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A THEOREM ON SUPPORTS IN THE THEORY OP SEMISETS 

Bohuslav BALCAR, Praha 

The. following theorem is proved in the theory of se-
misets: If there is a total semiset support then each non
empty semiset of ordinal numbers has a least element. 

Key-words: theory of semisets, support, complete ul-
trafilter , complete Boolean algebra 

Introductory remark (by Petr Hajek). There are vari

ous beautiful results concerning the set theory and the 

theory of semisets proved by B. Balcar but not published. 

The result contained in the present paper means a conside

rable simplification of the discussion on the notion of 

support (see [ ll Chapt. IV Sect. 1 and 2) and was proved 

by Balcar at the end of 1?69. (Cf. 121 3.7.) It was not 

possible to include it into til but the authors of [11 ho

ped that Balcar would publish his result elsewhere. Since 

this hope has remained unsatisfied I have decided to help 

publish Balcar's result. I simply wrote down the result 

and its proof as I had learned it from Balcar without try

ing to generalize or make applications. I am grateful to 

Balcar that he permitted me to do this and I hope sincere

ly that this friendly joke will get him to publish more of 
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his results in a reasonable time. P.H. 

In what follows, familiarity with [1] Chapters I, II 

and IV (Sect. 1 and 2) is assumed. We freely use denota

tions introduced there; in particular, we use cu9 Srfx, ty 

etc. to denote sets and 6*f & etc. to denote semisets. 

(The reader is recommended to use Index of symbols in II] 

if necessary.) TSS " denotes the theory of semisets with the 

regularity axiom (Dl). Our aim is to prove the following 

Theorem (TSS'). If there is a total semiset support 

then each non-empty semiset of ordinal numbers has a least 

element. In symbols, (S3)—* (ST) (the third support axiom 

implies standardness). 

By tlj 4241, we have the following 

Corollary (TSS'). (S3) iff (S6), i.e. there is a total 

semiset support iff there is a total semiset support which 

is a complete ultrafilter on a complete Boolean algebra if # 

The theorem is an ijmnediate consequence of Lemma 4 be

low. 

Lemma 1 (TSS'). A non-empty semiset ft is a support 

iff there is a set a 2 # and a relation /t, £ cu x cu 

such that the following holds: 

(i) x, is antireflexive, 

(ii) CVcs a,-er)C3* teMnf'ixl 2 c? , 

(iii) CY* * r>U"-f*f fia- er) . 

Remark. Suppose that fr is a complete Boolean algeb

ra and that f is a complete ultraf ilter on J&" , Put 
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a s Jlr ~{Ofr\ and K * {</«*, .i^) j ^ - 4 ^ c a & u> A */* *r 0 £ ? 

(the r e l a t i o n of d l s j o i n t n e s s ) . The reader v e r i f i e s with 

ease t h a t ( i ) , ( i i ) , ( i i i ) a re s a t i s f i e d . The no t ion of 

d i s j o i n t n e s s i s the mot ivat ion of our condi t ions ( i ) -

( i i i ) * 

Proof of Lemma 1. ( — * ) Let f be a support and l e t 

0* 2 tf . By [1] 4115, TP (a ~ V) i s dependent on 6 j so 

l e t IP (a ~ ff) m K>" & « We may suppose w . l . o . g . 

JD (K^ ) m a, and W (^ ) S ? (a ) , Put < nj,, x > e K± m 

a C«3>u> )(<**-, x>c/c4&^e4t),then /c,a S a x a and *£ 4x } m 

s U C ^ f x J ) for each x -c J>C**> . I f x f r and 

<ju,9x) e fy then evident ly x 4 <<& , hence we may suppose 

t h a t <>a ; x> 6 tt^ impl ies x 4.. ,a< . Consequently, £,a 

may be supposed a n t i r e f l e x i v e . I f c £ a - & then 

<C,X> f rfr^ for some x , which impl ies t S /fr£ Cx / . 

F i n a l l y , i f x e 6" then A.* < x i S P C o ^ - ^ ) and hence 

*£ { *} s * - ** . 

( ^ — ) Let f ^ o ^ ^ t s a t i s f y ( i ) - ( i i i ) « Let A> be a 

r e l a t i o n such t h a t 3D C-6) C ^ and l e t p -» ,*" f . Put 

W (* ) » i r \ We prove Hcf* (Jlr -» jp, 5 ) | the r e s u l t w i l l f o l 

low by CU 1466. Put ^ « < < ^ , x > j (twr(h))"{ty\f*>£'{xM. 

We prove /t^ 0* n ^ — A . Indeed, suppose x % 0* and 

< ^ , x > c H,A . Then K / ' < X J £ (bmsr (*>))"<&) j by ( i i i ) , 

CCivU'C^))^!^,!!? a-6> and consequently y * tr ~ f • On the o t 

her hand, i f / ^ c i r - p then (<tmAT (<*))"{<$,} & a~& 

and, by ( i i ) , t he re i s an X f ^ such t h a t .V'-txJ 3 

2C<Dn/1fC*>>%ljJ,We have <«y ,X>f n,^ and consequently 
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Lemma 2 (TSS'). A non-empty semiset # i s a support 

iff there i s a set <t 2 V and a symmetric re la t ion 

ft S o, * a satisfying ( i) - ( i i i ) of Lemma 1. 

Proof. Let 0 be a support and le t /c^ be as in the 

f i r s t part of the proof of Lemma 1. .We know that K» s a t i s 

f ies ( i ) - ( i i i ) . Put /t3 m K%U Vrw (tt^) . Then Jt$ i s 

symmetric and sa t i s f ies ( i ) , ( i i ) . We show that ( i i i ) i s 

also sa t i s f ied . Suppose not and l e t # e 0* , /i^ixi n 

n & B y. , Then CC*vir in^Y'ixl 9 ty and ty, € 6* , i . e . 

<X,/U,>€>t2 a n ( i X, f̂  « <T » This contradicts the fact that 

fca s a t i s f i e s ( i i i ) . 

Lemma 3 (TSS')# Let $ be a support and l e t cu, /t 

be as in Lemma 2# Put ,x ^ /y, s tt"{x} 2 H," inf\ * Then 

< a , -£ > i s a quasiordered set and (T is a complete u l -

t r a f i l t e r on < a, , £ > in the following sense: 

(iv) (Yoc,/y,c&}(<y»&x&,x e # —> /y, « 6*) , 

(v) ( Y x , ^ e v)(3zeer)(% & x & * * <y,) 9 

(vi) if ( ^ £ a- and (Vfc € a)(3/y, C^) (/y -6 # ) then 

<5L A tf 4= 0 • 

Proof, (iv) Let /y, £ .x & x e 0* , Then V - f ^ J £ 

£/t/'{.X* S a,-& j suppose /y, f 0* # By ( i i ) , there i s a 

X 6 0* such that #!'{%} 2 < ^ ? u */ 'f /y-$ . Hence 

</t^,»>6/t)<*,^> e ./fc by symmetry, i . e . <c&,fc>e K, f which 

contradicts ( i ) . 

(v) Let tf, /y, e & $ by ( i i i ) f/£ix\ u H,"{tyi & <v ~ & 

and by ( i i ) there i s a * c tf such that /t"{z} 2 

2 #/ '{*! u/t'V^/J .Hence % £ x , ty » 
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(v i ) The condi t ion <Vx * a,) (Bop m q^) (ty& x) i s 

equivalent t o ( V x e a ) ( 3 / ^ e ^)Oc,"<xJ £ /t/'{/jj,}) . Suppose 

^ n f « 0 , i«e« £, S 0* - 0 . By ( i i ) , t he r e i s an x e 

c 0* such t h a t /&"{*? 3 ^ . For t h i s x we have a /jLe 

€ ^ such t h a t n>"{t\b>% 2 ^ " - { x f 2 £ J t h i s impl ies 

/t̂  C K>9{OL\ , which c o n t r a d i c t s ( i )« 

Lemma 4 (TSS')# I f G i s a support and i f JD i s a 

non-empty semiset of o rd ina l numbers dependent on € then 

» has a l e a s t element. 

Proof. Let % S & and l e t ,*,, *• be as in Lemma 

3 . Suppose » B . V ' ^ j we can assume J)Cfr) m a, and 

W ( ^ ) £ Ofo » Define a s e t - f u n c t i o n f as fo l lows : 

f 'x - mim, U *"{fu,1 . 

By Lemma 3(iv)f f'V S V ^ and evidently 

(YoO€A"&)(3(l£oi) (fim £"& ) . Hence it suffices to show 

that f" & has a least element. Put Jtr m {x j 

( V V * x)Cf'^ - f'x )l. Since /y, * x -» f'4, * f'x 

evidently holds for each X, ̂  e a- , the set Jlr fulfils 

(Yx e cu)(3y.e8r)(ty 6x),By Lemma 3(vi)» ir n $* *# 0 . 

For each x € Mr n G } £'x is minimal in £"$ , In

deed, suppose ty e G and f'/ty* «< f'x . By Lemma 3 

(v), there is a X m G such that % 6 * & » ^ /y- . 

For this » we have f'a* ̂  f'^ *-- fiX , hence » -̂  

6 X & f'fc << f'x , v/hich contradicts X e J&- . 

The proof of Lemma 4 is complete; the theorem is an 

immediate consequence of the last lemma by the definition 

of a total support, 
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