . . 4ГІńQ . 
*í *2Л 

0 <£... 0 0 * £ . . . 0 ... 0 <£v*.o 

0 0 
So we ob ta in 

C Í 0 ... * £ , , . 0 0 **.i£m "<t( 

ҐПЬ яr ПЬ -f 
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3» theorem. Let .B 6 CfJ^^ CA) be the degenera

te kernel (6.1), ct s C^ C X + ) . Then there exist an 

integer ^ , #, > tn and 2., f e C ^ # C.K.4. > such that 

llCi) is a regular square-matrix for all t £t 0 and the 

following assertion holds: 

Let us define % e t^^CA) , & € C^Cft^) by 

means of 

(8.1) Set,,*) = t !ct) f c*>), t ^ ^ o , 

*-[?] 
Let S e C ^ ( R + ) , x e C4 0 ,

CЛ
+
). <y.

в
 C^ÍЗL^.) 

and let it hold 

«-.:i • 
Then 

(i) if X is a solution of the equation 

(8.2) srct) - act) + ^Sct,^)?c*)dA>, t a* o , 

then x is a solution of (I); 

(ii) if X is a solution of (I) then there exists such a 

ff c C^^CR.^) that x * J 1 is a solution of (8.2). 

Iroof. Me can tut 

*-[::] 
c ГfÄ> / j> \ 

V « fv °1 * r*** CR ^ 
0 Oj U6m. + m.) *<«* + *-> v A-+' > 

where U 1 V are matrices of the types m, H mi t /m x rn> 

respectively described in Lemma 7. Then A m m .+• tm. 
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Bft.л.) = "BCt,*) 0' 

YC*>) 0, 

and (i) holds. Let ,* be the solution of ( I ) . Set 

q.Ct) = p V C ^ x C ^ O c U f t & 0 . 

Then ST sa t i s f ies (8.2) and ( i i ) holds as v;el3. 

9» Remark. For some special kernels B the conclusion 

of Theorem 8 (or, more precisely, i t s easy modification) * 

holds with <\i B m. . 

Lemma 7 asserts that each degenerate kernel may be ex

pressed in the form (7.1) . So we shall pay at tent ion only 

to the degenerate kernels of th i s type. Prom Theorem 8 i t 

follows that each equation (8.2) with a degenerate kernel 

may be complemented so that the equation (8.2) with the ker

nel (8.1) wil l be obtained. Therefore i t i s sufficient to 

consider only such equations (I) vdth a degenerate kernel 

where the kernel B is of the form (7.1) with a regular 

square matrix VL . 

10. Theorem. Let U * C^^CK^) , V e C ^ * * , CR+1 , 

B C t , * ) . UC-t)VOb) , t 2r **0 and l e t E m C ^ ^ C K ^ ) 

be the solution of the matrix i n i t i a l value problem 

(10.1) £ . VCt) t tCt )E , E C O ) - I . 

Then the function 

(10.2) J U t , * ) - U C ^ E C t J E U H v c * ) , tz/9*0 

i s the resolvent kernel of the kernel B 
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Proof. Clearly 

Jh3(t$A4,)K(4A,,A>)d4L m /̂  U (t)V(w)VL (A4,)l(u.)EU)^VMdu.^ 

«ttCt)f VO<,)UC*)EC-uO<£^ 

~VL(t)iZ(t) -EC*)] EM^YCrimlLCt,*) -BCt,^) , 

t £ * > 0 , 

so that R satisfies the resolvent equation (5.2). 

11. Theorem. Let B e C^l^ C A ) . 

Then the following three assertions are equivalent: 

(i) there exist It e C^^CK^) regular on Jl+ and 

Ye C%lm,(K+) so that 

(11.1) BCt,*) « liCt)YC/s>) , t 2 * 2= 0 ; 

(i i) there exists P e Om.Hnt (H^.) (\*4iich is uniquely 

determined by B ) so that 

(11.2) D^BCt ,*) - PCt)BCt,*)~ 0, t * * £ 0 % 

(iii) there exists P e C^£ K m, C 31^) (which is uniquely 

determined by B ) so that for all a € Cf£ (& + ) the 

solution x of the equation (I) satisfies the initial va

lue problem 

(11.3) x - CPCt) +BCt,t)3* - o,(t)-?(t)a,(t) , 

(11.4) x(0) ** CL(Q) 

(This P is the same as that in (ii).) 

Proof, (i) ==> (ii) From (11.1) it follows 

j>^Bct,/b)*ict)vc>b)»ilct)uctr%ct)rc^)-pct)Bct,^) 
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v&ere PCt) m tt(t)ttCtr4 , t 2 0 . 

( i i ) ==> ( i ) Let H be the fundamental matrix of 

the system x s* PCt) x , Then (11.2) and Theorem 4 imp

ly (11.1), where tU/t>) «HO>), VC*)~ H(*r 'BC*,*) , * 2 0 , 

( i i ) ===> ( i i i ) Let x be the solution of ( I ) ; a , 

B continuously different iable. Then 

x(-k)* aCt) + BCt,t) + j V ^ B C t ^ x C * ) ^ * . , t ^ O , 

Simple calculation gives 

(11.5) *(*)- t?Ct)+*(t^)lx(t)>» fittf^Bd,*)-

-PCt)BCt,*)l*C*)<£* + iCt)~PCt)o,Ct), t*0 . 

How (11.3) follows from (11.2) and (11.5). 

(iii) SSBS> (ii) Let the solution x of (I) satisfy 

the initial value problem (11.3-4). Then (11.5) holds. 

Hence and from (11.3) we obtain 

(11.6) J t Cl)^B(t ,^) - -P( t )B( t ,^)1xC/s > )c i>4 > .«0 ; t 2 0 . 

From the equation (I) it follows that for each x m 

« Cj£' CX+) there exists a, m C^ O i + ) so that x 

is the solution of (I). So (11.6) holds for all x c 

€ C ^ C X + ) and (11.2) is satisfied. 

12• Remark. Theorems 8 and 11 imply the following 

assertion for a degenerate kernel B C C ^ m , ( A ) 

and a- * Ĉ v ( X + ) . It is always possible to comple

ment the matrix B and the forcing function a in (I) 

so that the new kernel satisfies the equation of the form 
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(11.2) and the solution of the complemented equation satis

fies the initial value problem of the form (11.3-4). 

It also follows from Theorems 7 and 10 that the re

solvent kernel R. of a smooth degenerate kernel B is 

given by (10.2). 

13. Remark. Theorems 10 and 11 imply immediately: if 

a kernel £ fulfils the equation (11.2) then 

(i) B is degenerate; 

(ii) a solution of (I) (with smooth a ) is also a solu

tion of (11.3-4); 

(iii) the resolvent kernel R may be written in the form 

(10.2). 

The investigations described above may be modified 

and generalized in many ways. One of such modifications 

Y/ill be described now. 

14« theorem. Let A 0 , A ^ , .# . 9 A ^ e £<nx*i, CX. + ) .> 

A%.I,B.C,:»CA)) a. (£-><**> . 

Let for all * -ft 0 the function £ C. t to ) satis

fy the equation 

(14.0) .2-A^C*>»**•<*> « 0 

on < /», oo ) . 

Then 

(i) the kernel B is degenerate; 

(ii) the function x e C ^ C X ^ ) is a solution of (I) 

if and only if it is a solution of the initial value problem 
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(14.D § nct)vl*ct) m %ct), t > o , 

(14.2) J f * C O ) - * Í ; GÁ,,(0)])gx(0)mTJLa,(0); * « 0,4,„.,jfe-4 } 
jLm 0 

^ . z ř ^ / ^ + i N *-*-*"* 

where 

d4.3) r.ct)-A£ct)- s (***; £ A . . . . . . .ct 

x J ^ B ^ J f t ^ t ) j £ - 0, 4,...,Jk s 

(14.4) o<t> - £ AЛVTa.Lt); tгsO , 
^ i * 0 

(H.5) e^ct) •*£(?" ( ^ " ^ ^ ^ J ^ s c t ^ ) , * * o , 
A - 0 , 4 , . , . , 4 , - 4 , i . 0 , 4 , . . . , * . 

and where we set , 2 . - . - 0 whenever M, <c 0 , 

Proof. V/e prove the a s s e r t i o n ( i ) . Let us in t roduce 

the matr ix func t ions 

* . 

ЛH-ЛÌ 

A ш 

0 I 0 . . . 0 

0 0 1 .. . 0 

-A0 -Aл -Aa... - A ^ ^ 

,(0) 
Clear ly A * C ^ x ^ < * + ) end K t C ^ ( | . + ) sa-

"Mm, C X + t i s f i e s t h e equation (14.1) i f and only i f xe C*?* CR ) 

and $f i s t h e s o l u t i o n 

x ~Xct)Z 
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