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Commentationes Mathematicae Universitatis Carolinae 

14,2 (1973) 

THE LATTICES OF NUMERATIONS OF THEORIES CONTAINING 

PEANO 'S ARITHMETIC 

Stanislav PALlfCH, fcilina 

Abstract: Studying consistency statements for an ari-
thmetic A one has to decide whether one considers (a) 
numerations or bi-numerations, (b) PR-formulas or RE-for-
mulas, (c) a particular axiomatization of A or all equi­
valent axiomatizations. This yields various structures of 
numerations; all are lattices and have similar properties. 

Key words: arithmetization, numeration, bl-numerationt 
lattice. 

AMSJ 02G99 Ref. Ž.: 2.669 

Introduction* In a theory T containing the Peano #s 

arithmetic P , many metamathematical notions can be des­

cribed, i.e. numerated or bi-numerated. Some from them are 

for example the relation * f is an axiom of the axiomatic 

system < L , A> " , the relation &kfA Cg>, d) meaning 

" d is the code of a sequence which is the proof of the 

formula <p in < L , A > n , the relation f*T(g) meaning 

"the formula <p is provable in the theory T % 

F/wvK (&) meaning "the formula <p is a formula of the 
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language Ko n etc* For a bi-numeration cc of some axio­

ms tizat ion of a theory T 9 we can construct a formula 

(JM^ (X,<JJ.) which is a bi-numeration of the relation 

$ffT ( cp, d) in T , a formula (fo^Cx) which is a nu­

meration of the relation 43*T (cp) , a formula C&n> & 

expressing formal consistency of T etc. 

For two different bi-numerations ©e^ , cc^ of an 

axiomatization A of the theory T , we need not have 

Tl— €C^(x)m cca(x) i we can even find bi-numerations «*.- » 

oc-a for which T M - oĉ  Cx) — * «,a Cx) . On the basis 

of this fact we can construct - on any set 0 of some nu­

merations or bi-numerations of the theory T in itself -

an ordering ^ T defined as follows: cc -£T ft iff 

T l — Ccm,£ —> Cottoc . The equivalence s T is defined as 

follows: oc- aaT /I iff t-O -£T /S and /3 ^ T cc , Let 

us denote by < 0 > the decomposition of the set Q 

into equivalence classes w.r.t. 3£T . We define the fol­

lowing relation -=:T on the set <8>: CocJ -£T lp>l iff 

oo £ T /$ ., where C cc 1 is the class of < © > such that 

<x c t col . This structure, where 6 was the set of all 

PR-bi-numerations of one fixed axiomatization of a theory 

T satisfying certain conditions, was studied by M. Hdjko-

v& in £23. She has proved that ( < 0 > , £ T ) is a lattice 

with various interesting properties. 

The results of t?l seem to support the conjecture that 

there is no natural bi-numeration of the Peano's arithmetic 

P in the following sense: In the lattice of all PR-bi-nu-

merations of a primitive recursive aximatization of P , no 
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element Is 2«j -definable and the hypothesis is that no 

element is definable. 

The class of PR-bi-numerations can be considered as 

the class of reasonable (simplest) bi-numerations. But it 

is not necessary to restrict ourselves to this particular 

case; there are other reasonable possibilities. We can get 

them by altering the following fundamental parameters: 

1. The type of formalization. We can consider the set & 

as the set of all bi-numerations or as the set of all nuroe-

rations# 

2. The type of formulas. We admit two fundamental types of 

formulas corresponding syntactically to primitive recursive 

sets and recursively enumerable sets respectively, namely 

PR-formulas and RE-formulas. 

3. The number of formalized axiomatizations. We can consi­

der O as the set of formalizations of one fixed axioma-

tization of a theory T or as the set of formalizations 

of all axiomatizations of a theory T . We restrict oursel­

ves to recursively enumerable axiomatizations. 

Each of the mentioned parameters can take two diffe­

rent values. Thus we get 8 combinations and every combina­

tion defines some set of formalizations of the theory T in 

itself. In this paper, we consider all these sets with the 

ordering .& T .We show that all structures have very simi­

lar properties, some from them are even isomorphic. 

The reader is expected to be familiar with the Pefer-

man'a paper fll (§§ 2 - 5 and a part of § 7) and, in parti-

- 341 -



cular, with the paper C21 of M. Ha;jkov£; this work is very 

closely connected with [23. 

I am thankful to P. Hajek for his kind encouragement 

and help with the organization of the results and transla­

tion of the present paper. 

§ 1. Definitions and statements 

An axiomatic system is a pair OL «• <L,A> , where 

L is a language and A a subset of the set of all formu­

las of L . We say that a formula <$ is provable in OL if 

it is provable from the set & x L u A (where dxL is the 

set of all logical axioms in the language L , see £13) by 

means of predicate calculus. A theory T is a pair < L , B > 

where L is a language, B £ F ^ L ( F/mu is the set of all 

formulas of the language L ) and B is closed w.r.t. pro­

vability, i.e. B sr 3hB . Every set of formulas A £ FmL 

such that B ~ fjv^ will be called an axiomatization of 

T • We shall say that a fcrmula g> is provable in T if 

9 € B . In this case we shall write & a (g>) or $kr (<?) 

or T i — gp . It is easily seen that every axiomatic system 

01 * < L , A > defines a theory T = < L , ®t A > . 

Convention. We shall write 

T i~~ ^ - > <p2 reap . T H- % s <p2 , 

T h~ - .—» 93
 T *~ » n » 

T •- —> 9m, T I - s 9m, * 
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instead of 

T *- 9i — * %. resp. T {— 9̂  = <?a , 

T l~ <y2 — > q,3 T i - ^ a ^ , 

We shall write Ym,*(x) instead of Fmv^Cx) , in ot­

her cases we shall use the same notation as in C2]# 

L*1* Definition* Let SI be an arbitrary set of formu­

las of a theory T and let A be an axiomatization of T . 

We define: 

Scto^CJl) = { ot • cc e il . cc is a bi-numeration of 

some axiomatization of T in T} . 

Hwm,* (SI) « € cc •, cc .* Jl , cc- is a numeration of so­

me axiomatization of T in T \ . 

&im*TiJl) * {«; ̂  o& e il , oc is a bi-numeration of 

the axiomatization A of T in T J « 

Hurm,r (SI) =- 4 cc • oc. e il , oo is a numeration of the 

axiomatization A of T in T ] . 

^•2» Remark. The sets defined in this definition can be 

empty. For example if A is an axiomatization pf the Peano's 

arithmetic which is not primitive recursive then the set 

&<"? * (PR) is empty because every PR-formula is a b 

numeration of a primitive recursive set in P 
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**3# Lemma, Let T be a consistent theory and l e t .A 

be an axiomatization of T . Then 

1) flW^CIl) £ }Uvm,!?(SL) 

2) ftt/rv^ClD £ J4c*/nv* CIl) . 

Proof: The statement i s c lear when we r ea l i ze that eve­

ry bi-numeration of A in T i s a numeration of A in T i f 

T i s cons is ten t . 

1.4. Definit ion and lemma. Let & be an a r b i t r a r y set 

of bi-numerations or numerations of some axiomatizations of 

T in T . For xx, , (I e 0 we define <* £ T 0 i f f 

T V- <Unu^ —•*- COTI^ , <c s T (h i f f <* .6 T (h and fi £. T 

-£T cc- • The r e l a t i o n £T i s re f lexive and t r a n s i t i v e -

i t i s a quasi-ordering on Q . The r e l a t i on ~ T i s an 

equivalence on 0 • Denote by < 0 > the decomposition of 

@ into equivalence c lasses w . r . t . s T # For cc e & , 

C o c 3 < e > denotes the element of < 0 > for which oc< €: 

£ CocJ < e > , I t i s c lea r tha t Coc3<e> m C/ i l< 0 > i f f 

T h~ Con^ m ( W a .The r e l a t i o n -=-^0 i s defined on < 0 > 

as follows: t ccl<Q> -£T^Q E(-».1<0> i f f o& -?T (3 . I t i s 

defined correc t ly because i f t<x^\e>^ tc---\0? , tfcf-Ue> -

- ££l<a> and £°c3<e> ^ T , e t(*^<e> t h e n T i - Ccwv^ s 

s Ccm^ , Tt~ Ccm^ a Gcrô  ,T^Gm>^Gyn,^ and hence T h- C*rv^-*> 

—*> Con^ which i s E * * ^ ^ .£Td t £ 3 < e > . Hence the 

def in i t ion of -_s-r, * i s independent on fche choice of 
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representatives of the classes tot,3<#> , C/31<e> • ^ e re* 

lation £ T g is an ordering on < G > . I n the case when 

it will not cause any confusion we shall write only -£T in­

stead of £r e 

The following statement is a reformulation of CI], 4*13 s 

!»5» Theorem. Let T be an Q -consistent theory, P £ 

£ T . Let oc be an arbitrary RE-numeration of a recursive­

ly enumerable axiomatization A of T in T . Then we can 

construct primitive recursive axiomatization A 0 of T and 

its PR-numeration tc0 in T such that T»— 3 ^ m (&*,& • 

This theorem will be the fundamental one for § 2. 

§ 2. The lattice <&i/n,T CXE ) > of RE-bi-numerations 

In this section we shall assume that 

1) T is an co -consistent theory, 

2) T contains Peano's arithmetic P , i.e. P f i T , 

3) A is a recursive axiomatization of T 

Let us note that for T and A satisfying these presump­

tions &vn> T C.HE ) is not empty, because every re­

cursive set is RE-bi-numerable even in P 

2«1» Theorem* In < (&i/n/ T C U E ) > there is no maxi­

mal element. 

Proof: Let oc e &un>T(Z'£) ; then T l - / - i ^ be­

cause of co -consistency of T . Let S » T + Gpi^ .Clear­

ly, S is consistent. For oo we can construct a PR-bi-nu-
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meration «*<> of some axiomatization A0 of T in T 

such that T .— Jfct,̂  (x) m (fy,^ (*) • T»e formula 

£C.x) • <x>0(x) u x *z C%n><x, is a PR-bi-numeration of & in 

5 . Let i>£ be the God el's formula for fi constructed 

by a diagonal construction (see 5.2 in til). S is consis­

tent and so S .Vs- s>3 . By CH S I— ̂ 3 « -1 %/a C5^ ) . 

Set 

oc'cx) » etCx) v FW*(*) & C3^<x)C(!V/j (% ' ̂ ) } • 

Then cc* i s a RE-formula in T because % ^ ^ ^ ^ » ^ * ) i s 

a PR-formula in T . For nrv e A we have T I— ot (7& ) and 

hence T h - o t ' ( m ^ ) . I f <n- ^ A then T H- -1 «6 (m) 

T 1— n C3/^* < ni)((fyf(i(yi , ^ ) ) where from we get 

T I— —1 cc'CitS) . We have shown ac e &<L/n,£ CJtE) . Prom the 

def in i t ion of cc* we obtain T t— ecCx) —* ct'Cx) which 

means *c £ T cc ' .We know that 5 t-y-- *U and hence 

(1) T hr*. Cou^ —> i>A . 

We show 

(2) T f— Ccm, 
«» 

We have 

T | _ n i > л - > C З ^ ) C % ř л C ^ , ^ ) ) , 

T ң- — > ( 3 ^ - ) Cf.x > ^ ) C C C Ч Ä ) S F<m*(*)) , 

T ь - —> -i Ccm/̂ э r«cł 

If ct f £ T . e b , i . e . i f T 1— Cotf*—»> ( W A , we 

obtain T I— Cort^ —> ^ by (2) ; but t h i s contradic t s ( l ) t 
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We shall not prove in detail all statements of the pa­

per [21 for the lattice of RE-bi-nume rat ions, but we will 

show the m ethod how to convert some proofs for 

&cm/T* (?%) (where A0 is & primitive recursive axio-

matization of T ) to the proofs of analogous statements 

for &<m,T CUE ) . Even if in premises of some theorems 

for the lattice of PR-bi-numerations the requirement of o> -

consistency of T did not occur, in premises of analogous 

theorems for the lattice of RE-bi-nume rat ions this presump­

tion must be added* 

Most of the proofs in [21 are performed constructions 

of the following type: Por «c e ftvn,r° CPU) one constructs 

a formula F C to) which preserves the property wto be a 

PR-formula". Then we set oc#C*) =- ocCx) & PCoc) Cx) or 

ocCx) » tc Cx) v FCec) C* ) . Clearly, oc' is a PR-formula. 

The formula FCeOCx) is constructed in such a way that 

cc* has required properties and oc.' e Mm**0CV%) * 

The most fundamental properties of FCcc*) for the proof 

of the required properties of «c* depend only on proper­

ties of the formula (fco« Cor) and in fact that formula 

^V** *"**•' bi-numerates 4®**AoC o7?ot) in T . But 

this procedure often fails when applied to formulas from 

rft-t/n/* CXE ) • The main reason is that F need not sa­

ve the property "to be an RE-formula". 

This obstacle can be removed by the following proce­

dure: For oc, « 3b<un,T C X B ) , we can construct a primi­

tive recursive axiomatization A 0 and its FR-bi-numera-
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tion etj, in T such that Tl- fy^Cx) m fyc^Cx) by 

the construction described in Theorem 1.5. By our assump­

tions, T is ai -consistent. For this oc
0
 we construct 

PCot
0
) according to the proof of the relevant statement 

for the lattice of PR-bi-numerations and finally we put 

oc'C*)-* etC*> A T ( t * 0 ) ( * ) or et'r*) m <*C*) v T(ec0)(x) . 

Since oc
0
 is a PR-formula* PCet©) is also a PR-formula. 

Now it is obvious that o&' is an RE-formula in T . Since 

the fundamental properties of the formula FCoc
0
) depend 

on (B*^ C*) and oc
0
 was constructed so that 

T \— (Bt^ s ®fc
w

0
 *

 w e c a a
 prove that the formulas <*, and 

ct* are related in the same way as the relevant formulas 

from &**%>**<?%) . 

In this manner we can convert the proof of the required 

statement for the lattice of RE-bi-numerations into the proof 

of the analogous statement for the lattice of PR-bi-numera-

tions. We can illustrate this procedure by the following fi­

gure: 
PCвt) oc л FCccö) 

OOVCJC&PCCC) / \ «,'** <c&T(ccJ 

ccVocvFCct) oc ^ o c ^ o c v Ffct0) 

Construction . Construction 

i n %im,^°(?1L) in ftto^CJlE) 

Thus we can prove the following theorem (numbers of the 

corresponding statements from [2] for the lattice of PR-bi-

numerations are in brackets): 

- 348 -



2#2# Theorem. If T is a reflexive theory then in 

< &vivT CXB] > there is no minimal element. 

2.3* Theorem [2.11]. For each oc, /& c 3 ^ ^ CXB) , 

©6 -£T /J iff there is a ft* e &un/r CUB) such that 

1) M T ^ » 

2) T h ccC*)—> p(x) . 

2«4» Theorem [2.121. For each ec^ , t*2 e fains* C&E) 

i f oc^ <--T cc2 then there i s an ot- e 33-tvn/T CJLE) such 

that ct̂ , < T oo <: oc2 . 

2 .5 . Theorem [ 2 . 1 4 ] . Let T he a reflexive theory. 

Then for each co € foJun, r CXE ) there i s an 

<-t' € 3cm/T CXB ) such that simultaneously oo* £ T oo and 

oc ^ T oc* • 

2.6 . Theorem [2 .19 ] , [ 2 . 2 1 ] . In < & * n / c i E ) > every 

pair £«fr3<ai«,$ <Re>> t c (*!<&#>,* CR£> > has 

the maximum and the inf imum. 

2 .7 . Corollary [2 ,20, 2 .22] . Let t*^, cc2, oc e foon,r CXE) ; 

then ttCl<<3&nsA CRE» * s ***e supremum and inf imum of the 

pair C*43<«^>!<«i>> , c<** 3 <3.vn,£<*£>> respect i ­

vely i f f T (—• ( W , s COTL, v ( H t f and Tt— Gyw, s Cpti, & Om, 

respectively. 

This enables us to define on < &t/n/T OLE) > the opera-
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t ions of join w and meet n similarly as in £23, 2.23. 

2*&* Summary. From Corollary 2.7 i t follows that 

< fita/^OtE) > with operations u , n i s a distributive 

l a t t i c e which has no maximal element and i f , in add it ion, T 

i s ref lex ive , i t has no minimal element. 

A very important theorem of the paper C2 3 i s Theorem 

3.9 on £ 4 -nondefinability. The reader ver i f i e s easi ly that 

the whole proof of [23, 3.9 works also for < Ruru$ <XZ)> 

i f modified according to our Figure. Thus we have the f o l l o ­

wing 

2 .9 . Theorem on S 4 -non-definability [3 .93 . Let T be 

ref lexive . Then no Jk -tuple of elements of < faun, * (XZ) > 

i s S^-definable in < Hilm,^.(XZ) > . 

§ 3 . The l a t t i c e s of numerations 

In § 2 we have shown that < foim, * CJtE) > i s a l a t ­

t i ce with various interesting properties. In th i s section we 

shall study the relations between the structures 

<Xu/m>* CEE)> , < %vr»^(XZ)> , < Hum,™ <XZ) > , 

< &un,%(XZ)> , < fti/n,* (fX)> , <ftim,*(fX)> . 

We shall show that all these structures are lattices and that 

they are mutually isomorphic except < %*m, * C?Jt)> . In 

this section we shall assume that T is primitively recursi­

vely axiomatizable, a> -consistent and that 2 £ T . 
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3*1* Lemma. The following equation holds: 

&lm,™ C?X) m )bvm,% C?X) . 

If A is a primitive recursive axiomatization of T then 

Stim,*C?t) -* ICu*** CPB) . 

Proof: Since T is primitively recursively axiomatiz-

able, the structures &<in>* C?X) 1 H*vm,%C?R) are 

not empty. T is a consistent theory and therefore by Lemma 

1.3 we have &i/n**CPX) £ JCa/wv*(PJL) . Let <c be 

a PR-numeration of an axiomatization A of T in T . We ha­

ve m, e A iff T t— et (<% ) . Every PR*-formula is a 

bi-numeration of a certain primitive recursive set X even 

in P and hence in T . Hence we have m, c I -*=-£ Tt— tc (nl) 9 

m,$J£=!>T\---icc(lrv) . From the consistency of T it fol­

lows that A » X 

Now we shall prove the fundamental statement for this 

section. 

3»2» Theorem. Let A a be an arbitrary fixed recursive­

ly enumerable axiomatization of T . Then for every recursi­

vely enumerable axiomatization A,, of T and for an arbit­

rary RE-numeration e^ of A^ in T we can construct an RE-

numeration cca of A 2 -*ucl1 that the following holds: 

(1) T t— Cftv^ H Cfn-^ . 

If in addition 4Un,**CXE) i s not empty (that i s A a 

i s recursive) then for every RE-numeration cc,,, of A/f in T 

we can construct an RE-bi-numeration «*a of Aa in T so 
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that (1) holds. 

Proof: Let cc00 be an arbitrary RE-numeration (RE-

bi-numeration i f A^ i s recursive) of Aa in T . We put 

oc-0 (x) m <&00 (x) & fy*>4 (*) * As ^oo (x) a n d 

OĴ at (x) are RE-formulas in T , ec0(x) i s also an 

RE-foraula in T . We show that tc0 numerates (bi-numera-

tes) Aft in T . 

Let m. « Afc . Then Tl— OC00 Clrv) and T h / r t , hence 

j ^ (fyc^ (7rL) f and consequently Tv— *c00(ni) k (fyc^ ($c) , 

Let m. 4 A a . Then T h*~ ec00(«l) and hence T h - - ^ f 5 ) ^ 

& $*<* Cat) . I f in addition tc00 bi-numerates A2 in T 

then T h i ot00 (m) and hence T i— n oc-oo Citi) ft ^ « ^ C ^ ) # 

The following sequence of statements i s provable: 

T V- -i W^oc0 s SB*^ C?<* 1) , 

T»-~ s ^ o & < ^ C 7 * M > , 

T H- —* 0 ^ (!T**> , 

T H- —>- # * ^ C 7 *> A ) , 

T h- —^ -i Ccm^ 

Prom this we get 

(1) T 5— ^ —»> Ctfn^ . 

According to Theorem 1.5» we construct a PR-formula oĉ  

for the formula oc^ such that Tl— %,<.«. s ifô f . *k^iiv 

we put: 

vc%(x) m ac0(x) v Em,* Cx> & ( 3/^ < x > C fy**.^ (0<v 4 ,<}>)) 

The following sequence of implications holds: 
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T K —* ca^xiiHc!, <o~*l,<*)> , 

T h —-> ( 3 ^ ) ( ^ > ^ ) ( 3 x ^ x ) C ( l ^ f f l 6 , ( 0 * 4 . , * ) ) . 

From this we get TH- I Cpn>ct—»(3ty)(fx >^)Cc*,aCx)» F«m.*C*» . 

It i s easy to see that Th- C3^H*,x > 4y,)(«a<x)a Pm^Coc)) —• 

-* -l Cott/*, and hence Th- ~i Con^—• n COTW t which implies 

(2) T r - Cjiv^ —• Coiv^ . 

We prove T i— C&n,^ —> C r̂v^ • 

I t holds: 

T f - Ccm^ - - * <n 3 ^ > C 0 p f - <̂0 ^ 4 , ^ . ) ) , 
'i * 

T H- — » C n a ^ ) C % ^ , ( 0 « H , / i p ) , 

T h- —-* o^C-x) 3= °o<>C\x) , 

o •*• 

Consequently, T l - C W ^ -^C(>n^--* C?*%ta) -from which we ob­

tain 

T h ( ^ ^ ^ ) ^ ^ ^ - » ^ a ) -

The last statement gives T v— fyn'^ —* C**Va
 b y t l )» 

Now i t i s necessary to prove that ooa "HE-numerates (RE-

bi-numerates) Jl2 in T . Cfteariyf <*-% i s a RE-formula in T . 

Suppose m, € A± . Then Ti~ cc* C^ > because co, i s nume­

ration of A a in T and hence Tt— <** <*&) by the con-
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struction of «*4 . Since f^f^t (*f<fr) *s a PR-for­

mula in T we have the following for each integer m : 

T v- fyfm, ( 0 « M , M) cr T H -i %/f̂ t. ( Q ** A fmi). Since 

T is consistent, we have T v*~ %**«*» CO ** i, m, ) and 

hence T H- -I (?V*V <" o V l , ml ) for each /m, . Prom 

this it follows that 

(3) T h - i ( 3 ^ < S H S t y ^ (FZl,ty)) 

and by the consistency of T we have 

(4) r n * - (3y> «- <ri)( $**«> CO <» A,ty)) 
*\ 

for each integer m, • 

Suppose /n, # A j then Th<- oca C/&) and by (4) we have 

T h**- 06a CSv ) * If in addition oCoo was a bi-numeration 

of A in T, oc0 has also this property and T*- -i oc0 C/ri ) . 

By (3) we have T H- i oca C/£) . 

3«3» Theorem* Let A^ , A a t>e recursively enumerable 

axiomatizations of T . 

1) There exis ts an isomorphic of < Jia/m,* CJLE) > and 

< N«mvT
2(KE) > . We write < ibm^CXL> > *> <iWn,^CXE)> . 

2) If in addition £0/n,** Q £ > # 0 , i . e . i f X% i s 

recursive, then <Xii/m,** CAB ) > ^ < fc^T
2 C : R B ) > • 

3) If fl^^ClB) + 0 a314 &*M>r(Z'£) * 0 

then 
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<£*n4*CXE>> * < ^ T * < X £ ) > • 

Proof: According to Theorem 3 .2 f o r every 

oĉ  e JCu/n T̂', CRE) we can construct an <*a « .tf>a/m,T
a C EX ) 

so that T t— C*rn>vc s Cfu-*, . Denote by f the mapping 

which a s s i g n s the formula £ (ec^ ) constructed i n the proof 

of Theorem 3 . 2 , for each formula co^ . We def ine a func t ion 

0 : <Jiu/nv^CR.E)> —*> <HM*n,**(ZL) > i n the f o l l o ­

wing way: <5 C Coci3<W44/m,A.1CRK>>) * Cf Ccc^)3<N(a/wwA1CRB>> . 

We must prove that G i s c o r r e c t l y d e f i n e d , i . e . that G 

i s one-one, onto , and preserves the order ing - £ T 

a) G i s c o r r e c t l y d e f i n e d . Let C cc^ l^ti^^A* <*€>> -

88 C^ J<»k<*n, *•<<*£>> ; then T h ( W ^ s ^ . 

From the p r o p e r t i e s of £ we obta in T t— COTV^ S (>rvf Ccc .. , • 

T *~ CxTrv^ s C ^ f r*!-> a n d h e n c e T>~ C^ -PO^) s ^ - P f ^ ) > 

which impl ies 

C f ( ^ ) ] < ^ A 1 C R E ) > » C f C c C ^ : I < N ^ A ^ R E » ' 

b) G preserves £ T . Let C oĉ  1 < H 4 i / n v^C R I L > > -£T 

^ T C ^ : l < N ^ r i « » > *-e* T <~ ^ ~ * C**** • S i n c c 

T h - Can,^ m < ^ f C / M and T h - Con ,^ = <**-*(«<) w e c a n 

write T h- COYV^* .,—> tqn,^^ ) which impl ies 

c ) G i s onto . For the proof of this* statement i t i s s u f f i -
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cient to show that for every o&2 c Jtt«/m-£* CIE) there 

ex is ts an «ĉ  « Jtu/wv £ CUE) so that T t - f a i ^ s Cen^ , 

which i s guaranteed by Theorem 3«2# 

d) ff i s one-one. Since T t~ Opu^ m ty*'f(QL ) and 

T *~ ^ / i , * <**-*</*,,) , ** * • • • * T*~ ^ f c ^ ) * ^ c / v i « 

T H- Caiv^ - C^n,^ . 

Analogously for 2 f 3# 

3«4» Theorem« Let A be a recursively enumerable axio-

matization of T . Then 

1) < Hsjvm^ (JCL) > *> <rt*/m,* CKE)> , 

2) < & ^ ~ CJl£)> a* <Jta/m,*C*E)> , 

3) < fctm^CXE) > * J2f«> <J\fo/m,~a£)> *Kfl*n£ C*£) > , 

4) A t a ' t l E ) + # * - > < &!/*!£CUE) > & <&c*4c . lE)> . 

Remark. Since T i s primitive recursive axiomatizable, 

we have the following: 

JittArv̂ CXE) * 0 , ^?v* CUE) * / , aim.* CPU) * / . 

Proof of Theorem 3«4: Let cc c Mum,™ CKE) . By 

Theorem 3»2 there ex i s t s a mapping £JHUM^(K'E)--*>Hwvi* Ot£) 

so that for every <c c HjuAn,™ CR.% ) we have 

T h- Con,̂  a C ^ t e ) . Define a mapping K J < Jiu/m,* CUE) > —> 

—* <Jtti/m,* CUE) > by the equation 

H ^ ^ < K 4 * > i v . * < K i > > ) * C f C o C '^<J^m.^CRE)> * 

Similarly as in Theorem 3.3 we can prove that 6 i s correct-
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ly defined and is an isomorphism. Analogously for 2, 3f 4. 

3.5. Theorem. 1) <Ji4*m*(;tE)> ** <&**,£(PI.) > , 

2) < f i<^*( . l lE)> * <ft!*i^(?K)> . 

Proof: In the proof of Theorem 1.5$ a formula 

<j,Coc)« Bc^*CPX ) was constructed for every ccc Mo/m** (IE) 

suoh that 

(1) T h IBbfcOc) « ^^.c«>c*> • 

Prom (1) we have 

(2) Th- Cen^ s C ^ ^ ^ . 

Define a function X J <&wm%(%f,)>—+> <&bn%(f%) > 

by the following equation: 

JCCCoC':i<M«4mv«CRE>>^ * C*Cec):3<a4rfv£<.»m * 

Similarly as in 3.3 we can prove that X is correctly defi­

ned, one-one and that it preserves the ordering £y 

We have to prove that X is onto. Suppose 

^ o u ^ C P t m e < *&«% CtK} > '> then cPWt-cRt»« 

c < M-o/m^ (AE) > . Since T h &?*>& s Co^^C/J) ,we have 

[ P W ? m s ^ /^W^rm and hence 

Xcc(*l<H«mv.£cRn>) * cP-l<tr5^^cpRn 

3»6. Summary. Let A^ «, A 2 be arbitrary recursive enu­

merable axiomatizations of the theory T . Then the following 

hold8: 

- 357 -



<Jtiiym41CKE)> <* <ttu/m,*aCKE)> <* < Jtu/m.~ CKE)> » 

& < frim,* CKE)> ** <fc*n,~CPK)> • <JCu/m^(ML)> . 

If in addi t ion fovn,*2 CKE) 4= 0 ( that i s i f Aa 

i s recurs ive) then < ft£ri*T
i(KE) > i s isomorphic with 

a l l above mentioned s t r u c t u r e s . 

3»7» Corollary* All above mentioned s t ruc tures are 

l a t t i c e s * Each of the above mentioned s t ruc tu res has the 

same proper t ies as < S</n*T(KE) > which was studied 

in § 2. 

An open problem: whether for a primit ive recursive axio­

matization A of the theory T one has < foim,* CfK) > «s 

*** <&</n.T CPR)><**.. . etc* For a proof of t h i s statement i t 

would be suff ic ient to show that there ex i s t s a primitive 

recursive axiomatization A 0 0 of T such that for every 

primit ive recursive axiomatization A and for a rb i t r a ry 

PR-bi-numeration oc of A in T there ex i s t s a PR-bi-

numeration oc00 of A0 in T such that 

(5) T H~ Corv„ —> On* 

Now we could construct a PR-bi-numeration cc0 of A00 put­

ting oc0 -» coQ0(x) v Pmt*(ot) 8t(3<$, < *) CJM^ (0 & 4, <$>)) accor­

ding to the second part of the proof of Theorem 3.2 for 

which we have: T t— &**>„ s Cxm^ . The construction 
• oc» • ^ * o 

of an isomorphism between < <&un>^° CPU) > and 

< ft*/n,!j?C?.in > should be s imilar as the construction of 
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the function H in Theorem 3.3. However, I have not suc­

ceeded to prove or disprove the existence of oC00 . To clo­

se, let us mention that if we succeed to prove the existen­

ce of an isomorphism between < $U*u * CPU) > and 

< .B-i/rvfj? CPU ) > 9 all studied structures shall have 

the same properties as lattices. In this case the procedure 

for converting proofs for < foinvr° CTR) > to relevant 

proofs for < tfum,* CUE) > will lose its importance. 
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