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Commentationes Mathematicae Universitatis Carolinae 

14,1 (1973) 

ON ONE CLASS OP PURITIES 

Tomas KEPKA, Praha 

Abstract: Consider a purity it for the category A -
mod of all the left A -modules, where A stands for an as
sociative ring with unit. In this paper there is given a des
cription of the least purity e 0 with the property ?e0 * %r 9 

where %r denotes the class of all m - flat modules* The re
sults are used for a characterization of rings having only 
protectively (injectively) closed purities. On the other hand, 
there are given some examples of purities that are not injec-
tively (protectively) closed. 

Key words: Purity, pure flatness, pure divisibility, pu
re inactivity, pure projectivity, torsion theory. 

AMS, Primary: 16A50 Ref. 2. 2.723.23 

1. Consider a purity <*> on A - /modi and denote by S£> 

the class of all 0> - flat modules (definitions see below). 

If 6 is a purity, then e e AK, ( O ) will mean $$ m && • 

We see immediately that there is a purity e 0 such that 

e0 € AX, (a>) and e0 is the least with this property. The 

purpose of this paper is to determine a concrete form of e0 9 

provided ^ is closed under submodules and give some ap

plications of the case, when $& is a torsion - free class 

(in some torsion theory). 
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In what follows, by A we shall mean a ring with a 

unity and A - frnod will be the category of left unitary 

modules over A • Let e be a class of short exact sequen

ces from A-zwuni . Denote by e^p ( Bz ) the corresponding 

class of monomorphisms (epimorphisms). The class e is cal

led a purity if the following conditions are satisfied: 

(1) Every split short exact sequence belongs to e • 

(2) If ofr , fi e e,nv a n d /3 ° cc is defined then 

/* • «* e e ^ . 

(3) If (S o co e e^v and /3 is a monomorphism then 

<*< * S ^ . 

(4) If cc , /S c £,£ and (Jo ct is defined then 

(5) If / S * o C ' 6 £ £ and oc* is an epimorphism then 

If 7)1 is a class of monomorphisms (epimorphisms) then 

£ CWl) will be such a class of short exact sequences that 

& (llb)^ m M ( & (1tl)ji * m ) . 

Let Ttl be a class of modules and let 4, (7ft) (fi(Tft)) deno

te the class of all the monomorphisms (epimorphisms) cp such 

that every module from ffl, is infective (projective) with 

respect to g> . As it is well known, the classes e (A/(7ft>)) 

and e ( ji ( 7ft)) are purities (see [1] or [2]). Further, 

if 7H is a class of homomorphisms, then 3(fll) (P(HL)) 

will be the class of all the modules M such that Jl is 

infective (projective) with respect to every morphiem from 

IK . If tf is a purity, then instead of JCarw), & (art) 
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we shall write C^ , &m . A module A is called tTt -flat 

( jr -dirisible) if eTery short exact sequence with A in 

the third (first) place belongs to JT . The corresponding 

classes will be denoted by &#> and 3)<jr • 

2. Throughout this paragraph, let & denote a non

empty class of modules closed under submodules, isomorphisms 

and extensions (i.e., if A , B e & and 0-+A-+B-*C-* 0 

is exact then C * & )• Put Jk> Ctfr)m -iop/tp is a mono-

morphism, q i A ~-* B and there is a submodule S & 3 such 

that 

g>CA) n 5 » 0 and B/f9 CA) + S) c ^ I 

and jr. *r C * ) * * e (M, (&)) . Then tf^ m M, (&) . 

Theorem 2.1, The class jr is a purity. 

Proof, (i) Let g; A - ^ B be a monomorphism and B » 

m 9 CA) ® C . Then 9 CA) n C « 0 and B/g? CA) + C e 

e ifr C B/yCA) + C « 0 ) . Thus 9 m Jk, C Or) - sr^ . 

(ii) Let A — • B — > C be two monomorphisms. With

out loss of generality we can assume that As B S C and 

9 9 f are the canonical monomorphisms. 

(cc) Let 9, y c jr^ . Then there are JS s B and T & 

fi C suoh that S n A - T n B - 0 and */A + S , 

/ B t T e ^ . Put JC - S + T . Then A.n J - A * 

n (S t T ) » 0 ̂  as one may check easily. Further 

B * T / A + J[ » B d T / C A + S)#T»B/A-^5c* and C / B + T * ^ . 
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Hence the exact sequence 

0-*B + T/A + JC —• C/A+JC - + C / £ + T - • C 

r 
gives /A+-X 6 & . Thus f o y £ ar^ . 

(/S ) Let Y • y € ^W • There i s T S C such that 

A n T - 0 and C / A + T € ^ ( Set & m B n T . We have 

A ^ f i » A o B n T « 0 and ( A + T ) n B » A + f T n B ) . 

Hence B / A + & « B /A + (3 n T) -

- B / C A + T ) n B S B * A * T / A + T S C / A + T e # . 

Therefore /A + 5 e & and consequently 9 e tr^ . 

( i i i ) Let A *.B • C be two epimorphisms* Put 

X m 3Cwt> <p, Y ** $** y , YmA = { a, I a e A , 9 Co*) <sr Y ? 

(clearly y * *. y-'OT) - ttt* f y • 9 } ) . 

(cc) Let 9 , y c ^ , Hence there are S fi A and Tfi 

S B such that I n S r O s Y n T and A/.X-t- S , B/Y+T e # . 

Since y n T « 0 , y 1 n r ^ - X ( r ^ ^ r T ! ) . If we 

put E a T" n S , we get Y" n E « Y~ n T" n S « 

X n & » 0 . Consider the exact sequence 

C*) 0 -> У ~ "• T"/Y-\ 2 —> Л/У-V Z —> Л/У'f+T---» 0 

Hewever 

y~"+ T~ /y-% z • y ~ v % + T"Vy% z sř T ' / c r 4 + z > n T-4 
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A/r-UT-"s A/x/r\ T-'/X s */Y+ T e » . 

Hence from (*) we can conclude that /Ym + Z 6 i£r and 

therefore f « y e ^ , 

((3 ) Let Y o cp e &£ , There is £ £ A such that 

A A 
S A Y~4 m 0 and /S + Y m & . From this, Yn 

A g? CS) = 0 and 

B/y+g>cs) - A/x/&+r-*/x ™A/S+Y-* * * -
Thus y e 3T£ -

Theorem 2.2« (i) Let F € #V • Then there is a sub-

P 
module 5 S ? such that /& e ifir and S is subprojec-

tive (i.e. S is isomorphic to a submodule of a projective 

module)* 

(ii) Let A be left hereditary. Then F € ?# iff *&«-

re is a submodule S fi F such that /& € & and S 

is projective. 

( i i i ) ifr S TQ> . The equality fr m $r^ holds i f f 

£(r contains a l l projective modules from A - <mo*L • 
A 

(iv) Let J) e A— mt^tt and 3) be an injective hull 

of J) . Then ]) c # j r i « ?/$ * * • 

(v) Let P 6 A - /twt£ , Then P e l r V i f f P i s projec

tive with respect to every epimorphism y with 3ftn> y f KJ', 
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(vi) Put &+- iA[HomA(A,3) m OVB « & 5 . Then 

# + £ ^-. . 

(v i i ) Let I e A - rtntwi Then I s ^ i ff Lxt^ ( 3 , I ) -» 

s O for a l l 3 6 56- . 
«_ /3 

Proof, (i) Consider an exact sequence 0—> A *P- • 

-£*F —» 0 , where P is projective. Since P e f ^ , oc e JT^ . 

Hence there is T s P such that A n T « 0 and 

? j F 

/A+T e & # Therefore S = /ICT)» T and r / 5 e & . 

(ii) By (i) and using the fact that every projective module 

lies in T^ and 3^ is closed under extensions, 

(iii) If 0—> A-^-* B - ^ + C -~> 0 is an exact sequen-

ce with C e ifr then ©c CA) n 0 » 0 and /at f A ) 6 o£ ; 

se oc € sr^ , On the other hand, if & contains all pro

jective modules then 9# fi i£ by (i1) . 

(iv) If D c eDjr then ©& e ̂ ^ j oc being the canoni-

cal monomorphism of J) into J) , But J is essential in 3) 

and hence /]) € & • Conversely, if /J € i? then 

oc € ft^ and consequently JD c o0*r (since D c «2)̂r )• 

(v) Let P satisfy the hypothesis. Let ft €7re, ft : B —* C 

and if c Hcrm^ (P, C ) be arbitrary homomorphisms. There 

B 
i s 5 S B such that A n 3 m 0 and /A+S e Hh , 

A m JtiMs fi , We can write the following commutative diagram 

with exact rows: 

- 144 -



0-^ AJ±+2Mc—> 0 

i VK r 
O ^ A e S ^ B ^ E — • O 

By the hypothesis there is fc s P —• B such that 

f » (u, s c T e / , Hence cT o p> o <«, « if o (U, «• cTo y 

and fan, a & ZKvo <f , where t • f / S » ^ ) - y , Further, 

3C&H, d* s* (SCS) and & ss £} / S i s an isomorphism of 5 

onto 3Ci/o cT • Put p a» ar"** t: , then p : P —• B and 

(} p j> s t , Thus 2 " s » y 3 o C ( 0 * - p ) , P i s projec t ive 

with respect to ($ and consequently P € &# . 

( v i ) By ( T ) . 

(vii) Let BxtA r B , I ) . O V B c ifr . Consider an 

3T -exact sequence 0 —•*• A — • C -*-• ]) — • 0 . We show that 

I is infective with respect to «C . For let X : A — • ! he 

arbitrary* We get the commutative diagram with exact rows: 

<* /S • 

0 * A • C »D »0 

i-'ji i 
0-*ecfA)«5---->. C — • E — > 0 

J ' 1 II 
0 •! •x—»£ —>0 

where cc,,, p, «y are defined by obvious manner, Jt> © tc^ m 

a- r . Since E e 20" , the nether row splits and there is 

A i C —*I such that Jt • T « p - Hence % & p * <?ĉ  ss? 

Theorem 2,3. Let a) be such a purity that SO £ && . 

Then $r S G> . 
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Proof. Let oc e vr^ , oc : A — • B , There is S c 

c B such that S n e t ( A ) a 0 and /ct (A) + & m & . 

Denote by ($ the canonical inclusion of A into aG(A)®i> 

and by tf that of cc (A ) © S into 3 « Then oC = 

» T 0 A » However, ff , (i € a ) ^ and hence cC € a),**. . 

Theorem 2.4. Let A be a left hereditary ring and *€ 

be a class of A -modules. Then the following conditions are 

equivalents 

(i) There is a purity 6* such that *£ « &g 

(ii) *€ is closed under submodules, isomorphisms, extensions 

and every projective module lies in f̂ . 

Proof, (i) implies (ii). This assertion is a well known 

fact, (ii) implies (i). By 2.2 (iii), taking <j? for our 

class %tr 0 

Theorem 2.5. Let O) be a purity and 9&i be closed un

der submodules. Let $r ( ̂ > ) denote the purity correspon

ding to the class 9^ in the sense of 2.1. Then sr(^i))e 

C AX, (&) and sr ( T& ) is the least purity with this 

property. 

Proof. By 2.2 and 2.3. 

Corollary 2.6. Let A be a left hereditary ring and 

O) be a purity. Then jr ( %& ) e AH, (O>) and 3r ( && ) is 

the least purity with this property. 

Recall that z purity 6* is called injectively closed 

(projectively closed) iff ff » &UC3e)) ( €T« S (/ft ( J ^ » ) . 

Example 2.7. Be ^ a prime. Consider W the least 
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class of Abelian groups closed under subgroups, isomorphisms 

and extensions, containing all cocyclic ft-primary groups. 

Let # be the purity corresponding to 7ft in the sense of 

2.1. Put C - . 2L © C4, f CJ & C(4t) for all i , Accor-

ding to 2.2 (ii)f C± c i3£ and C ^ 9r • Hence #r is 

not closed under direct sums and consequently 6* cannot be 
m 

injectively closed (see 133). Further put D m 91J Cl, • By 

2.2 (iv)f C.i e $ * and D # ^e- . 

Therefore ©9e* is not closed under direct products and hen

ceforth 0* is not protectively closed. 

Example 2.8. Let A be not an S -ring. Hence there is 

a simple A -module M such that H&rrvj^ (Jbt, A ) m 0 . Deno

te by Wtl the least class of A -modules which is closed 

under submodules, isomorphisms, extensions and which contains 

M . Then the corresponding purity is not injectively closed 

(for the same reason as in the example 2.6). 

Theorem 2.9* For a ring A the following conditions 

are equivalent: 

(i) Any purity on A - i7ux£ is injectively closed, 

(ii) A is semi-simple (artinian)* 

Proof, (i) implies (ii)» Take VI , the least class of 

modules closed under extensions, isomorphisms, submodules and 

containing all collie modules« Let $ be the corresponding 

purity. If I e V# then I is infective by 2.2 (vii) and 

consequently ©%n, contains every monomorphism from 

A - fm&d, (since C is injectively closed). Hence every 

A -module is ff -divisible and so /M e 9t V M € A-<mo*d . 
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However there i s a cardinal number oC such that ca/uL K & 

£: cc YM € 31 . Therefore cwcdL^/M, 6 cC VAL e A-rrrwdL 

and hence A i s semi-simple, 

( i i ) implies ( i ) . Obvious. 

Theorem 2 .10 . Let A be a commutative r ing . Then the 

fol lowing statements are equivalent: 

( i ) Any purity on A - <nvocL i s protect ive ly c losed . 

( i i ) The c la s s 3)^ i s c losed under direct products for 

every purity & on A - .mewl . 

( i i i ) The c la s s 2)$ i s c losed under direct sums for every 

purity €f on A - crrwdL . 

( i v ) A i s semi-simple art in ian . 

Proof, ( i ) implies ( i i ) . See [23 . 

( i i ) implies ( i v ) . F i r s t we show that any simple A -module 

i s in fec t ive ( i . e . A i s a V - r i n g ) . For l e t M • X-mod, 

be simple. Suppose that M i s not i n f e c t i v e . Then /M 4 s 

* 0 and cxvul * / i i *. cC 25 2 . Pat /3 * mauc Ccc f X0 ) 

and denote by TSfl the l eas t c l a s s of modules c losed under 
A 

submodules, isomorphisms, extensions and containing "™VM . 

I f U € Itl then obviously (h 2r cafcti H , Let r be the 

corresponding pari ty and S be a set with CKVOCL S -»• /J . 

Since IA i s s imple, there i s a maximal ideal I in A such 

that JA S / I . However A i s commutative and am 

I • i t m 0 . Hence I ' D - 0 , where T> - J J ^ M^ , J ^ S 

S M V * « & . Therefore jD S 2 ©Jftt ,-Mt» id V i c T . 
1 1 T 
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Obviously QOHJCL T 2K ceuuL S , Since J i s e s s e n t i a l in 

X * t - S r © Ut , we have I g I g J v Hence ca**£P/;D2-

.£ casual /j) > CCMU£ T 2r cwtcLB -> /3 and consequently 
A 

/]) ̂  Wl . On the other hand, M e # r and hence c#r 

is not closed under direct products, a contradiction. 

Let now ^t m KJJL\ T&om*j^ (A , H ) m 0 for every, sim

ple module K J . Since the simple modules are infective, *t? 

is closed under submodules and consequently *€ « i 0 } (sin

ce no cji&ic module lies in V )• Hence every non-zero A -

module has a proper maximal submodule. Assume that A is not 

semi-simple. Then there is a module A such that -A + A 

and /A « At is simple (non-zero). Consider *3t , the 

least class of modules closed under isomorphismsf extensions, 

submodules and containing ill • However, if Jt e 91 is non

zero then JC is a finite direct sum of copies of M (since 

M Is simple and infective). Let X be the purity corres-

ponding to % and B denote . Tl\ A 4 f A 4 fit A V** • 

•Since A c •Dig and 3<t is closed under direct products, 
A £ 

B e 3>z . Hence B / B m VL and so / 3 fi J4-, ® ...fcJU,*, 

Mj. & M for ^ s 4,.*..> i& ^the case -B «= -B cannot 

arise, otherwise A should be infective). On the other hand, 
A A A A 

B ft A,,©... © A ^ ^ f c C and hence B ft A © -..©-A^^ © C • 

Therefore there is an epimorphism y j /B — • H , 

Y S ^ O o . S K ^ ^ ^ j each K^. is isomorphic to M . Sin

ce M is simple and A commutative, we can consider it 
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to be a ring and consequently a field* In this case 
A 

B 

dbm^ /B m m, and du/m,^ Y m nv + 4 - a contradic

tion* 

(iii) implies (iv). Let A not be semi-simple# Hence there 

is A € JL- WUXL such that ooutxL A/k « cC -£ 2 . 

Denote by /2^Q the least class of modules closed under iso

morphisms, extensions, submodules and containing /A . 

Then A €. *b<* and , Sl.^Ai 4* «0p where p is the pu-

rity corresponding to W ) f L is a set with ccvcoL L > 

> itruî  (cc, # 0 >
 a n d Xt 3 A Vi e L . Thus «#j> is not 

closed under direct sums, a contradiction, 

(iv) implies (iii) and (ii)# Obvious. 

Theorem 2.11. Let A be a left semi-hereditary ring. 

Then the following conditions are equivalent: 

(i) The class &$ is closed under direct sums for every pu

rity 9 on A - mvocL . 

(ii) A is a semi-simple artinian ring. 

Proof# By Example 2#8# 

3# Let #1 be a class of modules closed under quotients, 

isomorphisms and extensions. Put £(*€€) at i y I p is a mo-

nomorphism, 9 : A — > B and there is £J S B such that 

S -»• g> CA) m B and & n $p CA) m <€t ) and 

5> . e U C ^ > ) . 

Theorem 3.1. (i) The class q> ±a a purity, 

(ii) Let J> 6 «Dp . Then there is a submodule A S D such 
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that A « *0t and ""/A is a homomorphio image of an 

infective module. 

(iii) Let A be left hereditary. Then 3> e 3) <p iff there 

is a submodule A & j) suoh that A c *tfL and "V A 

is injective. 

(iv) HfL £ «0g> . The equality <0i •» «D,j> holds iff HIL 

contains all injective modules from A-/W£pd. . 

(v) Let F € •?© . Then there is an exact sequence 0 —• 

~*A—• £> — * F — • 0 such that A e *0fc and S is subpro-

jeetive. 

(vi) Let A be left hereditary or left perfect. Then F e 

€ £p iff there is an exact sequence 0—•A—*P—*F— * 0 

with P projective and A c <fit . 

(vii) Let Q» e A-mu*i . Then 0> * 7 ? iff & is injec

tive with respect to every monomorphism g? : A —t B with 

A e <& . 

(viii) Put « * - iB!K<wt A(A,B> - O V A c « J -

Then <et* s J p • 

(ix) Let P c A - itrwcL . Then P e iP? i f f Eo/t^ (P, A) * 

-» 0 for a l l A c ^ . 

Proof. Similarly as for 2.1f 2.2. 

Theorem 3.2. Let co be such a purity that *#£ S && • 

Then p fi c) . 

Proof. The proof is dual to that of Theorem 2#3« 

Theorem 3.3. Let A be a left hereditary ring and i? be 
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a class of A -modules. Then the following conditions are 

equivalent: 

(i) There is a purity & such that ©Dg* =• *£ . 

(ii) U is closed under quotients, isomorphisms, exten

sions and every infective module lies in *6 . 

Proof. By 3.1 (iv). 

If a) i s a purity then e « ^ (OJ) will mean that 

€ i s a purity and eDQ m *Z>e . 

Theorem 3.4. Let cj be a purity and 3)& be closed 

under quotients. Then $(&&) c *£ Ccu) and $($&) 

i s the least purity with this property. 

4* Let 2t be a class of modules closed under quotients 

and isomorphisms. In [4] there i s introduced a special no

tion of purity, namely the 2H -purity, in this way: An exact 

sequence 0—•A-—*B—• C —* 0 belongs ta the 

2t -purity i f f cC- C A ) i s a direct summand in every sub-

module S fi B such that ocCA) S 5 S B and 
S /oc (A ) « 3t , I t i s an easy exercise to show that the 

9t -purity i s in fact the purity s (<fi (%)) . 

Proposition 4 .1 . Let 3t be a class of modules. -Put 

trntCfiCn)) and to*mik\J&mACH,JL)m OYH e 3t ? . 

Then 0t* s £^ . Moreover, i f A e 31* and 9t i s closed 

under quotients and isomorphisms, then ft* . £? . 

Proof, ( i ) The inclusion 91* S &x i s obvious. 

( i i ) Let flt satisfy the additional hypotheses. Then every 
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projective module lies in 9tL* and m is the 0t -purity. 

For F « ?V we have an exact sequence 0—•> l/-̂-t p -£•* 

—*F —* 0 with cc € T«v and P projective. Suppose that 

F * at* .Hence there is 7 s F , 7 * 0 and V 6 9t . 

Since oc 6 * W and ^'^/cC TV; 6 % , p'CV)* tx CU>© IT, 

a contradiction. 

Theorem 4.2. Let ( WtL . &6- ) be a torsion theory and 

let 0" and 3f denote the 23t -purity and the purity corres

ponding to & in the sense of 2.1 respectively. Then & » 

«• VT . Moreover, If A e Jfr then ^ =- ifr and r is 

the least purity with this property* 

Proof. By Proposition 4.1 and Theorem 2.3 we have sr S 
oC* ft 

£ <8 . On the other hand, l e t 0 — * A — • B «—• C —* 0 

be a & -exact sequence and Jt be the idempotent radical 

corresponding to the given tors ion theory. Then oc, (A) & T 

and T/«C CA^ a * CC) € W, , where T . ^ U f O ) . 

Hence T » ccCA)# 5 • However 

/oc ( A ) ® 5 - B / T » B / o c C ^ ) / T / o t C A ) * C / * c c > e * • 

Thus tsC e Tr^r^ and consequently ^ £ T • 
For the remaining statements of the theorem - see 4 .1 

A 
and 2 . 5 . 

Theorem 4.3,* Let ( WL , &£ ) be a tors ion theory and 6* 

denote the $3t -pur i ty . Then 

(i) ft c ?* i « £*tA (B,ft>~ O O e ^ . 
(ii) P c i!!rV iff -P i0 a direct summand in a direct sum 

of a projective module and of a module from 130Z . 
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(iii) Let A be left hereditary. Then ? c 3^ ift ? is 

a direct sum of a projective module and of a module from VC, 

(iv) B c l r iff £*tAOl,]>) - 0YJ1 c M . 

(v) J e ^ . r i f f V J 6 & • 

(vi) Let A c. 'Wl . Then every module from 3§» i s in-

jeotive. 

(v i i ) If F 6 $& then JfcCF) its subprojective. 

( v i i i ) Let A he l e f t hereditary. Then F € -?r i f f ,-tCF) 

i s projective. 

(ix) Sfr S ?v . The equality i& =- ^ holds i f f A c 

e 40* . 

Proof. The statements ( i ) f ( i i ) and ( i i i ) are proved in 

C4J. The statement (iv) i s a consequence of the fact that G 

i s projectively closed. The rest by 2.2 and 4 .1 . 
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