Barada K. Ray
Subsequential limits of fixed point sets

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 4, 615--626

Persistent URL: http://dml.cz/dmlcz/105586

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Abstract: In this paper a sequence of functions \(\{T_n\} \) that map a complete metric space \((X,d)\) into itself and that converge uniformly to \(T_0 : X \to X\) is considered. If \(F(T_n)\) denotes the set of fixed points of \(T_n\) and for all \(x \notin F(T_n)\) and all \(m, n, T_m\) satisfies
\[
d(T_m, x, F(T_n)) \leq \alpha(d(x, F(T_m))) d(x, F(T_n)) + \beta(d(x, F(T_m))) d(x, T_m, x)
\]
where \(\alpha : (0, \infty) \to [0, 1)\) and \(\beta : (0, \infty) \to [0, 1)\) are monotonically decreasing functions and \(\alpha(d(x, F(T_m))) + 2\beta(d(x, F(T_m))) < 1\), then conditions are given that insure that \(F(T_0)\) is nonempty and compact. The work generalizes the result of Bruce Hillam [1] and Diaz and Metcalf [3].

Keywords and phrases: Metric space, complete metric space, contraction and strict contraction mappings, uniform convergence, compact.

AMS: Primary 54H25
Secondary 54B20

Introduction. Throughout this paper, \((X,d)\) will denote a complete metric space.

0.1. Definition. Let \((X,d)\) be a metric space. A function \(T : X \to X\) is said to be strictly contractive if there exists a constant \(\kappa, 0 < \kappa < 1\) such that
\[
d(Tx, Ty) \leq \kappa d(x, y) \quad \text{for all} \ x \text{ and } y \text{ in } X.
\]
0.2. Definition. Let \((X, d)\) be a metric space. A function \(T: X \to X\) is said to be a contraction if
\[
d(Tx, Ty) < d(x, y)\quad \text{for all } x \text{ and } y \text{ in } X \text{ with } x \neq y.
\]

0.3. Definition. Let \((X, d)\) be a metric space and \(\varepsilon > 0\). Then the sets of the form \(S_\varepsilon(x) = \{y: d(x, y) < \varepsilon\}\) are called spheres in \(X\). The sphere \(S_\varepsilon(x)\) has \(x\) for its center, and \(\varepsilon\) for a radius.

0.4. Definition. Let \(X\) be a metric space, and \(T: X \to X\) be a function. \(\text{F}(T)\) is defined to be the set of all fixed points of \(T\).

0.5. Definition. Let \((X, d)\) be a metric space and for \(m = 1, 2, 3, 4, \ldots\) let \(K_m \subseteq X\) be a sequence of non-empty sets. We define \(\mathcal{L}(\{K_m\})\) to be the set of all possible subsequential limit points of all possible sequences \(\{K_j\}\) where \(K_j \subseteq X_j\), i.e.
\[
\mathcal{L}(\{K_m\}) = \{x \in \mathcal{L}(\{K_j\}) \mid \forall \{K_j\}, \ K_j \subseteq X_j\}.
\]
In other words, \(\mathcal{L}(\{K_m\})\) is the upper limit \(L_\varepsilon X_m\). (See Kuratowski [4], chapt. 2, § 29, III).

0.6. Definition. \(H\) is defined to be the family of all functions \(\alpha: (0, \infty) \to [0, 1]\) such that \(\alpha\) is monotonically decreasing.

Bruce Parks Hillam [1] proved:

Theorem. For \(m = 1, 2, \ldots\) let \(T_m: X \to X\) be a sequence of functions each of which has at least one fixed point \(\alpha_m\). Let \(T_0: X \to X\) be a function with a unique fixed point \(\alpha_0\) such that for all \(x\) in \(X\)
\[
(1) \quad \alpha(T_0 x, \alpha_0) \leq \alpha(d(x, \alpha_0))d(x, \alpha_0), \quad \alpha \in H.
\]
Then, if \(T_m \to T_0\) uniformly on \(X\), \(\alpha_m \to \alpha_0\).
Metcalf and Diaz [3] have considered functions where $d(Tx, F(T)) < d(x, F(T))$, where $F(T)$ is the fixed point set of the function T.

Bruce has shown by an example that if (1) is replaced by

$$d(T_0 x, F(T_0)) \leq \alpha(d(x, F(T_0))) d(x, F(T_0))$$

then the sequence of fixed points might not converge but the subsequential limit points are fixed points.

In our present paper we extend a few theorems of Bruce [1] and a theorem of Diaz and Metcalf [3].

If for $m = 1, 2, \ldots$ there is a sequence of functions $T_m : X \to X$ such that $F(T_m)$ is nonempty and α, $\beta \in H$ then $\alpha_m(x)$, $\beta_m(x)$ will denote the functions

$$\alpha_m(x) = \alpha(d(x, F(T_m))), \quad \beta_m(x) = \beta(d(x, F(T_m)))$$

and

$$\alpha(T_m x, F(T_m)) \leq \alpha_m(x) d(x, F(T_m)) + \beta_m(x) d(x, T_m x)$$

will be written instead of

$$d(T_m x, F(T_m)) \leq \alpha(d(x, F(T_m))) d(x, F(T_m)) +$$

$$+ \beta(d(x, F(T_m))) d(x, T_m x)$$

for each m. The following lemma is due to Bruce [1].

Lemma 1.1. For $m = 1, 2, 3, \ldots$ let $T_m : X \to X$ be a sequence of functions such that $F(T_m)$ is nonempty. Let $T_0 : X \to X$ be continuous and suppose $T_m \to T_0$ uniformly. If \{\(a_{i_d}\}\} is a sequence where $a_i \in F(T_i)$ and such that $a_{i_d} \to x_0$ then $x_0 \in F(T_0)$ and $L_s F(T_m) \subseteq F(T_0)$.

Lemma 1.2. For $m = 1, 2, \ldots$, let $T_m : X \to X$ be a sequence of functions such that $F(T_m)$ is nonempty.
Suppose there are functions \(\alpha \) and \(\beta \) in \(H \) such that for all \(x \in X \mid F(T_m) \),

\[
(1.2.1) \quad d(T_m x, F(T_m)) \leq \alpha_m(x) d(x, F(T_m)) + \\
\quad + \beta_m(x) d(x, T_m x) \leq \alpha_m(x) + 2\beta_m(x) < 1.
\]

Let \(T_0 : X \to X \) be a continuous function and suppose \(T_n \to T_0 \) uniformly. Then for every \(\varepsilon_0 > 0 \) there exists an integer \(I_0 \) with the property that for each \(\alpha_{I_0} \in F(T_{I_0}) \) the following hold.

(i) There exists a convergent sequence \(\{a_{i_j}\} \) with \(a_{I_0} = a_{i_1} \) and \(a_{i_j} \in F(T_{i_j}) \);

(ii) \(d(a_{i_j}, a_{i_{j+1}}) < \varepsilon_0 \) for all positive integers \(j, k \).

Proof: Let \(\varepsilon_0 > 0 \) be arbitrary. Set \(\varepsilon_1 = \frac{\varepsilon_0}{2} \) and choose \(\varepsilon'_1 \) such that \(\frac{\varepsilon'_1}{1 - \lambda(\varepsilon'_1)} < \varepsilon_1 \), where \(\lambda(\varepsilon'_1) = \frac{\alpha(\varepsilon'_1) + \beta(\varepsilon'_1)}{1 - \beta(\varepsilon'_1)} \).

Since \(T_n \to T_0 \) uniformly, there exists a positive integer \(N_1 \) such that for all \(j, k \geq N_1 \), \(d(T_k x, T_j x) < \varepsilon'_1 \).

Let \(I_0 = N_1 \), \(a_{I_0} \in F(T_{I_0}) \) be arbitrary and set \(a_{i_1} = a_{I_0} \).

Claim 1. For every \(k \geq N_1 \), \(d(a_{i_1}, F(T_k)) < \varepsilon_1 = \frac{\varepsilon_0}{2} \).

If not, then there exists a \(k_0 \geq N_1 \) such that \(d(a_{i_1}, F(T_{k_0})) \geq \varepsilon_1 \). But then

\[
d(a_{i_1}, F(T_{k_0})) \leq d(T_{i_1} a_{i_1}, T_{k_0} a_{i_1}) + d(T_{k_0} a_{i_1}, F(T_{k_0})),
\]

Now
\[
d(d(T_{\mathfrak{a}} a_{i_1}, F(T_{\mathfrak{a}}))) \\
\leq \alpha_{T_{\mathfrak{a}}} (a_{i_1}) d(a_{i_1}, F(T_{\mathfrak{a}})) + \beta_{T_{\mathfrak{a}}} (a_{i_1}) d(a_{i_1}, T_{\mathfrak{a}} a_{i_1}) \\
\leq \alpha_{T_{\mathfrak{a}}} (a_{i_1}) d(a_{i_1}, F(T_{\mathfrak{a}})) + \beta_{T_{\mathfrak{a}}} (a_{i_1}) d(a_{i_1}, F(T_{\mathfrak{a}})) \\
+ \beta_{T_{\mathfrak{a}}} (a_{i_1}) d(F(T_{\mathfrak{a}}), T_{\mathfrak{a}} (a_{i_1})) .
\]

Or
\[
d(T_{\mathfrak{a}} a_{i_1}, F(T_{\mathfrak{a}})) \leq \frac{\alpha_{T_{\mathfrak{a}}} (a_{i_1}) + \beta_{T_{\mathfrak{a}}} (a_{i_1})}{1 - \beta_{T_{\mathfrak{a}}} (a_{i_1})} d(a_{i_1}, F(T_{\mathfrak{a}})) .
\]

Therefore
\[
d(a_{i_1}, F(T_{\mathfrak{a}})) \leq \varepsilon_1' + \lambda_{T_{\mathfrak{a}}} (a_{i_1}) d(a_{i_1}, F(T_{\mathfrak{a}}))
\]
where
\[
\lambda_{T_{\mathfrak{a}}} (a_{i_1}) = \frac{\alpha_{T_{\mathfrak{a}}} (a_{i_1}) + \beta_{T_{\mathfrak{a}}} (a_{i_1})}{1 - \beta_{T_{\mathfrak{a}}} (a_{i_1})} .
\]

This, combined with the fact that \(\alpha \) and \(\beta \) are monotone decreasing, implies
\[
d(a_{i_1}, F(T_{\mathfrak{a}})) < \varepsilon_1' \leq \frac{\varepsilon_1'}{1 - \lambda_{T_{\mathfrak{a}}} (a_{i_1})} \leq \frac{\varepsilon_1'}{1 - \lambda (\varepsilon_1)} < \varepsilon_1 .
\]

which is a contradiction.

Let \(\varepsilon_2 = \frac{\varepsilon_0}{2^2} \) and choose \(\varepsilon_2' \) such that
\[
[\frac{\varepsilon_2'}{1 - \lambda (\varepsilon_2')}] \leq \varepsilon_2 \]
and let \(N_2 \geq N_1 \) be chosen so that for all \(j, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d} \) \(d(T_{\mathfrak{a}} \times, T_{\mathfrak{b}}) \times) \leq \varepsilon_2' \). Let \(a_{i_2} \in F(T_{N_2}) \) where \(i_2 = N_2 \) be chosen such that
\[
d(a_{i_1}, a_{i_2}) < \varepsilon_1 \]
which is possible by Claim 1.

By an argument similar to Claim 1, \(d(a_{i_2}, F(T_{\mathfrak{a}})) < \varepsilon_2 \)
for all \(\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d} \). Suppose that for a finite increasing sequence of integers \(\{ N_{i_2} \}_{i_2=1}^{m} \)
there corresponds a sequence of points \(\{ a_{i_2} \}_{i_2=1}^{m} \) such that
(i) $a_{i_j} \in F(T_{N_j})$ where $N_j = i_j$, $j = 1, 2, \ldots, n$,

(ii)
$$d(a_{i_j}, a_{i_{j+1}}) < \varepsilon_{i_j} = \frac{\varepsilon_0}{2^j},$$

(iii) $d(a_{i_m}, F(T_{N_j})) < \varepsilon_m = \varepsilon_0 2^m$ for all $k \geq N_m$.

Then $N_{m+1}, a_{i_{m+1}}$ are found by setting $\varepsilon_{m+1} = \frac{\varepsilon_0}{2^{m+1}}$, choosing ε'_{m+1} such that \[\frac{\varepsilon'_{m+1}}{2} \leq \lambda(\varepsilon_{m+1})\] $< \varepsilon_{m+1}$.

By the uniform convergence of $\{T_n\}$ there exists a positive integer $N_{m+1} > N_m$ such that for all $k, j \geq N_{m+1}$,
$$d(T_{N_{m+1}}, T_{N_{m+1}}) < \varepsilon_{m+1}.$$

Let $i_{m+1} = N_{m+1}$. By (iii) there is an $a_{i_{m+1}}$ in $F(T_{N_{m+1}})$ such that $d(a_{i_m}, a_{i_{m+1}}) < \varepsilon_m = \frac{\varepsilon_0}{2^m}$. Also for all $j \geq N_{m+1}$, $d(a_{i_{m+1}}, F(T_{N_{m+1}})) < \varepsilon_{m+1}$.

We continue the above procedure and let $\{a_{i_{j-1}}\}$ denote the resulting subsequence.

Claim 2. \[\{a_{i_{j-1}}\}\] is a Cauchy sequence. Let $\varepsilon > 0$ be arbitrary. Let N denote the positive integer such that $(\frac{\varepsilon_0}{2^{N+1}}) < \varepsilon$. Thus for all $k, j \geq N$,
$$d(a_{i_j}, a_{i_{j-t+1}}) \leq \sum_{t=0}^{k-j-1} d(a_{i_{j+1}}, a_{i_{j+1+t+1}})$$
$$< \sum_{t=0}^{k-j} (\frac{\varepsilon_0}{2^j+t}) = (\frac{\varepsilon_0}{2^{N+1}}) < \varepsilon.$$

Thus $\{a_{i_{j-1}}\}$ is a Cauchy. So Lemma 1.2 follows. Combining Lemma 1.1 and Lemma 1.2 the following fixed point theorem is obtained.
Theorem 1.3. For \(n = 1, 2, 3, \ldots \), let \(T_n : X \to X \) be a sequence of functions such that \(F(T_n) \) is nonempty. Suppose there are \(\alpha \) and \(\beta \) in \(H \) such that for all \(x \in X - F(T_m) \) (1.2.1) holds. Let \(T_0 : X \to X \) be a continuous function and suppose \(T_m \to T_0 \) uniformly, then \(L_S F(T_m) \) is nonempty. Furthermore, \(L_S F(T_m) = F(T_0) \) and \(F(T_0) = \lim_{m \to \infty} F(T_m) \).

Proof: By Lemma 1.2, there exists at least one Cauchy subsequence \(\{a_{i_j}\} \) and since \((X, d)\) is a complete metric space, \(\{a_{i_j}\} \) converges to some element of \(X \) say \(u_0 \).

By Lemma 1.1, \(u_0 \in F(T_0) \) and \(L_S F(T_m) \subseteq F(T_0) \).

To show that \(F(T_0) = L_S F(T_m) \) it suffices to show that for every \(\varepsilon > 0 \) and for arbitrary but fixed \(a_0 \in F(T_0) \), \(\exists \) a positive integer \(N \) such that for all \(n \geq N \),

\[
d(a_0, F(T_n)) < \varepsilon.
\]

Let \(\varepsilon' \) be so chosen that

\[
\frac{\varepsilon'}{1 - \lambda(\varepsilon)} < \varepsilon, \quad \lambda(\varepsilon) = \frac{\alpha(\varepsilon) + \beta(\varepsilon)}{1 - \beta(\varepsilon)}.
\]

By the uniform convergence of \(\{T_m\} \) there is a positive integer \(N' \) such that \(d(T_n x, T_0 x) < \varepsilon' \) for all \(n \geq N' \).

Claim. For all \(n \geq N' \), \(d(a_0, F(T_n)) < \varepsilon \).

If not, then there is a \(j \geq N' \) such that \(d(a_0, F(T_j)) \geq \varepsilon \).

But then

\[
d(a_0, F(T_j)) \\
\leq d(T_0 a_0, T_j a_0) + d(T_j a_0, F(T_j)) \\
< \varepsilon' + \lambda_j(a_0) d(a_0, F(T_j)).
\]

Or

\[
d(a_0, F(T_j)) \leq [\varepsilon'/1 - \lambda_j(a_0)].
\]

But \(\alpha, \beta \) are monotone decreasing, so the above implies, by
the choice of $\varepsilon', d(\alpha_0, P(T_j)) \leq \frac{\varepsilon'}{1-\lambda(\varepsilon)} < \varepsilon$, which is a contradiction. Therefore $P(T_0) \leq L_S P(T_m)$. Finally, $P(T_0)$ is the limit of $\{P(T_m)\}$. Indeed, as $\forall \varepsilon > 0$, $\exists N \forall k \geq N$, $d(\alpha_0, P(T_k)) < \varepsilon$ it follows

$$\lim_{k \to \infty} d(\alpha_0, P(T_k)) = 0$$

i.e. $\alpha_0 \in L_+ P(T_k)$. As $L_S P(T_k) \leq P(T_0)$, we have

$$L_S P(T_k) \leq P(T_0) \leq L_+ P(T_k) \leq L_S P(T_k)$$

i.e. $P(T_0) = L_+ P(T_k) = L_S P(T_k)$,

so that $P(T_0) = L P(T_k)$.

(For notation L, L_+ see Kuratowski [4].)

For the special case that for every integer m, $P(T_m) = \{\alpha_m\}$ and $\alpha, \beta \in \mathcal{K}$ are defined to be $\alpha(t) = \kappa_1$, $\beta(t) = \kappa_2$ such that $\kappa_1 + 2\kappa_2 < 1$, T_0 need not be continuous, which is the import of the following theorem.

Theorem 1.4. For $m = 1, 2, 3, \ldots$, let $T_m: X \to X$ be a sequence of functions such that $F(T_m) = \{\alpha_m\}$. Suppose there exist strictly positive κ_1 and κ_2 with $\kappa_1 + 2\kappa_2 < 1$ such that for all $x \in X - \{\alpha_m\}$ and for all m

$$(1.4.1) \quad d(T_m x, \alpha_m) \leq \kappa_1 d(x, \alpha_m) + \kappa_2 d(x, T_m x)$$

Then if $T_0: X \to X$ is a function such that $T_m \to T_0$ uniformly, then $F(T_0)$ is nonempty.

Proof: Let $\varepsilon > 0$ be arbitrary. Since $T_m \to T_0$ uniformly, there is a positive integer N such that for all $j, m \geq N$, we have
Let \(x_0 \in X \) be such that \(d(x_0, a_m) < \left(\frac{1 - \lambda^2}{4 \lambda^2} \right) \varepsilon \).

Then
\[
d(a_m, a) \leq d(T_n x_0, a_m) + d(T_n x_0, T_n x_0) + d(T_n x_0, a) \\
\leq \lambda d(x_0, a_m) + d(T_n x_0, T_n x_0) + \lambda d(x_0, a) \\
\leq 2\lambda d(x_0, a_m) + \lambda d(a_m, a) + d(T_n x_0, a) \ .
\]

Hence
\[
d(a_m, a) \leq \frac{2\lambda}{1 - \lambda} \left[\varepsilon + \frac{A}{1 - \lambda} \right] < \varepsilon .
\]

Thus \(\{ a_m \} \) is Cauchy.

Since \((X, d)\) is complete, there exists an \(a_0 \in X \) such that \(\lim_{m \to \infty} a_m = a_0 \).

Claim. \(T_0 a_0 = a_0 \). Let \(\varepsilon > 0 \) be arbitrary and let \(N'' \) be a positive integer such that for all \(j \geq N'' \),
\[
d(a_j, a_0) < \frac{\varepsilon}{3} \quad \text{and for all } x, d(T_0 x, T_0 x) < \frac{\varepsilon}{3}.
\]

Then
\[
d(a_0, T_0 a_0) \leq d(a_0, a_j) + d(a_j, T_0 a_0) + d(T_0 a_0, T_0 a_0) \\
< \frac{\varepsilon}{3} + \lambda d(a_j, a_0) + \frac{\varepsilon}{3} < \varepsilon,
\]
which implies \(a_0 = T_0 a_0 \). Thus \(a_0 \in P(T_0) \).

In Theorems 1.3 and 1.4 conditions were given that insured that the limit function \(T_0 \) has at least one fixed point.

Theorem 1.5 below gives conditions that insure that \(P(T_0) \) is compact.

- 623 -
Theorem 1.5. For \(m = 1, 2, 3, \ldots \), let \(T_m : X \to X \) be a sequence of functions such that \(F(T_m) \) is nonempty and compact. Suppose there are \(\alpha, \beta \) in \(\mathcal{H} \) such that for all \(m \) and for all \(x \in X - F(T_m) \)

\[(1.5.1) \quad \alpha(T_m x, F(T_m)) \leq \alpha_m(x) d(x, F(T_m)) + \beta_m(x) d(x, T_m x) \alpha_m(x) + 2 \beta_m(x) \leq 1.\]

Let \(T_0 : X \to X \) be a continuous function and suppose that \(T_m \to T_0 \) uniformly. Then \(F(T_0) \) is nonempty and compact.

Proof: By Theorem 1.3, \(F(T_0) \) is nonempty, thus it is sufficient to show that \(F(T_0) \) is compact. Now, a set in a metric space is compact if and only if it is both complete in itself and totally bounded. Clearly, since \(T_0 \) is continuous, \(F(T_0) \) is complete in itself.

Let \(\{a_m\} \subseteq F(T_0) \) be a Cauchy sequence with \(\mu_0 \) as its limit. Thus \(\mu_0 = \lim_{m \to \infty} a_m = \lim_{m \to \infty} T_0 a_m = T_0 \mu_0 \) i.e. \(\mu_0 \in F(T_0) \). We wish to show now that \(F(T_0) \) is totally bounded. So let \(\varepsilon > 0 \) be arbitrary. Let \(\varepsilon' \) be chosen such that \([\varepsilon/1 - \lambda(\varepsilon - \gamma)] \leq \varepsilon/\gamma \). By the uniform convergence of the \(\{T_m\} \), there exists a positive integer \(N \) such that for all \(n \geq N \), \(d(T_n x, T_0 x) < \varepsilon' \).

Claim 1. For all \(a_0 \in F(T_0) \), \(d(a_0, F(T_n)) \leq \varepsilon/\gamma \) for all \(n \geq N \). If not, then there exists \(n \geq N \) and an \(a_0 \in F(T_0) \) such that \(d(a_0, F(T_n)) \geq \varepsilon/\gamma \). Thus \(d(a_0, F(T_n)) \leq d(T_n a_0, T_0 a_0) + d(T_n a_0, F(T_n)) \leq \varepsilon/\gamma \).
which implies that
\[d(a_0, F(T_k)) < \frac{\epsilon'}{1 - \lambda_k(a_0)} \]
But \(\alpha_k \) and \(\beta_k \) are monotone decreasing, this coupled
with the choice of \(\epsilon' \) gives
\[d(a_0, F(T_k)) < \frac{\epsilon'}{1 - \lambda(a_0)} < \epsilon' \]
which is a contradiction.

Now from Claim 1 there follows at once:
If \(S \) is an \(\epsilon'/\gamma \) net for \(F(T_k) \), then \(S \) is an
\(2\epsilon'/\gamma \) net for \(F(T_0) \) so that \(F(T_0) \) is totally bounded. This completes the proof.

Theorem 1.6. Let \(T_n : X \rightarrow X \) be a sequence of mappings with fixed point \(a_n \) for each \(n = 1, 2, \ldots \) and
let \(T_0 : X \rightarrow X \) be a strict contraction mapping with fixed point \(a_0 \). If the sequence \(\{T_n\} \) converges uniformly to \(T_0 \) and if a subsequence \(\{a_{i_\ell}\} \) of \(\{a_i\} \) converges to a
point \(x_0 \in X \) then \(x_0 = a_0 \).

Proof: Let \(\epsilon > 0 \). There is a positive integer \(N \)
such that \(\ell \geq N \) implies \(d(a_{i_\ell}, x_0) < \epsilon/2 \). Therefore
\[d(a_{i_\ell}, T_0 x_0) = d(T_0 a_{i_\ell}, T_0 x_0) + d(T_0 x_0, T_0 x_0) < \epsilon \]
for all \(\ell \geq N \).
Thus \(\{a_{i_\ell}\} \) converges to \(T_0 x_0 \). Thus \(x_0 = T_0 x_0 \) and
since the fixed point \(a_0 \) of \(T_0 \) is unique, \(x_0 = a_0 \).
The author is very much thankful to the referee for his valuable suggestions for improvement of this paper.

References

Department of Mathematics
Regional Engineering College
Durgapur 713209
India

(Oblatum 28.5.1974)