James S. Williams
On a question of Pultr regarding categories of structures

Persistent URL: http://dml.cz/dmlcz/105538

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
ON A QUESTION OF PULTR REGARDING CATEGORIES OF STRUCTURES

James WILLIAMS, Bowling Green

Abstract: It is known that every constructive structure can be realized as a structure based on a power (under composition) of the contravariant power-set functor. It is proved here that one can use the covariant one instead.

Key-words and phrases: Categories of structures, realize, majorize, covariant power set functor.

AMS: Primary: 18B15
Secondary: 08A20

Ales Pultr has given a definition which allows one to describe models of higher order theories in terms of first-order structures defined in the range of a functor from $\text{Set} \to \text{Set}$. This suggests the question: which functors generate structures comparable with those of ordinary nth order logic (for some α)? Pultr has given a partial answer by finding a class of categories of models that can be realized in $\mathcal{S}(\langle \mathcal{P}^- \rangle^\omega \circ \mathcal{V}_A)$, the category of all models (X, U) whose structure U consists of a distinguished subset of $\langle \mathcal{P}^- \rangle^\omega \circ \mathcal{V}_A(X)$, where \mathcal{P}^- is the usual contravariant power set functor and \mathcal{V}_A is a sum of the identity functor and a constant functor. The present paper gives a similar partial answer by showing that these same categories can be realized in $\mathcal{S}(\langle \mathcal{P}^+ \rangle^\omega \circ \mathcal{V}_A)$, where \mathcal{P}^+...
is the usual covariant power set functor. As with Pultr’s work, if one is willing to allow infinite powers of P^+, then the class of functors involved can be enlarged by taking limits and colimits over small categories.

When not specified, the terminology is as in [1].

Set denotes the category of sets and functions. For any function $f: X \rightarrow Y$, let f^\vee equal $(P^-)(f): P(Y) \rightarrow P(X)$, and let f^\vee ambiguously represent $(P^+)^k(f): P^k(X) \rightarrow P^k(Y)$.

1 Lemma: $S((P^-)^2)$ is realizable in $S((P^+)^4)$; $(P^-)^2$ is majorized by $(P^+)^5$.

Proof. For any $U \subseteq P(X)$ and $A \subseteq X$, define A to be U-substantial iff $\forall U \subseteq X, U \in U$ iff $U \cap A \in U$.

Step I: For any function $f: X \rightarrow Y$ and $U \subseteq P(X)$, if A is U-substantial, then $f[A]$ is $f^\vee(U)$-substantial.

Since $f^\vee(U) = \forall V \subseteq Y; f^\vee(V) \subseteq U$, we have that $\forall V \subseteq Y, V \cap f[A] \subseteq f^\vee(U)$ iff $f^\vee(V \cap f[A]) = U$; but $f^\vee(V \cap f[A]) = f^\vee(V \cap f[A])$, and $f^\vee(V \cap f[A]) \in U$ iff $f^\vee(V \cap A) \in U$, iff $f^\vee(V) \in U$ iff $V \in f^\vee(U)$. Hence $f[A]$ is $f^\vee(U)$-substantial.

Define a functor $R: \text{Set} \rightarrow \text{Set}$ as follows: for any set X, $R(X)$ is the set of all pairs $\{X, Q\}$ such that

i) $X \in \{U: U \subseteq X\}$,

ii) $\emptyset \in U \cap Q$, $Q \in \{Q_1, Q_2\}: Q_1, Q_2 \subseteq X$ and $Q = \emptyset \in \{Q_1, Q_2\}$: $Q_1 = Q_2$ and $Q_1 = \emptyset \cup Q_2$, and $Q_1, Q_2 \in U \cap Q$,

iii) $\cup U \subseteq \cup U \cap Q$;
for any map $f: X \to Y$ let $\mathcal{R}(f) = (P^+)^4(f)$. By nonstandard convention, we shall consider phrases such as.

"$\{X, Q\} \in \mathcal{R}(X)$" to abbreviate "$\{X, Q\} \in \mathcal{R}(X)$, X satisfies (i), and Q satisfies (ii)".

Step II: If $f: X \to Y$, $\{X, Q\} \in \mathcal{R}(X)$, $\{Y, R\} \in \mathcal{R}(Y)$, and $f^\sim(\{X, Q\}) = \{Y, R\}$, then $f^\sim(X) = Y$ and $f^\sim(Q) = R$.

Suppose not; then $f^\sim(Q) = Y$ and $f^\sim(X) = R$. Now if $\cup U(Q)$ were non-empty, $f^\sim(Q)$ would contain a nontrivial pair of the form $\{\emptyset, f[Q]\}$. But Y contains only singletons. Hence $Q = \{\emptyset\}$ since $\emptyset \in U(Q)$. Consequently $f^\sim(Q) = \{\emptyset\}$. Similarly, $\cup U(f^\sim(X)) = \cup U(R)$ must be empty, so that $R = \{\emptyset\} = X$. Hence $f^\sim(X) = Y$ and $f^\sim(Q) = R$.

For any $\{X, Q\} \in \mathcal{R}(X)$, define Q to be significant iff $\forall Q_1, Q_2 \in Q$, $Q_1 \cap Q_2 = \emptyset$.

Step III: It is easy to see that given $f: X \to Y$ and $\{X, Q\} \in \mathcal{R}(X)$, $f^\sim(Q)$ is significant iff Q is significant and $\forall Q_1, Q_2 \in Q$, $Q_1 \neq Q_2$ implies $f[Q_1] \cap f[Q_2] = \emptyset$.

A realization of $S((P^-)^2)$ in $S(R)$ can now be given as follows: for each X and $U \in P^2(X)$, let U^* be the set of all $\{X, Q\} \in \mathcal{R}(X)$ such that if Q is significant, then for some $U \in U$, UUQ is U-substantial and $U\mathcal{R} = \{U \in U \mid \exists Q \subseteq UQ, U = UQ\}$. Let $f: X \to Y$, $U \in P^2(X)$, and $V \in P^2(Y)$ be arbitrary.

Step IV: If $K(f)[U^*] \subseteq V^*$, then $f^\sim[V] \subseteq V$. Pick $U \in U$. Let Q be the set of all pairs $\{f^\sim(A), f^\sim(B)\}$.
such that $A, B \subseteq Y$, $A \cap B = \emptyset$, and $\text{card } A, \text{card } B \leq 1$.

Let $\mathcal{X} = \{U \in \mathcal{U} : U \in \mathcal{U} \text{ and } \exists A \subseteq U \in \mathcal{Q}, U = UA\}$. Then $\{X, Q\} \in \mathcal{U}^*$, and thus $f^\sim(X, Q) \in \mathcal{U}^*$, $f^\sim(Q)$ is clearly significant, and thus we may choose $V \in \mathcal{V}$ so that $UUf^\sim(Q) \in \mathcal{V}$ -substantial and $Uf^\sim(X) = \{V \in \mathcal{V} : \exists B \subseteq Uf^\sim(Q), V = UB\}$. We need to show $V = f^\sim(U)$. From the choice of V and the definition of Q, it is clear that $Uf^\sim(X) = \{V \in \mathcal{V} : V \subseteq f[X]\}$. Hence $Uf^\sim(X) = \mathcal{V}[f[X]]$ since $f[X]$ is \mathcal{V} -substantial. From the definitions of X and Q, it is clear that $Uf^\sim(X) = \{V \subseteq f[X] : f^\sim(V) \in \mathcal{U}\}$.

Hence $Uf^\sim(X) = f^\sim(U)f[X]$ since $f[X]$ is $f^\sim(U)$ -substantial, so that $U[f[X]] = f^\sim(U)f[X]$. But then $V = f^\sim(U)$ by substantialness. Therefore $f^\sim(U) \subseteq V$.

Step V: If $f^\sim(U) \subseteq V$, then $R(f(U)) \subseteq \mathcal{U}^*$. Pick $\{X, Q\} \in \mathcal{U}^*$. If $f^\sim(Q)$ isn't significant, then $R(f)(X, Q) = f^\sim(X), f^\sim(Q) \in \mathcal{U}^*$. If $f^\sim(Q)$ is significant, then so is Q, and for some $U \in \mathcal{U}$, UUQ is \mathcal{U} -substantial and $UX = \{U \in \mathcal{U} : \exists A \subseteq U \in \mathcal{Q}, U = UA\}$. But then $f^\sim(UUQ)$ is $f^\sim(U)$ -substantial and $f^\sim(U) \subseteq V$. To see that $f^\sim(X, Q) \in \mathcal{U}^*$, we need to show that $Uf^\sim(X) = \{V \subseteq f^\sim(U) : \exists A \subseteq U \in \mathcal{Q}, V = Uf^\sim(A)\}$.

Pick $V \in Uf^\sim(X)$; then for some $U \in \mathcal{U}$ and $A \subseteq U \in \mathcal{Q}$, $U = UA$ and $f[U] = V$. We have $f^\sim(f[U]) \subseteq \mathcal{U} \subseteq \mathcal{U}$.

- 116 -
since if not, there would be some \(Q_1 \in \mathcal{A} \) and \(Q_2 \in \mathcal{U} \) such that \(f(Q_1) \cap f(Q_2) \neq \emptyset \), in which case \(f^\sim(Q) \) wouldn't be significant. Consequently, \(f^\sim(f[U]) \in \mathcal{U} \) since \(
abla U \mathcal{Q} \) is \(\mathcal{U} \)-substantial. Hence \(f[U] \in f^\sim_{\mathcal{U}}(\mathcal{U}) \). Conversely, if \(V \in f^\sim_{\mathcal{U}}(\mathcal{U}) \) and for some \(Q \subseteq \mathcal{U} \), \(V = Uf^\sim(Q) \), then \(f^\sim(V) \cap \nabla U \mathcal{Q} = U \mathcal{A} \) again since \(f^\sim(Q) \) would otherwise not be significant. Since \(f^\sim(V) \subseteq \mathcal{U} \) and \(\nabla U \mathcal{Q} \) is \(\mathcal{U} \)-substantial, \(f^\sim(V) \cap \nabla U \mathcal{Q} \subseteq \mathcal{U} \). Hence \(f^\sim(V) \cap \nabla U \mathcal{Q} \subseteq \nabla \nabla U \mathcal{Q} \), and

\[
\nabla \nabla U \mathcal{Q} = f[U] = V \in Uf^\sim(X) .
\]

Therefore \(f^\sim(f[X],Q_3) \in V^* \), as required.

We have just shown that the map \(\mathcal{U} \mapsto \nabla^* \) induces a realization of \(S((P^*)^2) \) in \(S(\mathcal{A}) \). Since for each structure \(\mathcal{U} \subseteq \mathcal{P}^{2}(X) \), \(\mathcal{U}^* \subseteq (P^*)^4(X) \), the same construction may be considered as a realization of \(S((P^*)^2) \) in \(S((P^*)^4) \). Using a similar construction, we can now show that \((P^*)^5 \) majorizes \((P^*)^2 \). For each set \(X \), each \(\mathcal{U} \subseteq \mathcal{P}(X) \), and each \(\mathcal{U} \)-substantial \(A \subseteq X \), let \(\mathcal{U}_A \) be the set of all \(\mathcal{A}, Q \in R(A) \) such that \(UUQ = A \) and if \(Q \) is significant, then \(UX = \{ U \in \mathcal{U} : \exists A \subseteq UQ \} \), \(\mathcal{U} = UU3 \). Define a functor \(E : \text{Set} \rightarrow \text{Set} \) as follows:

for each set \(X \), let \(E(X) = \mathcal{U}_A : \mathcal{U} \subseteq \mathcal{P}(X) \) and \(A \) is \(\mathcal{U} \)-substantial; for each function \(f : X \rightarrow Y \) and \(\mathcal{U}_A \in E(X) \), let \(E(f)(\mathcal{U}_A) = (P^*)^5(f) \). \(E \) is in fact a functor, as a result of the following

Step VI: For any given \(f : X \rightarrow Y \) and \(\mathcal{U}_A \in E(X) \),

\(E(f)(\mathcal{U}_A) = f^\sim_{\mathcal{U}}(\mathcal{U})_{f[A]} \). The argument of step V
shows that $E(\mathcal{C}) \subseteq \mathcal{C}$.

Now pick $\{V, S\} \subseteq \mathcal{C}$. Let $F = \{F, V, S\}$, and let $G = \{G, X, S\} : \{G, X, S\} \subseteq F$.

Clearly, $G \subseteq X, S$, and $U\mathcal{C} = U\mathcal{C} = A$, so that $\{X, S\} \subseteq \mathcal{C}$. If \mathcal{C} is not significant, neither is \mathcal{C}, and thus $\{X, S\} \subseteq \mathcal{C}$. Assume \mathcal{C} is significant; then so is \mathcal{C}. To see that $\{X, S\} \subseteq \mathcal{C}$, we need to show that $U\mathcal{C} = \{\mathcal{C} \subseteq \mathcal{C} : \mathcal{C} \subseteq \mathcal{C} \}$. First pick $U \subseteq \mathcal{C}$; then $F \subseteq \mathcal{C}$, so that for some $\mathcal{C} \subseteq \mathcal{C}$, $\mathcal{C} \subseteq \mathcal{C}$ and $\mathcal{C} \subseteq \mathcal{C} \subseteq \mathcal{C}$.

For each set X, let $\mathcal{C} \subseteq \mathcal{C}$ be the inclusion map from $E(\mathcal{C})$ to \mathcal{C}. \mathcal{C} is clearly a mono transformation from E to \mathcal{C}. Now define an epitransformation γ from E to \mathcal{C} as follows: $\gamma \subseteq \mathcal{C}(X)$, $\mathcal{C}(X) = \mathcal{C}$. Each \mathcal{C} is well-defined since each \mathcal{C} contains a pair $\{\mathcal{C}, S\}$ such that $U\mathcal{C} = U\mathcal{C}$. (just let $\mathcal{C} = \{\mathcal{C}, S\} : \mathcal{C}, \mathcal{C} \subseteq \mathcal{C}, \mathcal{C} \subseteq \mathcal{C}$.)

Each \mathcal{C} is clearly onto; to see that \mathcal{C} is a natural transformation from E to \mathcal{C}, pick $\mathcal{C}: X \rightarrow \mathcal{C}$ and $\mathcal{C} \subseteq \mathcal{C} \in E(X)$; then $\mathcal{C}: (\mathcal{C}) = \mathcal{C} = \mathcal{C} = \mathcal{C} = \mathcal{C}$.
Therefore \((P^+)^5\) majorizes \((P^-)^2\).

2 Theorem. If \(G_1, \ldots, G_n\) are constructively majorizable functors and \(\Delta_1, \ldots, \Delta_n\) are types, then \(S((G_1, \Delta_1), \ldots, (G_n, \Delta_n))\) is realizable in \(S((P^+)^k \circ V_M)\) for some set \(M\) and natural number \(k\).

Proof. The numbered theorems which will be referred to are those of [1]. By Theorem 6.5, \(S((G_1, \Delta_1), \ldots, (G_n, \Delta_n))\) is realizable in \(S((P^-)^k \circ V_M)\) for some number \(k\) and set \(M\). If \(k\) is odd, then \(S((P^-)^k \circ V_M)\) is realizable in \(S((P^-)^{k+1} \circ V_M)\) by Theorem 1.5. Hence \(S((G_1, \Delta_1), \ldots, (G_n, \Delta_n))\) is realizable in some \(S((P^-)^{2m} \circ V_M)\) by Corollary 3.7 and the above lemma, \((P^-)^{2m} \circ V_M\) is majorized by \((P^+)^{5m} \circ V_M\). Hence by Theorem 6.1, \(S((P^-)^{2m} \circ V_M)\) is realizable in \(S((P^+)^{5m} \circ V_M)\).

Problem: Characterize the class of all categories \(S(P)\) which can be realized in some \(S((P^+)^k \circ V_M)\) (or, equivalently, \(S((P^-)^k \circ V_M)\)). Characterize the class of all categories \(S(P, \Delta)\) which can be realized in some \(S((P^+)^k, \Gamma)\) (equivalently, in \(S((P^-)^k, \Gamma)\)).

The above theorem may be extended to the infinite case with the help of the following result.

3 Lemma. For each monotransformation \(\tau : I \to (P^+)^m\) there is an \(m \geq n\) and a monotransformation \(\Theta : (P^+)^m \to (P^+)^m\) such that \(\Theta \tau = \xi^m\), where \(\xi : I \to P^+\) is the unique monotransformation.
Proof: First we need some facts about natural transformations from I to $(P^+)^n$. By Remark 2.9 of [2], the natural transformations from I to $(P^+)^n$ are in 1-1 correspondence with the elements of $(P^+)^n(\emptyset)$, and for any set $A \in (P^+)^n(\emptyset)$, we may let $\tau_{m,A}$ be the transformation such that for each set X and $x \in X$, $\tau_{m,A}(x) = (P^+)^n(\varepsilon_x)(A)$, where $\varepsilon_x: \emptyset \to X$ is given by $\varepsilon_x(\emptyset) = x$. Since $\tau_{m,A}$ doesn't depend on X in a significant way, we will usually drop this third subscript. Notice that

if $A \in (P^+)^n(\emptyset)$, then

$$
\tau_{m+1,A}(x) = (P^+)^{n+1}(\varepsilon_x)(A) = ((P^+)^n(\varepsilon_x)(a); a \in A) = \tau_{m,A}(a); a \in A.
$$

1) The following are equivalent:

a) $\tau_{m,A}$ is a monomorphism

b) $\text{rank } A = m$ (where $\text{rank } A$ is inductively defined as the smallest ordinal greater than $\text{rank } a$, for all $a \in A$).

c) $\forall x, U^n \tau_{m,A}(x) = x$, where for any set S, $U^0 S = S$ and $U^{n+1}(S) = \{ U^n b; b \in S \}$.

d) $\exists x, U^n \tau_{m,A}(x) \neq \emptyset$.

Proof: The only element of $(P^+)^0(\emptyset)$ is \emptyset, and so $\tau_{0,\emptyset} : I \to I$ is the identity transformation; $\tau_{0,\emptyset}$ clearly satisfies the four conditions. By induction, assume for $m \geq 0$ that the four conditions are equivalent. Pick $A \in (P^+)^{n+1}(\emptyset)$. Then $\text{rank } A = m + 1$ iff for some $a \in A$, $\text{rank } a = m$, in which case $\tau_{m,A}$ would satisfy the four conditions. Thus if $\text{rank } A = m + 1$, then

$$
U^{n+1} \tau_{m+1,A}(x) = U^{n+1} \tau_{m,A}(x); a \in A
$$

$$
= U^0 U^n \tau_{m,A}(x); a \in A
$$

$$
\begin{cases}
- x, & \text{if } 3a \in A, \text{ rank } a < m \\
- U^0 x, & \text{if } \forall a \in A, \text{ rank } a = m
\end{cases}
$$

- 120 -
and so the four conditions hold. But if \(\text{rank} \ A < m+1 \), then
\[
U^{n+1}_{m+1,A}(x) = U \cup U^m_{m,A}(x); a \in A \cap U \cap \emptyset = \emptyset,
\]
and they don't hold.

For any set \(X \), let \(\sigma_X \) be the unique map from \(X \) to \(\{\emptyset\} \). For each natural number \(k \) and \(C \in (P^+)^k(X) \), define the \(k \)-type of \(C \) to be \((P^+)^k(\sigma_X)(C)\). Notice that a set \(A \in (P^+)^{k+1}(\{\emptyset\}) \) is the \(k+1 \)-type of \(C \in (P^+)^{k+1}(X) \) iff \(A \) is the set of \(k \)-types of elements of \(C \). We will need the following properties of natural transformations from \((P^+)^\hat{\delta} \) to \((P^+)^k \):

2) Suppose that \(A \in (P^+)^{k}(\{\emptyset\}) \) and \(\text{rank} \ A < k \). Then for any set \(Y \), \(A \in (P^+)^k(Y) \), as can be easily seen by induction on the rank of \(A \). Consequently the constant transformation \(\gamma \) from \((P^+)^\hat{\delta} \) to \((P^+)^k \), given by \(\forall X, \forall C \in (P^+)^\hat{\delta}(X), \gamma_X(C) = A \) is natural.

3) If \(C \in (P^+)^\hat{\delta}(X) \) and \(f : X \rightarrow Y \), then \((P^+)^\hat{\delta}(C) \) has the same \(\hat{\delta} \)-type as \(C \) since
\[
(P^+)^\hat{\delta}(\sigma_Y)((P^+)^\hat{\delta}(f)(C)) = (P^+)^\hat{\delta}(\sigma_Y f)(C)
= (P^+)^\hat{\delta}(\sigma_X(C)).
\]
From this fact, it follows immediately that given \(\phi, \psi : (P^+)^\hat{\delta} \rightarrow (P^+)^k \) and \(\Delta \subseteq (P^+)^{k}(\{\emptyset\}) \), one can define a natural transformation \(\Theta : (P^+)^\hat{\delta} \rightarrow (P^+)^k \) by \(\forall X, \forall C \in (P^+)^\hat{\delta}(X), \)
\[
\Theta_X(C) = \begin{cases}
\phi_X(C), & \text{if the } \hat{\delta} \text{-type of } C \text{ is in } \Delta \\
\psi_X(C), & \text{otherwise.}
\end{cases}
\]
4) The same fact guarantees that if for each \(a \in A \), we
5) Given natural transformations \(\varphi_1, \ldots, \varphi_p \) from \((P^+)\hat{\delta} \) to \((P^+)\hat{\kappa} \), we can define a product transformation \(\varphi_1 \times \ldots \times \varphi_p : (P^+)\hat{\delta} \to (P^+)\hat{\kappa} \) as follows: inductively define \(\langle x \rangle = \{ x \} \), and

\[
\langle x_1, \ldots, x_{m+1} \rangle = \langle x_1, \ldots, x_m \rangle \cup \varphi_m(x_{m+1}).
\]

It is easy to see that \(\cap \langle x_1, \ldots, x_{m+1} \rangle = \langle x_1, \ldots, x_m \rangle \) and (by induction) that \(\cup^m \langle x_1, \ldots, x_{m+1} \rangle = \{ x_1, \ldots, x_{m+1} \} \), so that this is an acceptable convention for \(m \)-tuples. Also, if \(x_1, \ldots, x_p \in X \), then \(\langle x_1, \ldots, x_p \rangle \in (P^+)\kappa(X) \); hence if \(C \in (P^+)\kappa(X) \), then \(\varphi(C) = (\varphi_1 \times \ldots \times \varphi_p)(C) \in (P^+)\kappa+\kappa(X) \). Notice that if \(\langle D_1, \ldots, D_p \rangle \) are of \(\kappa \)-type \(\varphi(X, \emptyset) \), then \(\langle D_1, \ldots, D_p \rangle \) is of \(\kappa + \kappa \)-type \(\varphi(X, \emptyset) \).

We can now find the required \(\theta : (P^+)^m \to (P^+)^m \) as follows: for \(m = 0 \) the only monotransformation from \(I \) to \((P^+)^m \) is the identity. For \(m = 1 \), the only one is \(\pi \) itself. In either case we may let \(\theta \) be the identity on \((P^+)^m \). Notice that if \(a \in (P^+)^m(\emptyset) \), then for each set \(X \) and \(x \in X \), \(\tau_{m, a} \) is characterized by the fact that the \(m \)-type of \(\tau_{m, a}(x) \) is \(a \), since

\[
(P^+)^m(\pi_X(\tau_{m, a}(x))) = \tau_{m, a}(\pi_X(x)) = \tau_{m, a}(a) = a.
\]

Our inductive assumption will, accordingly, be that for
\(m \geq 1 \), there is a \(\mathfrak{L} \geq m \) such that for each monomorphism \(\varphi : (P^+)^m \rightarrow (P^+)^m \), there is a monomorphism \(\theta : (P^+)^m \rightarrow (P^+)^m \) such that whenever \(C \in (P^+)^m \) is of \(m \)-type \(\mathfrak{a} \), \(\varphi_g(C) \) is of \(\mathfrak{L} \)-type \(\xi^\mathfrak{L}(\emptyset) \). We then have, in particular that \(\forall x, \varphi_{m,a}(x) \) is of \(m \)-type \(\mathfrak{a} \), and \(\varphi_g \varphi_{m,a}(x) \) is of \(\mathfrak{L} \)-type \(\xi^\mathfrak{L}(\emptyset) \), so that \(\varphi_g \varphi_{m,a} = \varphi_{\mathfrak{L},\mathfrak{L}}(\emptyset) = \xi^\mathfrak{L} \). Let \(\varphi_{m+1,A} : (P^+)^m \rightarrow (P^+)^{m+1} \) be any fixed monomorphism. Let \(A = \{a_1, \ldots, a_n\} \) be any indexing of \(A \) such that \(a_1, \ldots, a_n \) are the elements of \(A \) of rank \(m \). For each \(a_i \), let \(\theta_i \) be a monomorphism from \((P^+)^m \) to \((P^+)^m \) satisfying the induction hypothesis. Define \(\varphi_i : (P^+)^{m+1} \rightarrow (P^+)^{m+1} \) by \(\forall x, \forall C \in (P^+)^{m+1}(X) \):

\[
\varphi_i(C) = \{ \varphi_i(C) : C \in \mathcal{C} \quad \text{and} \quad \mathcal{C} \quad \text{is of m-type} \quad a_i \}.
\]

Let \(\theta : (P^+)^{m+1} \rightarrow (P^+)^{m+1} \) be given by \(\forall C \in (P^+)^{m+1}(X) \),

\[
\theta(X) = \varphi_1 \times \ldots \times \varphi_m(C), \quad \text{if} \quad C \quad \text{is of m+1-type} \quad \mathfrak{a},
\]

and

\[
\theta(X) = \begin{cases}
\xi^{m+\mathfrak{a}+1}(\emptyset), & \text{if} \quad \emptyset \quad \text{is of m+1-type} \quad \mathfrak{a} \quad \text{and} \quad \emptyset \quad \text{by (4), and} \quad \emptyset \quad \text{is natural by (3), (5), and (4) and (2).}
\end{cases}
\]

To see that if \(C \) is of \(m+1 \)-type \(\mathfrak{a} \), then \(\theta(X) \) is of \(m+\mathfrak{L}+1 \)-type \(\xi^{m+\mathfrak{L}+1}(\emptyset) \), notice first that \(\{a_1, \ldots, a_n\} \) is nonempty by (1) since \(\varphi_{m,A} \) is a monomorphism. Each element of each \(\varphi_{i+m}(C) \) is of \(\mathfrak{L} \)-type \(\xi^\mathfrak{L}(\emptyset) \) by the inductive assumption. Hence each element of \(\varphi_1 \times \ldots \times \varphi_m(C) \) is of \(\mathfrak{L} \)-type \(\xi^\mathfrak{L}(\emptyset) \), so that \(\varphi_1 \times \ldots \times \varphi_m(C) \) is of \(\mathfrak{L} \)-type \(\xi^{m+\mathfrak{L}+1}(\emptyset) \).

Finally, each \(\theta(X) \) is mono: let \(\theta(X) \) be given.
\(\mathcal{C} \) may be recovered as follows: if \(\emptyset \in \theta_X(\mathcal{C}) \), then
\(\mathcal{C} = U^{m+\lambda-\lambda} \theta_X(\mathcal{C}) \). Assume \(\emptyset \notin \theta_X(\mathcal{C}) \). Then \(\mathcal{C} \) is of \(m+1 \) -type \(A \). Let \(\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \), where \(\mathcal{C}_1 \) is the set of elements of \(\mathcal{C} \) of rank less than \(m \), and \(\mathcal{C}_0 \) is the rest. We know that \((P^+)^{m+1}(\pi_X)(\mathcal{C}) = A = \{ a_1, \ldots, a_m \} \cup \{ e_1, \ldots, e_2 \} \).

By an easy induction we have that \(YC \in (P^+)^m(X) \), \(\text{rank } C \geq n \) iff \(\text{rank } (P^+)^m(\pi_X)(C) = m \), and that if \(\text{rank } C < m \), then \((P^+)^m(\pi_X)(C) = C \). Consequently, \(\mathcal{C}_1 = \{ e_1, \ldots, e_2 \} \), and \(\{ a_1, \ldots, a_m \} \) is the \(m+1 \)-type of \(\mathcal{C}_0 \).

For each \(a_i \), let \(\mathcal{N}_i \) be a left inverse function for \(\theta_{iX} \); clearly,
\[
\mathcal{C}_0 = \{ \mathcal{N}_i(D) : D \text{ is the } i \text{th element of some } \mu \text{-tuple in } \theta_X(\mathcal{C}) \}.
\]

As it stands, the number \(m_\lambda = \lambda + \mu + 1 \) depends on \(A \), since \(\mu \) does. However, a uniform \(m = \max \{ m_\lambda : A \in (P^+)^{m+1}(X) \} \) is easily obtained by composing \(\theta \) with \(\xi^{m-m_\lambda} \). This completes the induction.

4 Theorem. Let \(F_\lambda (\lambda \in \Gamma) \) be TB-functors (in the sense of [21]), and \(A_\lambda (\lambda \in \Gamma) \) types. Then there is an ordinal \(\alpha \) and a set \(A \) such that
\[
S((F_\lambda, A)_{\lambda \in \Gamma}) \Rightarrow S((P^+)_{\alpha} \cdot V_A).
\]

Proof. Let \(A : I \rightarrow (P^+)^2 \) be the monomorphism given by \(YX, \forall x \in X, A_X(x) = \{ A = X : x \in A \} \). Define \(\mu : I \rightarrow E \) by \(YX, \forall x \in X, \mu_X(x) = A_X(x)_{\{x\}} = \{ \{ \emptyset, \mathcal{Q} \in eX(\{x\}) : UU \mathcal{Q} = \{ x \} \}, \text{ and if } \mathcal{Q} \text{ is significant, then } UX = \{ \{ x \} \} \). The condition that \(UU X \leq UU \mathcal{Q} = \{ x \} \)
forces $\mu_X(x)$ to be independent of X, and a moment's thought shows that μ is a monomorphism. As at the end of Lemma 1, let $\varphi: E \to (P^+)^\beta$ be the monomorphism given by the equation $\varphi_X(\mathcal{U}_A) = \mathcal{U}_A$, and let $\psi: E \to (P^-)^2$ be the epimorphism given by $\psi_X(\mathcal{U}_A) = \mathcal{U}$.

Then $\psi\mu = \lambda$. Finally, for some m bigger than 5, we may let $\theta: (P^+)^5 \to (P^+)^m$ be a monomorphism such that $\theta\psi\mu = \xi^m$.

We need to show that any functor of the form $((P^-)^2)^\beta$ is majorized by some (P^+, ξ^α). Let α be a limit ordinal larger than β. Then $((P^-)^2)^\beta < ((P^-)^2)^\alpha$ by Lemma 3.7 of [2]. The equations $\psi\mu = \lambda$ and $\theta\psi\mu = \xi^m$, and Lemma 2.8 of [2] show that

\[((P^-)^2, \lambda)^\alpha \prec (E, \mu)^\alpha \prec (P^+, \xi)^\alpha \prec (P^+)^m, \xi^m)^\alpha.\]

But by Lemma 2.4 of [2], $(P^+, \xi^m)^\alpha \prec (P^+, \xi)^\alpha$, since the first colimit is just being taken over a subsequence of the second. Now by Theorem 3.7 of [1], we have $((P^-)^2, \lambda)^\alpha \circ \mathcal{V}_A \prec (P^+, \xi)^\alpha \circ \mathcal{V}_A$, for any set A, and thus by Theorem 6.1 of [1], $S((P^-)^2, \lambda)^\alpha \circ \mathcal{V}_A \Rightarrow S((P^+, \xi)^\alpha \circ \mathcal{V}_A)$.

Finally, let $S(F_L, \Delta_L)_{L \in \mathcal{P}}$ be as in the statement of the theorem. Then by Theorem 4.2 of [2], $S((P^-)^2, \lambda)^\beta \circ \mathcal{V}_A \Rightarrow S((P^-)^2, \lambda)^\alpha \circ \mathcal{V}_A$, for some ordinal β and set A and the theorem follows.

References

categories and realizations of these, Comment. Math.Univ.Carolinae 8(1967), 53-83.

Department of Mathematics
Bowling Green State University
Bowling Green, Ohio 43403
U.S.A.

(Oblatum 30.7.1973)