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ON ONE CLASS OF PURITIES
Tomd% KEPKA, Praha

Abstract: Consider a purity sv for the category A -
mod of all the left A -modules, where A stands for an as-
gociative ring with unit, In this paper there is given a des-
cription of the least purity €, with the property 3’;°= %,

where %, denotes the class of all o - flat modules. The re-

sults are used for a characterization of rings having only
projectively (injectively) closed purities. On the other hand,
there are given some examples of purities that are not injec-

tively (projectively) closed.

Key words: Purity, pure flatness, pure divisibility, pu-
re inJectIvity, pure projectivity, torsion theory.

AMS, Primary: 16A50 Ref. %. 2.723.23
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1., Consider a purity @ on A-mod and denote by %,
the class of all @ - flat modules (definitions see below).
If € is a purity, then ¢ € « (@) willmean & = %o .
We see immediately that there is a purity €, such that
€, € 4 (w) and €, is the least with this property. The
purpose of this paper is to determine a concrete form of €, ,
srovided ?'a, is closed under submodules and give some ap-

" plications of the case, when fa, is a torsion -~ free class

(in some torsion theory).
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In what follows, by A we shall mean a ring with a’
unity and A-mod  will be the category of left unitary
modules over A . Let € be a class of short exact sequen-
ces from A-mod . Denote by e¢m ( € ) the ecorresponding
class of monomorphisms (epimorphisms). The class ¢ is cal-
led a purity if the following conditions are satisfied:

(1) Every split short exact sequence belongs to € .

(2) If «, B € €m and B occ 1a defined then
Pox € €m -
(3) If 3ox € ém and B is a monomorphism then

X € ©ogp

(4) If ««, B€ ©4 &and B o o« 1is defined then
Bex € ep
(5)If f ox 6 €y and o« 1s an epimorphiem then
B e €L -

If M 1is a class of monomorphisms (epimorphisms) then
€ (M) will be such a class of short exact sequences that

e(M), =M (ECM)‘ =Mm).
Let 7l be a class of modules and let < (7L) (p (7)) deno-

te the class of all the monomorphisms (epimorphisms) ¢ such
that every lmodule ‘from 71 is injective (projective) with
respect to @ . As it is well known, the classes € (i (%))
and ¢ (n (7)) are purities (see [1] er [2]). PFurther,

if M 1is a class of homomé:rphieme. then J(M) (P(M))
will be the class of all the modules M  such that M 1is
injective (projective) with respect to every morphism from

M . If v is a purity, then instead of J (@, ), P (m,)
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we shall write Usp , %, . A module A ig called o -flat
( gr -divisible) if every short exact sequence with A in
the third (first) place belongs to Jr . The corresponding
classes will be denoted by F» and Dp .

2. Throughout this paragraph, iet & denote a non-
empty class of modules closed under submodules, isomorphisms
and extensions (i.e., if A,B e & and 0+A-+B—>C—+0
is exact then (C € & ). Put h (&)={9/g 1is a mono-
morphiem, ¢: A— B and there is a submodule S €& B such
that

P(AVAS=0 and Mp(A)+8) e &
and rmr (H)e= € (S (£)) . Then Iy = A (&) .

Theorem 2,1, The class Jr is a purity.
Proof. (i) Let ¢g: A—» B be a monomorphism and B =
= @(A)®C .Then @(A) N C=0 and B/p(A)+C @

€% (B/gA)+Cu0). Thus @ & M (%) =, .

(11) Let A—?é B ¥, be two monomorphisms, With-
out loss of generality we can assume that A Bs C and
@, ¥ are the canonical monomorphisms,

(<) Let ¢, v€a, . Then thereare S € B and Ts
&C suchthat SAA=TAnB=0 and P/a+s,

c/B+T¢§6r.Put X=S+T . Then AnX=An

A (S+T)= 0, as one may check easily, Further

B+ T |
*TAvx <P T arS)oT 2 PArSct and UBeT e % .
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Hence the exact sequence

0—=3*Tpex — Casx— Ber o ¢
gives C/A-t-xe:& . Thus ¥ o @ € .,
(B) Let y o pear, . Thereis T < C  such that
AnRT=0 and C/A+Te % . Set S =BAT. We have
AnS=AAnBnTal and (A+T)NB=A+(TAB).

Hence B/A+S= B/A+(BhT)=
=B/Aa+TrAB = B AT v CravTen .

Theretore D/A+S & & and consequently & € o,
(1i1) Let ALB ¥, [ be two epimorphisms. Put
Xedorp, Y=Ju 3, Y'={alaecA, plale ¥}

(clearly Y ' m 9'4(Y) =X (yog@) ).

() Let @, @ éarz . Hence there are S5 ¢ A and Ts
€$B seuchthat X nS=0=YnT andA/X+S, Bryites.

since YA T=0,Y 'nT" =« X(T "= ¢ "(T) . If we
put Z = T'An 8 , we get Y*'AaZ=Y"'""T"AS =

= X A S = 0 . Consider the exact sequence
-1 -1
) 0" *T vz Az Ayt

Hewever
-q -1 o -1 adt
Y -+ T /y.4+ z - Y +Z + T /Y.""‘ Z = T /(y..q+ z) n T-l-
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1 -1 -1
=Tz =T /xasinr'a T+ X9, s sVins e 8 |

YrtemizYx frat e Yvite s .
Hence from (> ) we can conclude that 'A/Y'4+Z e & and

therefore y o @ & o, .
(B) Let ¥ o p e my, There is S € A  such that

SANY"1T=0 and A/S-ﬁ-)”": % . From this, Y~

A 9(S)=0 and
Byeges) s /sy vx s Hsere 8
Thus ¥ € Tp -

Theorem 2,2, (i) Let F € ¥, . Then there is a sub-

module S & F such that F/S € and S 4is subprojec-

tive (i.e. S 1is isomdrphic to a submodule of a projective

module),
(41) Let A be left hereditary. Then P € Fyp iff the-

re is a submodule S & F  such that P/S €e¥ and S

is projective.
(111) & € F, . The equality & = Fp holds iff
& contains all projective modules from A - mod .

(iv) Let D € A - mod and i\)A be an injective hull
ofD.M™en D e Dy 1z P/Ded .

(v)Iet P& A-mod ,Then P e Py 4ff P 4is projec-
tive with respect to every epimorphiem ¥ with Jm y € &,
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(vi) Put B*={fAlHom, (A,B) =0VB e ¥ 3 . Then
gte B .

(vi1) Let I @ A-~modl Then I € Up  iff Ext,(B,I1)=
=0 forall Be & .

Proof. (i) Consider an exact sequence D-—»A—T-*PL
SIS ) , waere P 1is projective. Since Fe Fp, xx e oy .
Hence there is T & P such that A A T = 0 and

P
/A+T € # ., Therefore S = A(T)=T and F1s e & .

(i1) By (1) and using the fact that every projective module
lies in %, and F, 4is closed under extensions.

(1i1) Iz 00— A = .'B-E* c— 0 is an exact sequen-
cewith C e then x(A)YnO0=20 and B/ (A) € &,

86 o« € Iy, ., On the other hand, if & contains all pro-
jective modules then ¥ & & by (1),

(4v) I D € Dy then o € M,, ; o being the canoni-
cal monomorphism of D into _'f) . But D 1.5 essential in 5

and hence 3/3 € & . Conversely, if D/,D e X then
A
o« €7, and consequently D € Dap (since D € Dy ).

(v) Let P satisfy the hypothesis, Let Bemp, 3:B—C
and o € Hom, (P, C) be arbitrary homomorphisms. There

is S & B such that A N S = 0 andB/A+Se.‘6',

A= Xer 3 . Ve can write the following commutative diagram

with exact rows:
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A

0 — A=+ B—>C—> {0

Lo p

0)+A9S—»B—E—0

By the hypothesis there is w : P— B such that

¥oam =0, Hence deB eoew = yowu =0
and Im © § Herw o, where ¥ = (8 o w)- 3 . Further,
Hew o= 3(8) and 6= (3/5 1is an isomorphism of 5
onto Hew o . Put Soaa"'"o*r: ;. then @:P—> B  and
Bo@e=",.Tus = PBo(u-p), P is projective
with respect to [3 and consequently P € P .

(vi) By (v).

(vii) Let Exty (B,1)= 0VB e & . Consider an

Jr -exact sequence O——-»Ai» C—@+D——> 0 . We show that
I is injective with respect to « . For let ¥ : A —>1 be

arbitrary. We get the commutative diagram with exact rows:

00— Asc 2o
[

Osa(A)BS2L5C —»E—>50

el

00— I—> X—FE —0

where e,, @, 7 are defined by obvious manner, P o o« =
= ¥ .Since E € % , the nether row splits and there is
A:C—I such that Aoy =@  Hence T =@ ok =
-A.otyo¢,, = dloex .

Theorem 2,3. Let be such a purity that e 3.

Then or € w .
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Proof. Let o € o, , oc: A— B . There is S

B suchthet SM e (A)=0 snd 2/ (A)+ S e & .

Denote by (3 the canonical inclusion of A into x(A)@®S
and by 3 that of w(A)® S into B . Then « =
= 7Y o (3, However, 2*, 3 € W, and hence & € Wm -

Theorem 2,4. Let A be a left hereditary ring and €
be a class of A -modules. Then the following coanditions are
equivalent:

(1) There is a purity 6 such that € = F5 .

(i1) € 1is closed under submodules, isomorphisms, extensions
and every projective module lies in € .

Proof. (1) implies (ii). This assertion is a well known
fact, (ii) implies (i). By 2.2 (iii), taking ¥ for our
class & .

Theorem 2,5, Let @ be a purity and %, be closed un-
der submodules. Let ar ( &, ) denote the purity correspon-
ding to the class &, in the sense of 2,1, Then (%, ) e
e m (w) and or(F,) 1is the least purity with this
property.

Proof. By 2.2 and 2,3.

Corollary 2,6. Let A be a left hereditary ring and
@ be a purity, Then o (&) € m (w) and F(Fo) is
the least purity with this property.

Recall that o :"xri*!;y ¢ 1is called injectively closed
(projectively closed) iff 6 m € (41 (Jg)) (6=¢ (ﬂ(:("))) .

Example 2,7. Be o a prime. Consider the least
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class of Abelian groups closed under subgroups, isomorphisms

and extensions, containing all cocyclic i -primary groups.

Let @ Ybe the purity corresponding to . in the sense of

2ols Put C = kg'l ®@C; , Co= C(p) for all 4 . Accor-

ding to 2.2 (ii), C; €« Jy and C ¢ Fg . Hence & is

not closed under direct sums and consequently & cannot be
o

injectively closed (see [3]1). Further put D -_,"T‘T,' Cy « By
2,2 (iv), C,; e De and D & g .

Therefore e@e— is not closed under direct products and hen-
ceforth & 1s not projectively closed,

Example 2,8, Let .A be not an S -ring. Hence there is
a simple A -module M such that Hom, (M,A) = 0 . Deno-
te by %L the least class of A -modules which is closed
under submodules, isomorphisms, extensions and which contains
M . Then the corresponding purity is not injectively closed

(for the same reason as in the example 2,6),

Theorem 2,9, For a ring A the following conditions
are equivalent:

(1) Any purity on A~mod 1is injectively closed.
(i11) A is semi-simple (artinian),

Proof. (i) implies (ii), Take 91 , the least class of
modules closed under extensions, isomorphisms, submodules and
containing all cylic modules. Let €& be the corresponding
purity, If 1 € Jg then I 1is injective by 2.2 (vii) and
consequently ©m, contains every monomorphism from
A~ mod (since © 1is injectively closed). Hence every
A -module 1s & -divisible and so /M e LY M € A-mod .
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However there is a cardinal number « such that card N £
= o YN e 2L . Therefore caxdﬁ/Mé < ¥YMeA-mod
and hence A 1is semi-gimple.

(11) implies (1). Obvious.

Theorem 2,10, Let A be a commutative ring. Then the
following statements are equivalent:
(1) Any purity on A -mool 1is projectively closed.

(11i) The cless .@g is closed under direct products for
every purity & on A-mool .

(111) The class Dg is closed under direct sums for every
purity & on A-mod .
(iv) A is semi-simple artinian,

Proof. (1) implies (ii). See [21,
(ii) implies (iv), First we show that any simple A -module
is injective (i,es A is a V -ring). For let M € AA-mwd-
be simple, Suppose that M is not injeetive. Then A/ %=

20 and cadM/M = 22 . Put B = mar (e, Xo)

and denote by %t the least class of modules closei under

submodules, isomorphisms, extensions and containing M/ M.

If N e W = ihen obviously (3 Z caxdd N, Let 6 be the
corresponding purity and S be a set with card S > f3 .
Since M 1is simple, there is a maximal ideal I 4in A such
that M = 'A‘/I . However A is commutative and se

I-M=0. Hence I+D = 0, where D=~E~5Mh,ﬂh§
S MVr eS . Therefore Dgt%TG.Mt,-Mtﬁ'.MV‘E sT.
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Obviously ecard T = cand S, Since D 1is essential in

A A
X =1§T9 My ,wehave D e X ) .  Hence caxd O/p =
= caxd x/.'D Zcaxd T Zcand S>3 and consequently

A
D/D € WL . On the other hand, M € Dp and hence Dy
is rot closed under diréct products, a contradiction.

Let now € = {AlHomy (A,N) = ( fer every. sim-
ple module N 3 . Since the simple modules are injective, €
is closed under submodules and consequently ¥ = {0% (sin-
ce no cydlic module lies in € ). Hence every non-zero A -
module has & proper maximal submodule, Assume that A is not
semi-simple. Then there is a module A such that A # A

and /A = M is simple (non-zero). Consider 9L , the
least class ef modules closed under isomorphisms, extensions,

submodules and containing M . However, if X e % is non-
zero then X 418 a finite direct sum of copies of M (since
M is simple and injective). Let © be the purity corres-
ponding to % and B denote “i" A; LA & AY<

Since A &« Dy and D, is closed 2nder direct products,
A
B € D . Hence B/.‘B «e and so B/.BQ.M.,O...OM.,“

My M for 4=4,...,m (the case =3 ocannot
arige, otherwise A should be injective). On the other hand,

BsA@...@A,,,® C and hence Baie ...eﬁ,“,e ¢ .

A
Therefore there is an epimorphism 4 B, B—Y,

YEN,®...® Nyyq ;5 eaeh N2 1s isomorphic te M . Sin-

ce M 48 simple and A commutative, we can consider M
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to be a ring and consequently a field, In this case
A
dim B/B = m and d.iml.M Yam+ 1 , @ contradic-

tion.
' (411) implies (iv), Let A  not be semi-simple, Hence there
is A € A-mod  such that card A/A = x = 2 .

Denote by w the least class of modules closed under iso-

morphisms, extensions, submodules and containing I/A .
Then A € D  and ‘,"4:.:‘_04\4‘ ¢ Dp vhere @ is the pu-

rity corresponding to M), L is a set with candl I, >
> mar (e, %) and Ay & A Viel . Thus Dp is not
closed under direct sums, a contradiction.

(iv) implies (iii) and (ii). Obvious.

Theorem 2,11, Let A be a left semi-hereditary ring.
Then the following conditions are equivalent:
(1) The class Fg is closed under direct sums for every pu-
rity € on A- mod .
(i1) A 1is a semi-simple artinian ring,

Proof. By Example 2,8,

3., Let ®L be a class of modules closed under quotients,
isomorphisms and extensions, Put L (€L) = f@ | @ 1is a mo-
nomorphism, @: A—> B  and there is 8 & B  such that
S+9(AY=B and SAg(Ale @} eand
p=c (2 () .

Theorem 3,1, (1) The class @ is a purity.
(i11) Let D € :D@ . Then there is a submodule A € D such
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that A & @ and D/A is a homomorphic image of an

injective module.

(111) Let A be left hereditery, Then D € Dp  1ff there
is a submodule A & J such that A e ¥/ end D/.A.
is injective.

(1v) % < Dp . The equality U = De  holds ire U
contains all injective modules from A - mod .

(v) Let F € 3'9 . Then there is an exact sequence O —>
> A—»5—>F— ) such that A e ¥4 and S 1is subpro-
Jective,

(vi) Let A be left hereditary or left perfect. Then F e

€ Fp 1ff there is an exact sequence 0—A—P—TF—0
with P projective and A € U .

(vii) Let O &€ A-mod . Then 0, e Jo if2 G 1s injec-
tive with respect to every monomorphism @: A— B  with
AeO .

(viii) Put %= {BlHom, (A,B) = OVA e @} .

Then <“U* g :7? .

(1x) Let P € A-mool . Then P e Pp 1ff Evty (P, A)=
=0 forall Ae¥l .

Proof., Similarly as for 2,1, 2.2.

Theorem 3,2, Let @ be such a purity that % s Do -
Then psEw .

Proof. The proof is dual to that of Theorem 2.3.

Theorem 3,3. Let A be a left hereditary ring and € be
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a class of A -modules. Then the following conditions are
equivalent:

(1) There is a purity & such that Dg = € .

(11) € 1is closed under guotients, isomorphiesms, exten-
sions and every injective module lies in € .

Proof. By 3.1 (iv).

If @ 1is a purity then € 6 € (w ) will mean that
€ is a purity and D, = D¢ .

Theorem 3,4. Let « be a purity and & be closed
under quotients. Then @ (Dg) € € (w) and © (D)
is the least purity with this property.

4, Let L be a class of medules closed under quotiepts
and isomorphisms. In [4] there is introduced a special no-
tion of purity, namely the 9% -purity, in this way: An exact
sequence 0— A B B, c— 0 belongs te the
71 -purity iff CA) is a direct summand in every sub-
module S & B such that x(A) & S & B and

s/cc (A)e 9L . It is an easy exercise to show that the
# -purity is in fact the purity € (p (%)) .

Proposition 4.1, Let 9l be a class of modules. Put
r=e(p()) and ’J‘L*a&A\Hmr»A(N,A)- OYNe 3.

Then A* & Fr . Moreover, if A € L™ and 9 1is closed

under quotients and isomorphisms, then A* = F, .
Proof. (1) The inclusion A* & F, is obvious,

(11) Let 9 satisfy the additional hypotheses. Then every
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projective module 1ies in ™ and ~ 1s the 21 -purity.
For F € F, we have an exact sequence 00— vSp N
—FP— 0 with x € 7, and P projective. Suppose that
F & 7L* ,Hence there is VeP, V0 and Ve .
Stnce % € v ad B Wu )% gUV)H < (We Y,
a contradiction.

Theorem 4,2, Let (%L , & ) be a torsion theory and
let 6 and sr denote the @97l -purity and the purity corres-
ponding to & in the sense of 2,1 respectively., Then &' =
= Jr , Moreover, if A € & then Fg = & and & is

the least purity with this property.

Proof. By Proposition 4.1 and Theorem 2.3 we have o
S 6. On the other hand, let 0—> A—» B Bye o
be a 6 -exact sequence and &4 be the idempotent radical
corresponding to the given torsion theory., Then o« (A) e T

and T/ CA) & 5 (C)e @ , where T= (1 (C)) .

Hence T = «(A)® S . However
B, B B Cc
/(M@ S = /T /e (A)/py (cpqy = /n(C)e & .

Thus « € Moy and consequently 6 & I .

For the remaining statements of the theorem - see 4.1
i
and 2,5.
Theorem 4,3. Let (9L , 88 ) be a torsion theory and €

denote the 9L -purity. Then

(1) @ € Jg iff Extp (B,8)=0VB e & .

(11) Pe Po iff P is a direct summand in a direct sum’
of a projective module and of a modulz from T .,
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(111) Let A be left hereditary, Then P e B iff P 1is

a direct sum of 2 projective module and of a module from 9%,

(v) De Do 12 Ext, (M,D) = 0VM e % .
(v) D e g ift s/;z)ega—.

. A !
(vi) Let A € 97L . Then every module from ﬂy is in-
Jective,

(vi1) I P e Fg then n (F) 1s subprojective.

(viii) Let A bve left hereditary. Then F € F¢ iff o (F)

is projective,

(i1x) % S F¢ . The equality & = Fg  holds iff A e
e & ,

Proof, The statements (i), (ii) and (1iii) are proved in
(4]. The statement (iv) is a consequence of the fact that €
is projectively closed. The rest by 2,2 and 4.1,
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