Commentationes Mathematicae Universitatis Carolinae

Stanislav Paltich
The lattices of numerations of theories containing Peano's arithmetic

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 2, 339--359

Persistent URL: http://dml.cz/dmlcz/105495

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105495
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

14,2 (1973)

THE LATTICES OF NUMERATIONS OF THEORIES CONTAINING
PEANO 'S ARITHMETIC

Stanislav PALUCH, Zilina

Abstract: Studying consistency statements for an ari-
thmetIc A one has to decide whether one considers (a)
numerations or bi-numerations, (b) PR-formulas or RE-for-
mulas, (c) a particular axiomatization of A or all equi-
valent axiomatizations, This yields various structures of
numerations; all are lattices and have similar properties,

Key words: arithmetization, numeration, bi-numeration,
lattice,

AMS: 02G99 Ref. Z.: 2,669

Introduction. In a theory T containing the Peanc s
arithmetic P , many metamathematical notions can be des-
cribed, i.e. numerated or bi-numerated. Some from them are
for example the relation " @ 1is an axiom of the axiomatic
system <L ,A>" the relation &, (g, d) meaning
"d is the code of a sequence which is the proof of the
formula ¢ in < L ,A>"  the relation %y (@) meaning
"the formula ¢ is provable in the theory T ",
me'(gﬂ meaning "the formula ¢ is a formula of the
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language K, " etc, For a bi-numeration « of some axio-
matization of a theory T , we can construct a formula
Ay (x,4) which is a bi-numeration of the relation
Pufr (@,d) in T ,a formula Py, (x) which is a nu-
meration of the relation $v; (@) , a formula Con o

expressing formal consistency of T etc.

For two different bi-numerations o4, g of an
axiomatization A of the theory T , we need not have
T ty(x)e= oty (x) § we can even find bi-numerations o, 4
e, for which T~ acy(x) —> ;3 (x) . On the basis
of this fact we can construct - on any set ® of some nu-
merations or bi-numerations of the theory T in itself -
an ordering <., defined as follows: o £y f3 iff
Tt Conp — Con, . The equivalence .51. is defined as
follows: o~ =, 8 iff « £ 8 and B €1 < . Let
us denote by < @) the decomposition of the set ©
into equivalence classes wer.t. =y . We define the fol- .
lowing relation £, on the set <8):[«x] £4 [B] iff
o« £y 3 , where [c] dis the class of <®) such that
o« € [ ] . This structure, where ©® was the set of all
PR=bi-numerations of one fixed axiomatization of a theory
T satisfying certain conditions, was studied by M, Héjko-
v4 in [2), She has proved that (< 6>, £;) is a lattice

with various interesting properties.

The results of [2) geem 1;0 support the conjecture that
there is no natural bi-numeration of the Peano’s arithmetic
P in the following sense: In the lattice of all PR-bi-nu-

7

merations of a primitive recursive aximatization of P , no
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element is =, -definable and the hypothesis is that no
element is definable,

The class of PR-bi-numerations can be consgidered as
the class of reasonable (simplest) bi-numerations. But it
is not necessary to restrict ourselves to this particular
case; there are other reasonable possibilitiecs, We can get

them by altering the following fundamental parameters:

1, The type of formalization., We can consider the set @

ag the set of all bi-numerations or as the set of all nume-
rations.

2. The type of formulas, We admit two fundamental types of
formulas corresponding syntactically to primitive recursive
sets and recursively enumerable sets respectively, namely

PR-formulas and RE-formulas,

3. The number of formalized axiomatizations, We can consi-
der @ as the set of formalizations of one fixed axioma-
tization of a theory T or as the set of formalizations
of all axiomatizations of a theory T . We restrict oursel=-

ves to recursively enumerable axiomatizations.

Each of the mentioned parameters can take two diffe=-
rent values, Thus we get 8 combinations and every combina-
tion defines some set of formalizations of the theory T in
itself, In this paper, we consider all these sets with the
ordering <4 . We show that all structures have very simi-

lar properties, some from them are even isomorphic.

The reader is expected to be familiar with the Fefer-
man ‘g paper [11 (§§ 2 = 5 and a part of § 7) and, in parti-
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cular, with the paper [2) of M, Hdjkovd; this work is very
closely connected with [2],

I am thenkful to P, Hdjek for his kind encouragement
and help with the organization of the results and transla-

tion of the present paper.

§ 1., Definitions and statements

An axiomatic system is a palr X =<L,A> , where
L is a language and A a subset of the set of all formu-
las of L . We say that a formula ¢ is provable in O if
it is provable from the set Qx,_ v A  (where Qx, is the
set of all logical axioms in the language L , see [1]1) by
means of predicate calculus, A theory T 1is a pair <L ,B>
where L 1is a language, B € Fm  (Fm, 1is the set of all
formulas of the language L ) and B is closed w.ret. pro-
vability, i.e., B = ;’PJLB . Every set of fcrmulas A € Fm
such that B = 4,  will be called an axiomatization of
T . We shall say that a formula ¢ i3 provable in T if
9 €B . In this case we shall write Prg (@) or B (9)
or Tr— @ . It is easily seen that every axiomatic system

L =<L,A) defines a theory T = <L, B, >

Convention. We shall write

Tr.q —9, respe T — 9, =9, ,
Tr ° — 9, T +— =@
T — — P T = Qm
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instead of

T‘.— 94 - ?2_ respe T — ‘Pq = 92 )
Tl—-—cyz———>q>3 T— ¢ =9, ,
Tr @py— T — Onoq = I

We shall write Fm*(x)  instead of Fm{ (x) , in ot-

her cases we shall use the same notation as in [2],

le1l. Definition. Let £2 be an arbitrary set of formu-

las of a theory T and let A  be an axiomatization of T .

We define:
BnT(Q)={ox ;c € N, = is a bi-numeration of

some axiomatization of T in TVYV.

NumZ(Q) = fec ; x € L, «©  is a numeration of so-
me axiomatization of T in T4%.

LBA'nv.':J.I).) ={vc;cefl, x is a bi-numeration of
the axiomatization A of T in T}.

Nwm':, (D)= {w;cel, &« ig a numeration of the

axiomatization A of T in T § .

1.2, Remark. The sets defined in this definition can be

empty, For example if A is an axiomatization of the Peano ‘s
arithmetic which is not primitive recursive then the set
(B.un: (PR) is empty because every PR-formula is a bi-~

numeration of a primitive recursive set in P .

0
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1,3, Lemma, Let T be a consistent theory and let A

be an axiomatization of T . Then

1) Binl (Q) € Num T ()
2) BinA Q) € Nom L Q) .

Prcof: The statement is clear when we realize that eve~
ry bi-numeration of A in T is a numeration ¢f A in T if

T 4is consistent.

1.4, Definition and lemma, Let ® ©be an arbitrary set
of bi-numerations or numerations of some axiomatizations of
T in T. Por <, € 6 we define o £, 3 iff
T-Cmpy—>Cong, =y f iff « £+ 8 end B %
€1 o« . The relation <o ig reflexive and transitive -
it is a quasi-ordering on @ ., The relation =, 4is an
equivalence on € . Denote by <> the decomposition cof
Q into equivalence clagses w.r.t, =y . For < € @ ,

Ll gy denotes the element of (@) for which « €
€ [x1 gy . It is clear that (xl gy = [Plcqy iff
T Cony= Cony .The relation 4y o is defined on < @)
as follows: [eligy 4y o [Pl iff o« £, B .1t is
defined correctly because if Legligy=loc)yg,, [B1cgy =

= [Pley and [l £y [RI1(ey then T Cpny =
= Conpy , T Comy, = Cong , TH Gmn,+Gmn, and hence T Convp, —

—> Cony  which 18 Loc,lcor %v0 {B1,¢5 -  Hence the

definition of <£1,¢ is independent on the choice of

- 344 -



representatives of the classes ([e«l(qy , [31c¢qy - The re-

lation £, 4 is an ordering on <©> . In the case when

it will not cause any confusion we shall write only £, in-
stead of €16 -

The following statement is a reformulation of (11, 4.,13:

1.5, Theorem, Let T be an & =-consistent theory, P ¢
€ T .Let o« be an arbitrary RE-numeration of a recuraive-
ly enumerable axiomatization A of T in T . Then we can
construct primitive recursive axiomatization A, of T and

its PR-numeration o, 4in T such that T+ e = P .

This theorem will be the fundamental one for § 2.

§ 2. The lattice (ﬁim,: (RE)Y of RE-bi-numerations

In this section we shall assume that

1) T is an @ ~-consistent theory,
2) T contains Peano’'s arithmetic l’v y teee P T ,
3) A is a recursive axiomatization of T .
Let us note that for T and A satisfying these presump-
tions M: (RE) is not empty, because every re-

cursive set is RE-bi-numerable even in P .

2.1, Theorem, In < {buw.“_ (RE) D there is no maxi-
mal element,

Proof: Let o € Bin A (REY; then Titq(m, be-
cause of < -consistency of T . Let S = T+ Cn .Clear-

ly, S 1is consistent. For « we can construct a PR-bi-nu-
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meration o, of some axiomatization A, of T in T

such that T i— Br  (x) = Puy,(x) . The formula

» Blx) = xo(xYux = Cgnye 1s a8 PR-bi-numeration of § in
S . Let »; be the Godel s formula for 3 constructed

by a diagonal construction (see 5.2 in [1l]l). § 4is consis-
, tent and so S b= vy . By [1] Sk-vpzﬁ@bn(ﬁ) .
Set

o (x) = & (x) v Fm™(x) & (Aap < X)) (Pf (T, 4 )) .

Then «' 18 a RE-formula in T because Pf,(F5,4) 1is
a PR-formula in T ,For m € A we have T— o« (@) and
hence T «'"(m ). If m & A then T 1 (W)
Tr (34 < R)(@M{,CTP,@)) where from we get

T 1 «’(@ ). We have shown & € :Bon.f,. (RE) . From the
definition of ' we obtain T | o« (x) — o’ (x) which

means o« £y «’ . We know that § i< »; and hence

(1) T = Cong — », .
_ We show
(2) T Con,, —> »; .
We have
T, —(3g) (2, (55,40 ,
T — (3y) (¥ >q)(w’(x)é?m*(x)),
T — —> 1 G, .

If do’ é..rte(- N i'e. if Tl—-* cg»ww — C(?Yb“‘, we
obtain T Com, -—> P by (2); but this contradicts (1),
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We £nall not prove in detail all statements of the pa-
per [2] for the lattice of RE-bi-numerations, but we will

show the method how to convert some proofs for

Nw:.’ (PR) (where A, 1s a primitive recursive axio-
matization of T ) to the proofs of analogous statements
for M:. (RE) . Even if in premises of some theorems
for the lattice of PR-bi-numerations the requirement of w -
consistency of T did not occur, in premises of analogous
theorems for the lattice of RE-bi-numerations this presump-
tion must be added.

Most of the proofs in [2] are performed constructions

of the following type: For « € %:’(Pk) one constructs

a formula P(«) which preserves the property "to be a
PR-formula"., Then we set o«’(x) = oc(x) & F(cc) (x) or
= (X) = ¢ () v P(x)(x) . Clearly, «' 1is a PR-formula.

The formula P (=) (x) is constructed in such a way that

o« has required properties and «’ € M:’(Px) .

The most fundamental properties of F(«x ) for the proof
of the required properties of o«’ depend only on proper-
ties of the formula R (&) and in fact that formula
Pufo (x,4)  bi-numerates Prf,, (g,d) in T . But
this procedure often fails when applied to formulas from
RBim 3 (RE) . The main reason is that P need not sa-
ve the property "to be an RE-formula",

This obstaecle can be removed by the following proce=~
dure: For « e Bim% (RB) , we can construct a primi-

tive recursive axiomatization A, and ite PR-bi-numera-

- 347 -



tion «o in T such that T B, (x) = B, (x) by

the construction described in Theorem 1.5. By our assump-
tions, T 1is @ -consistent, For this o, we construct
F(ato) according to the proof of the relevant statement
for the lattice of PR-bi-numerations and finally we put
x'(X)=w et (X) & Plevo)(x) OF o’(x) = e (x) v Fleo)(x) .
Since x, is a PR-formula, PF(x,) is also a PR-formula.
Now it is obvious that «' is an RE-formula in T . Since
the fundamental properties of the formula F(«x,) depend

om P, (x) and «, was constructed so that
Tr— P o= T, , + We can prove that the formulas « and

«’ are related in the same way as the relevant formulas
from :am.‘," (PR) .

In this manner we can convert the proof of the required
statement for the lattice of RE~bi-numerations into the proof
of the analogous statement for the lattice of PR-bi-numera-

tions. We can illustrate this procedure by the following fi-

gure:
P(ee) P(er.,,)
/\ s & F(x) / «’= ot & F(ec,)
=’z xv P(x) 2> = v Flec)
Construction Construction
A A '
in ffSim.,.’(PX) in %T(RE)

Thus we can prove the following theorem (numbers of the
corresponding statements from (2] for the lattice of PR-bi-

numerations are in brackets):
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2,2, Theorem, If T 4is a reflexive theory then in

< M: (RB))S there is no minimal element.

2.3. Theorem [2.11]. For each o, 8 € Bim ) (XB) ,

o £ Aiff there is a (' € Bim 4 (RE)  such that

1) {3=T/5’ ’

2) T o(x)—> B3'(x)

2.4, Theorem [2.12], For each o, , s, € Bin} (RE)

if x, <7 x, then there is an « € M:.(KE) such

that Xy <y & < Xy v
2.5. Theorem [2.14), Let T ©be a reflexive theory.

Then for each o € 334”:.4_ (RE) there is an

«' € Bim A (RE) such that simultaneously o' £, o« and

o« £, ' .

2.6, Theorem (2,19], [2.21]. In < M: (RE)> every
pair [@]<%¢ (REY> 9 ””(MQ (RE)> has
the maximum and the infimum,

2.7. Corollary [2,20, 2.22]., Let ©,, o,,x € Bim? (RE) ;
then [e(«]<m¢ (REY> is the supremum and infimum of the

pair Lees I ¢ niy Awrery [“'a]mm: (RE)) respecti-
vely iff T+ Comy= Com, v Cony, and T Com, = Comy, & Com,,,

reepectivély. .

This enables us to define on < r&m/.':. (RE)> the opera-
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tions of join o and meet n similarly as in [21, 2,23,
2,8, Summary. From Corollary 2.7 it follows that

<{Bimn2(XE)> with operations u , N is a distributive
lattice which has no maximal element and if, in addition, T
is reflexive, it has no minimal element.

A very important theorem of the paper [2] is Theorem
3.9 on 24 -nondefinability. The reader verifies easily that
the whole proof of [21, 3.9 works also for < Bim 4 (RE))>
if modified according to our Figure. Thus we have the follo-
wing

2.9, Theorem on S|, -non-definability [3.9]. Let T be
reflexive. Then no J¢ ~tuple of elements of < Bim % (RE))D

is Z,-definable in < Rim 2 (RE))> .

§ 3. The lattices of numerationg
In § 2 we have shown that < M;cRE) > is a lat-

tice with various interesting properties, In this section we

shall study the relations between the structures

A . A w©
CRum T(RE)> , < Binp (RE)> , < Naum (RE)> ,
CBin¥(RE)D> , < BimP(PR)> , <Bimf(PR)> .

We shall show that all these structures are lattices and that
they are mutually isomorphic except < Bim 3 (PR)> . In

this section we shall assume that T is primitively recursi-
vely axiomatizable, @ -consistent and that P &€ T .

- 350 -




3e1, Lemma, The following equation holds:
Bim T (PR) = Num T (PR) .
If A 1is a primitive recursive axiomatization of T then

Bim 2 (PR) = Num A (PR) .

Proof: Since T 1is primitively recursively axiomatiz-
able, the structures Bim P (PRY , Naum P(PR) are

not emptye T 1is a consistent theory and therefore by Lemma

1,3 we have Bim 2 (PR) € Num 2 (PR) . Let « be

a PR-numeration of an axiomatization A of T 4in T . We ha-
ve m € A iff T+ « (M) . Every PR-formula is a
bi-numeration of a certain primitive recursive set X even
in P and hence in T . Hence we have me€ A = T~ x (M) ,
m & K= T— 1« (m) . From the consistency of T it fol-
lows that A = & .

Now we shall prove the fundamental statement for this

section,

3.2, Theorem., Let A, be an arbitrary fixed recursive-

ly enumerable axiomatization of T . Then for every recursi-
vely enumerable axiomatization A, of T and for an arbit-
rary RE-numeration o, of A4 in T we can construct an RE-

numeration o, of Az such that the following holds:
(1) T Cerg, = C«rvq.n_ .

If in addition BIni2(RE)  is not empty (that is A,
is recursive) then for every RE-numeration «, of A4 in T

we can construct an RE-bi-numeration e, of A,' in T =o
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that (1) holds,
Proof: Let o,y be an arbitrary RE-numeration (RE-
bi-numeration if A, 1is recursive) of A, in T . We put

%o (X) = oo (X) & Pre, (x) . As =, (x) and

(P:g“ (x) are RE-formulas in T , &, (x) is also ap

RE-formula in T , We show that «, numerates (bi-numerg.
tes) Ay in T .
Let m @« Ay . Then T~y (M) and T+ m , hence

T Prg (M) , and consequently T oo (M) & Bre, (7)),

Let m &« Ay . Then T e g (M) and hence T xpy ()&
& Bo, (M) .If in addition oo bi-numerates A, in T
then T 1 «xp (@) and hence T "1 xgo (M) & %é,(a).

The following sequence of statements is provable:

T 2 e, = @mda('b'ed) ’

T +— = @;4%0&:@%4<Ua4) ,
T —->qa-,%1cvm4),

T+ — B, (Tea1) ,

T +— —»-10911/“4 .

From this we get
(1) ‘ T Conge —> Comg,

According to Theorem 1.5, we construct a PR-formula co'_,

for the formula «, such that Ti- R = @u,_; . Finally

we put:
g (X) = oo (x) v Fm*(x) & (A < X) (Ppfs (O 4, 94))

The following sequence of implications holds:
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T atmg, — (3g) (Dfe, (D=4, 90),

T p— -—b(S@)(@«fq‘(OO",‘U’)) ’
TH —> (3y) (¥x > @) (A2 < ) (B, (D, 2)) .

Prom this we get T+ 1 qu“4—> (3y)(¥x >y ) (x, () Fm* (x)) .
It is easy to see that T (Jg) (¥x > 4 ) (e, (x) = Pm*(x)) -
- - qu,‘l and hence T+ 7 qu,,—-» - 09”"9. s which implies
(2) ' T Cone, —> Qe

We prove T~ Convee, —* qu”’_ .

It holds:

T +— Cc.m/““ — (0 3@)(.?;.;/@_4 (0>1,4)) ,

P

T — ——>(~|3@)('?4/F&.1 (0=4,4)) ,
T +— —> coa(.x) = oo, (%),
T — (Cgmg —> Conve, ) -

Consequently, T Cong —> (Comy,—> Comy,) ,from which we ob-
tain

Tl——((‘xpv,_d—> Ct.ma“a)-—’ (09""“4~> 09"»,,2) .

The last statement gives T (0%, — c'-”"x,l by (1).

Now it ie necessary to prove that oo, "RE-numerates (RE-
bi-numerates) A, in T . Clearlys <« is a RE-formula in T .
Suppose m € A, . Then T «x, (™) Dbecause «, 1s nume-

tation of A, in T and hence 1+ ®» (@) by the con-
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struction of o, . Since Bufy, (x,4) is a PR-for-

mula in T we have the following for each integer m :

Tt—?y“‘." (0w4, M) a@ Trn W‘.4(0~4,ﬁ).81noe

T is consistent, we have T~ Ppf,, (0~ 4, m ) and

hence T 1 W¢s1(0¢'4,5-v7 for each m . From

this it follows that

(3) T (34 <@m) (B, (04,4

. “','

and by the consistency of T we have

(4) T.-,z-'-caa,<a>c@,w‘.1<o“—‘~4,@n

for each integer m .
Suppose m ¢ A ; then T & (m) and by (4) we have

T4t o, (m) . If in addition «o0 was a bi-numeration

of A in T, «<, has also this property and T 1, (m) .
By (3) we have T+ 11 oy (M)

pe recursively enumerable

33, Tgeoremo Let A,' ) A2

axiomatizations of T .

1) There exists an isomorphigm of < Num:.( RE)> and

A
< Nam32(RE) > . We write < Num (RE)> = < Num(RE)> .
2) If in eddition Bim 2 (RE) # 0 , d.e. if A, is
. A
recursive, then <)€am»:‘ (REV)> < MT1(13)> .
A
3) It Bimld (RE) 4 0 and  Bin*(XE) + 0

then
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¢ Bin¥(RE)> » < BinPRE)> .

Proof: According to Theorem 3,2 for every
A
o, € N.«m—».:‘ (RE) we can construct an o, &€ Num_* (RE)

so that T CQ‘YL,‘4 = Ot,m.oz . Denote by £ +the mapping

which assigns the formula £ (eq) constructed in the proof

of Theorem 3.2, for each formula e, . We define a function
A

6 : <Num_ '(RE)> —> < Nam 22(2E) > in the follo-

wing way: 6 ( [°"4]<m:4<un>) = Ef("‘»‘”um:_z REY> °

We must prove that G is correctly defined, i.e. that &

is one-one, onto, and preserves the ordering <+ -

a) G is correctly defined. Let Loy T enumAr crery =

]
= L) Tcium A crer> then T Cong = Cong,

From the properties of f we obtain T Comy = Congeyy -
T C?""cx"1 = Comgcnr ) and hence T Comge ) = Comececty) 5
which implies

]
Ef(""4”<mm»:z(ks>> = [f(“’4”<Nm_‘:ﬁcRE)> :

b) G preserves <, . Let [, ], Acrers =

é.‘.[ﬁ" ]<” ::‘(RE’) ’ i.e. T+ Cq‘n,ﬁ1 —_— Ce’ﬁa“_" . Since

T~ quv,,1 = °?">fm,) and T — Co_nxq = C&,m«;(x", we can
1i

write T an“ﬂq,—-) Con gty which implies

6 (L, ] Y.

<mm:,4tke» ) £, G(L (34]<Nwm.Ar"CRE?>

¢) G is onto, For the proof of this statement it is suffi-
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cient to show that for every o, € NumI!(RE)  thers
exists an o, & Num } (RE) g0 that T (o = Com, |,

vhich is guaranteed by Theorem 3.2,
d) & 1is one-one. Since T'--qu,,‘ = Cq-n—"x‘, and
Tr qua" = 0971«“,,1, , we have : Ti— qu«““,s @n«;m‘, ife

T ng.,,“ = wn" .
Analogously for 2, 3.

3.4, Theorem, Let A be a recursively enumerable axio-
matization of T . Then

1) <Num (RE)> = <Nw;cm:>> ,

2) < BmT(RE)> =& < Num (RE)>

3) < BinA(RE)> # f=> CNumP(RE)> @< Binl(RE))

4)  BimAQE) + § = < Bin¥(RE)> & <Bink(RE)) .

Remark. Since T is primitive recursive axiomatizable,
we have the following:

NumZ(RE)+ §, BinF(RE)+ §, BimJ (PR) + f .

Proof of Theorem 3,4: Let o € Num T (RE) . By

Theorem 3,2 there exists a mapping £:Numy(RE)—>Num} (RE)
80 that for every « € Nwm3 (RE) we have

TrCom, = Cn e, .Define a mapping H: < Num3 (RE)> —>
—> (Num A (RE)> by the equation

Rl lopum@crns) = [EC)IcnumA rer> -

Similarly as in Theorem 3.3 we can prove that G is correct-
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ly defined and is an isomorphism, Analogously for 2, 3, 4,
3.5. Theorem. 1) <Num3(RE)> a { BimnJ (PR)> ,
2) (M:(RE))n (Mv‘.:(rll» .

Proof: In the proof of Theorem 1.5, a formula

¢ ()& Bin3 (PR ) was constructed for every «e€ Num 3 (RE)

such that

1) T B, (x) = ﬁu",‘, x) .
From (1) we have

(2) T+ Con, Com«’(‘_, .

Define a function X : (Num3(RE)>—s { BinJ (PR)>
by the following equation:

Kl lopum@rery) = L@ () Ieqine conry -

Similarly as in 3.3 we can prove that X is correctly defi-

ned, one-one and that it preserves the ordering 6.,. .

We have to prove that X 1is onto. Suppose
(Blemmecomy € < BimT (PRI then [A)ixum® crury®
€ <NumZ(RE)> . Since T Cgnjy = Cong sy ,we have
[{$J<%$l"»= tq(ﬂ)%%g(",, and hence
KCBIchum2rer) = [BIcnin® crrry -

3.6, Summary, Let A ,, A, be arbitrary recursive enu-

merable axiomatizations of the theory T . Then the following
holds:

- 357 -



<Num3 (REDY 2 < Numf2(REY> & (Num® (RE)> ~

& < Bin P (RE)> & < Bin P (PR)> = Num$ (PR)Y .

A
If in addition ﬁm.‘.’ (RE) = 0 (that is if A,
is recursive) then < M:’(KB) > is isomorphic with
all above mentioned structures.

3.7. Corcllary. All above mentioned structures are
lattices, Each of the above mentioned structures has the
same propserties as < M#(RE) > which was studied
in § 2,

An open problem: whether for a primitive recursive axio=-

matization A of the theory T one has ( Bim 2 (PR)> »

~ (BmT (PR)> ... ete, For a proof of this statement it
would be sufficieht to show that there exists a primitive
recursive axiomatization A,y of T such that for every
primitive recursive axiomatization A and for arbitrary

PR-bi-numeration « of A in T there exists a PR-bi-

numeration e«gy of A, in T such that

(5) TI—-Cng”—éCo‘m .

e oo

Ncw we could construct a PR-bi-numeration e, of A, put-

ting =, = g, (x) v Pm*(x) &(3ay < x)(Pf, (0~ 1, 4)) accor-
ding to the second part of the prcof of Theorem 3.2 for
which we have: T i~ Cm_ = Con, .  The construction

of an isomorphism between < M.‘; (PR) > and

< %:(PR) b should be similar as the construction of
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the function H in Theorem 3,3, However, I have not suc=-
ceeded to prove or disprove the existence of «<,, . To clo-
gse, let us mention that if we succeed to prove the existen-~

ce of an isomorphism between < Kunvﬁ (PR) > and

< ﬂﬁn»? (PR > , all studied structures shall have
the same properties as lattices. In this case the procedure

for converting proofs for < Gunv:°(PR) b to relevant

proofs for < @un»¢ (RE) > will lose its importance.
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