David Preiss; Petr Simon
A weakly pseudocompact subspace of Banach space is weakly compact

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 4, 603-609

Persistent URL: http://dml.cz/dmlcz/105584

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A WEAKLY PSEUDOCOMPACT SUBSPACE OF BANACH SPACE IS WEAKLY
COMPACT

David PREISS, Petr SIMON, Praha

Abstract: The aim of the present paper is to prove the
theorem mentioned in the title. Beside this, a short and di­
rect proof of an equivalence between the Lindenstrauss, cha­
acterization of an Eberlein compact and the Rosenthal’s one
is given.

Key words and phrases: Eberlein compact, Čech-Stone com­
pactification, pseudocompact space, cozero set, Banach space.

AMS, Primary: 54D30, 54D55, Ref. Z.: 3.961.1, 46B99
Secondary: 54D35

1. Definition [L]. A compact Hausdorff space \(X \) is
called an Eberlein compact, if \(X \) can be embedded into some
cube \([0,1]^n\) in such a way that for each \(x \in X \) and
for each real \(\varepsilon > 0 \) the set \(\{ y \in \Gamma | x(\gamma) > \varepsilon \} \)
is finite.

2. Theorem [R]. A compact Hausdorff space \(X \) is an
Eberlein compact if and only if \(X \) admits a \(\sigma \)-point-finite
family of cozero sets weakly separating points of \(X \).

Proof. Necessity: Suppose \(X \subset [0,1]^n \) be an Eber­
lein compact. Let us define \(C_{\gamma,\gamma',\alpha} = \pi_{\gamma'}^{-1} [j_{\gamma'}^2/\alpha, \dot{j}/\alpha [] \cap X \),
where \(\pi_{\gamma'} \) is the \(\gamma' \) -th projection, \(\xi_{\alpha} = \bigcup C_{\gamma,\gamma',\alpha} | j =
= 3, 4, \ldots, \alpha+1, \gamma \in \Gamma \), \(\xi = \bigcup \xi_{\alpha} \mid n = 2, 3, 4, \ldots \).

- 603 -
Clearly each \(C_{i,j,m} \) is a cozero set.

The family \(\mathcal{C}_m \) is point-finite: Suppose contrary. If \(x \in X \) belongs to infinitely many \(C_{i,j,m} \in \mathcal{C}_m \), then there must be infinitely many indices \(j \) such that \(x(j) > 1/m \), which is a contradiction.

The family \(\mathcal{C} \) weakly separates points of \(X \): Let \(x, y \in X \), \(x \neq y \). Then for some \(\gamma \in \Gamma \), \(x(\gamma) \neq y(\gamma) \). Assume \(x(\gamma) < y(\gamma) \). There exists a natural \(n \) such that the following two inequalities take place: \(|y(\gamma) - x(\gamma)| > 2/n \), \(y(\gamma) > 1/n \). Now it is obvious that for some natural \(j \) the point \(y \) belongs to \(C_{i,j,m} \) and \(x \notin C_{i,j,m} \).

Sufficiency: Let \(\mathcal{C} = \bigcup \{ \mathcal{C}_m \mid m \in \omega \} \) be the system of cozero sets weakly separating the points of \(X \) with each \(\mathcal{C}_m \) point-finite. For every \(C \in \mathcal{C}_m \) there is a continuous real-valued function \(f_C : X \to [0,1] \) such that \(f_C[X] \subset [0,1/m] \), \(C = f_C^{-1} [0,1] \), \(X - C = f_C^{-1} [0] \).

Define \(\psi : X \to [0,1]^\mathcal{C} \) by the rule \(\psi(x) = \{ f_C(x) \mid C \in \mathcal{C} \} \). Then the mapping \(\psi \) is an embedding, since \(\psi \) is continuous (all \(f_C \) are continuous), one-to-one (\(\mathcal{C} \) weakly separates points), and both domain and range of \(\psi \) are compact Hausdorff spaces.

Let \(\gamma = \psi(x) \), \(m \geq 1 \) be a natural number. The system \(\mathcal{B} = \{ C \mid C \in \mathcal{C}_1 \cup \mathcal{C}_2 \cup \ldots \cup \mathcal{C}_m, x \in C \} \) is finite, because all \(\mathcal{C}_i \) are point-finite; let \(C \in \mathcal{C} - \mathcal{B} \). If \(C \in \mathcal{C}_i \) for \(i \leq m \), then \(\gamma(C) = f_C(x) = 0 \), if \(C \in \mathcal{C}_i \) for \(i > m \), then \(\gamma(C) = f_C(x) \leq 1/i < 1/m \).

3. Proposition. Let \(X \subset [0,1]^\mathcal{G} \) be an Eberlein compact, \(x \in X \). Then there exists an embedding \(\psi \) of \(X \) in-
to some cube $[0,1]^A$ such that $\varphi[X]$ has the prop-
erty needed in Definition 1 and $\varphi(x)(\sigma^*) = 0$ for all
$\sigma^* \in \Delta$.

Proof. For $\Delta = \Gamma \times \{0,1\}$ let us define the embed-
ding ψ by the following: $\psi(y) = x$, where $x(\gamma, 0) =$
$= \max(y(\gamma) - x(\gamma), 0)$, $x(\gamma, 1) = \max(x(\gamma) - y(\gamma), 0)$.
Using the obvious inequality $\varphi(y)(\gamma, i) \leq x(\gamma) + y(\gamma)$, $i = 0, 1$
one can easily check that $\varphi[X]$ has all the desired prop-
erties.

Lemma. Let $X \subset [0,1]^\Gamma$ be an Eberlein compact,
$\emptyset \neq A \subset X$, $\varepsilon > 0$. Then there exists a finite set
$F(A, \varepsilon)$ with the following properties:

(i) The set $\{x \in A | y \in F(A, \varepsilon) \Rightarrow x(\gamma) > \varepsilon \}$ is
non-void,

(ii) If for $x \in A, x(\gamma) > \varepsilon$ for all $\gamma \in F(A, \varepsilon)$,
then $x(\gamma) \leq \varepsilon$ whenever $\gamma \notin F(A, \varepsilon)$.

Proof. By the method of contradiction, suppose that
each finite $F \subset \Gamma$ satisfying (i) does not satisfy (ii).
Thus we can inductively construct a strictly increasing se-
quence $F_1 \subset F_2 \subset F_3 \subset \ldots$ of finite subsets of Γ, such
that for each γ, the set $\{x \in A | y \in F_{m} \Rightarrow x(\gamma) > \varepsilon \}$
is non-void.

Setting $K_n = \{x \in [0,1]^\Gamma | \gamma \in F_n \Rightarrow x(\gamma) \geq \varepsilon \}$, we obtain
that $K_n \cap X = \emptyset$ for all $n \in \omega$, and since K_n is a
decreasing sequence of compact subsets of $[0,1]^\Gamma$, X
is compact, there is a point $y \in X \cap \bigcap_n K_n \cap \{x | x \geq \varepsilon \}$. But
then $\varphi(y) \geq \varepsilon$ for infinitely many indices γ of Γ
which is a contradiction.

- 605 -
5. **Theorem.** Let X be an Eberlein compact, x non-isolated point of X. Then there exists a sequence $\{ U_m \mid m \in \omega \}$ of open sets in X, which converges to x.

Proof. According to Proposition 3 we may assume that $X \subseteq [0,1]^\Gamma$ and that $x(\gamma) = 0$ for all $\gamma \in \Gamma$.

By induction we shall define for all natural m finite sets of indices F_m, open neighbourhoods V_m of x and open subsets U_m of X.

Define $F_1 = \emptyset$, $U_1 = V_1 = X$.

Let $m \in \omega$ and suppose that F_m, V_m and V_m has been defined for all $m = 1, 2, \ldots, m-1$. Define

$$V_m = \{ y \in X \mid \gamma \in \bigcup_{i=1}^{m-1} F_i \implies y(\gamma) < \frac{1}{m} \}.$$

By the lemma, there exists an $F_m = F(V_m, \frac{1}{m}) \subseteq \Gamma$ with properties (i), (ii).

Clearly $F_m \cap \bigcup_{i=1}^{m-1} F_i = \emptyset$. Define $U_m = \{ y \in V_m \mid \gamma \in F_m \implies y(\gamma) > \frac{1}{m} \}$. Obviously U_m are open. It remains to prove that U_m converge to x.

Let W be a neighbourhood of x. Then there exist a natural number m and a finite subset D of indices such that

$$W \supset \{ y \in X \mid \gamma \in D \implies y(\gamma) < \frac{1}{m} \} = W_0$$

Since D is finite and since F_m are disjoint, there exists an $m \in \mathbb{N}$, $m > m$ such that $F_m \cap D = \emptyset$ whenever $x > m$. Let $x \geq m$, $y \in U_x$, $\gamma \in D$. Since $y \in V_x$ and since $\gamma \notin F_{x'}$, we may apply (ii) from Lemma 4 to obtain that $y(\gamma) \leq 1/x \leq 1/m < 1/m$. Thus $y \in W_0 \subseteq W$.

- 606 -
6. **Corollary.** A pseudocompact subspace of an Eberlein compact is closed and hence it is an Eberlein compact, too.

Proof. Suppose, on the contrary, that $Y \subset X$ is pseudocompact, $Y \neq X$ and $\overline{Y} = X$. By Theorem 5, let $\{U_n\}$ be a sequence of open sets converging to a point $x \in X - Y$; choose a point $x_m \in U_m \cap Y$ and let $U = X - \{x_m | m \in \mathbb{N}\}$. Then $\{\cap_{m \in \mathbb{N}} U_m \cap Y\} \cup \{U \cap Y\}$ is an open infinite locally finite cover of Y — a contradiction with pseudocompactness of Y.

7. **Corollary.** Let X be an Eberlein compact, $Y \subset X$, $Y \neq X$. Then $\beta Y \neq X$.

Proof. If $X = \beta Y$, $Y \neq X$, then $X = \beta(X - \{x\})$ for any $x \in X - Y$. This implies that $X - \{x\}$ is pseudocompact, which contradicts to Corollary 6.

8. **Remark.** Now, the theorem stated in the title is an easy consequence of the theorem of Pták:

[P, p.281]. A weak closure of a weakly pseudocompact subspace of Banach space is weakly compact, of the theorem of Amir and Lindenstrauss:

[AL, p.36], [L, p.236]. Eberlein compacts are exactly the topological spaces which are homeomorphic to weakly compact sets in Banach spaces, and of Corollary 6.

9. **Example.** It is not true in an Eberlein compact that to every sequence $\{x_n\}$ of points converging to a point x, one can find a sequence $\{U_n\}$ of open sets, each U_n
being a neighbourhood of \(x_m \), converging to a point \(x \) too, though it may seem to be a natural strengthening of Theorem 5. A counterexample is easy:

Let \(P \) be a one-point compactification of an uncountable discrete set, \(\nu \) the non-isolated point of \(P \), and let \(q \) be some other point of \(P \). The space \(X = P^{\omega_0} \), as a countable product of Eberlein compacts, is an Eberlein compact, too. Let us denote \(x_m \) the point of \(X \), whose first \(m \) coordinates equal to \(\nu \), and all other to \(q \). The sequence \(\{x_m\} \) converges to a point \(x \), whose all coordinates equal to \(\nu \).

Now, let \(U_m \) be a neighbourhood of \(x_m \); because of uncountable cardinality of \(P \) there must be a point \(x \in \bigcap \{\pi_m^{-1}[U_m] \mid m \in N\} \). Thus, whenever \(U \) is a neighbourhood of \(x \) such that \(U \subseteq \pi_1^{-1}[P-(n)] \), then \(U_m \cap U \) is non-empty for every natural \(m \).

10. **Remark.** A topological space \(X \) is called to be Fréchet, if for each \(A \subset X, x \in \overline{A} - A \), there is a sequence \(\{x_m\} \) of points of \(A \) converging to \(x \).

Let us define a topological space \(X \) to be strongly Fréchet, if for each \(A \subset X, x \in \overline{A} - A \) there is a sequence \(\{U_m\} \) of sets relatively open in \(A \) converging to \(x \).

An Eberlein compact is Fréchet and, according to Theorem 5, strongly Fréchet. There exists a Fréchet, strongly Fréchet compact Hausdorff space which is not an Eberlein compact. But we do not know if each Fréchet, compact Hausdorff space is strongly Fréchet, nor we know any counterexample to this statement.

- 608 -
References

Matematicko-řuzikální fakulta
Karlovu universita
Sokolovská 83,18600 Praha 8
Československo

(Oblatum 16.7.1974)