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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,1 (1975) 

ON UNIPORM ІPACËS 

Z. PROLÍK, Praha 

Abstract: Cardinal (particularly proximal), distal and coz 
refinements of the category of uniform spaces are studied. 

Key words: cardinal reflection, distal spaces, par 
unity, K -fine, %-coarse, products of proximally fine. 
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Lly fine. 

AMS: 54E15 Ref.2.: 3.962 

The publication of the seminar notes of my Seminar Uni­

form Spaces 1974-1975i to appear in the series Publications 

of Mathematical Institute of CSAV, No 1, has been delayed. 

This is to announce basic results which admit simple state­

ments. For details and further results the reader is refer­

red to the seminar notes which contain 15 notes by the aut­

hor, J. Hejcman, M. Hu£ek, M. Kosina, V. Kurkov6, J. Pelant, 

P. Pt6k, J. Reiterman, V. Rodl, J. Vilimovsk^, and M. Zahrad-

nik. The starting point of the seminar was the papers [23 -

[9] . The main subjects discussed were the refinements of 

uniform spaces 16] , partitions of unity on uniform spaces 

[61 , and a detailed study of coz-mappings and Baire mappings. 

1. Cardinalreflections. Denote by p°° the reflection 

of uniform spaces on spaces having a basis for uniform covers 
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consisting of covers of cardinal less than j-f̂  . Thus p° 

is the usual precompact reflection, p is usually denoted 

by e (enumerable) in the literature. Recall that each uni­

form cover of X of cardinal less than &^ is a uniform 

cover of p°°X if either the generalized continuum hypothe­

sis is as9umed ([131) or if the tf-point-finite uniform co­

vers of X form a basis for all uniform covers Tl5]« J* Pe-

lant showed, as9uming that there exist9 an almost disjoint 

family of uncountable sub3ete of o>^ of cardinal 2 n 

(this condition is satisfied in a model exhibited by Baumgar-

tner) that there exist9 a uniform cover of Jt^ (2 ^ ) of 

cardinal &^ which ia not a uniform cover of p & 00 ^ ** ̂  * 

The construction is combinatorially involved, and quite gene­

ral, and will find further applications. J. Pelant used it to 

show without any set-theoretical assumption that 

JipQ^ *) does not have a basis for uniform covers 

consisting of 6 -point-finite covers. 

2. The rest of the results is closely related to refine­

ments of the category U of uniform spaces (T« is not assu­

med). Let Set be the category on uniform spacea (objects 

are uniform) having all mappings of X into Y for morph-

isms. Any sub-category of Set containing U is called a 

refinement of U • The definition for concrete categories as 

well as for general categories states obviously. It is in fact 

just an embedding with object function onto. Intuitively it 

corresponds to making the structure "less rich". Let % be 

a refinement of U , that means 

- 190 -



U(X,Y) c X (X,Y) c SetU(X,Y) , 

for each uniform space X and Y . A uniform space X(Y) 

is called X-coarse (X -fine) if 

U(X,Y) a X (X,Y) 

for each Y ( X resp.). The classical refinements are 

TJ c — » p c—> c «-—#• SetU , 

where & is the category of proximal maps, and C is the 

category of continuous maps of uniform spaces. In this case 

we say proximally coarse ( = precompact), proximally fine, 

topologically coarse ( = set coarse), topologically fine (just 

fine by Isbell), set-fine (= uniformly discrete « the diago­

nal is a vicinity). Further example, cardinal refinements 

U c—*» £ > * * — + <p° s <p . 

the definition is: 

JPC*<X,Y) =- U(Y, p^Y) . 

It is obvious that the class of all 3C-fine (% -coarse) 

spaces is coreflective (or reflective, resp.); the correspon­

ding coreflection is denoted by %^ ( # c , resp.). A refi­

nement X is called fine-maximal (coarse maximal, resp.) if 

% (X,Y) * U( Xf X,Y) 

( X (X,Y) =- U(X, Xc Y), resp.). 

If F: U ^U is a coreflection, then 
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X(X,Y) » U(FX, FY) 

is a fine-maximal coreflection, and F * X~ • Similarly, 

for modification-reflections. For the refinements of the ca­

tegory UH of Hausdorff uniform spacee J. Villmovak^ proved 

the following important reault: 

Theorem. If a refinement X of U„ ie both fine-maxi­

mal and coarse -maximal, then X = UH . 

For the proof the following two result9 are needed: 

Theorem (M. HuSek, J. Vilimovsk^). If c is a coreflec­

tion of U or UH then either c is the identity or pX 4. 

4- pcX for some X . 

Observation (J. Vilimovsk^). In U„ the subcategory of 

all precompact spaces is the smallest modification-reflective 

subcategory. 

Remark. It ie an open question whether or not the theo­

rem of Villmovsk^ holds for U (then, of course, X = Set 

is the alternative). 

The proof of HuSek-rVillmovsk^ Theorem, and also the proof 

of the following result of M. HuSek uses the space from [13, 

p. 699, or J. Isbell, Uniform spaces, ex. III.3. 

There is no non-trivial simultaneously reflective and 

coreflective subcategory of U (this property is posse93ed 

by many but nottall "nice" eubcategoriea of U ). 

If X is a refinement, and X is a space, let < X >^ 

be the set of all uniform spacea Y auch that the identity 

bisection X — > Y is an isomorphism in % .A space X 

is called simply X -fine if X ia the finest element of 
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Obviously % -fine is simply 3t -fine. The converse 

holds for % « (P , but it does not hold (V. Kurkovd.) for 

refinements defined by reflections on zero-dimensional spa­

ces or on spaces with basis of star-finite covers. The vali­

dity of the converse is open for almost all p00 5 however, 

Rodl showed that the converse is false for zero-dimensional 

spaces and p • 

The equivalence < X >g with morphism from X form a 

category of X -spaces. For example, < X >- are proximi­

ty spaces. 

3. Products of fine spaces. The attention was focused 

on proximity spaces. M. HuSek exhibited an example of two 

countable topological fine spaces such, that the product is 

not proximally fine. 

M. HuSek showed that, the product of a family of spaces 

is proximally fine iff each finite subproduct is proximally 

fine. V. Kurkovd and M. HuSek proved that if X and Y are 

proximally fine, and if Y is proximally coarse (e.g., com­

pact), then X x Y is proximally fine. 

4. Partitions of unity anddistal spaces. Given a set 

A , let us consider the topological linear spaces Br , 

JL^ (A) - the space of absolutely summable elements of Br , 

JL^ (A) -.the space of bounded functions on A with the sup-

norm, and the subspace cQ(A) of -^(A) consisting of all 

-C x ^ such that for each e > 0 the set 4 a 11 xft I z* e, } 

is finite. Clearly 
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V A ) _ * Co(A) *—* <VA) — R A 

Denote by B(A) the unit ball in Jl (A) , and by S+ 

the positive part of the unit sphere of Z^ (A) . A partiti­

on of unity on X is a map y » «f g?aj : x i*-S+(A) . A 

partition of unity is called Z& , or Z^ , or H , or 

C ( j2̂  , ̂ -^) uniformly continuous if y is uniformly con­

tinuous wrt the uniformity on S* inherited from the res­

pective space. Similar notation is used for maps into B(A) 

The topologies on S inherited by the all considered uni­

form structures are identical. We mention three results by 

the author: 

A space is me trie-fine iff every Z^ uniformly conti­

nuous partition is Z^ uniformly continuous. 

A space is Alexandrov iff any Z^ uniformly continu­

ous partition is C ( Z^ , Z& ) uniformly continuous. 

The distally coarse reflection DX of X is protecti­

vely generated by Zw uniformly continuous partitions. (This 

may be improved to a Stone-Weierstrass theorem for distal 

8 paces). 

Recall [63 that a map f: X—•* Y is distal if the pre-

images of uniformly discrete families are uniformly discrete. 

The distal maps form a refinement D of U which is coarse-

maximal, and the distally coarse spaces are characterized by 

existence of a basis for uniform covers consisting of fini­

te-dimensional covers. 

M. Kosina and P. Pt£k ga^e an axiomatic characteriza­

tion of the collection of all uniformly discrete families in 
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a uniform space, and hence of the distal space (stt alto 

[16]). 

There is a connection with the uniform dimension. For 

a partition y let % (gp) * inf 4 I 9 *x 11̂  | x e X } . For 

a uniform cover 16 let ^(16 ) be tht sup rem urn of X($p) 

whtrt g? runs ovtr all X^-uniformly continuous partitions, 

sub-ordinattd to 16 . Then the uniform dimension of X is 

obviously related to inf 4 X (U ) J (J» Htjcman). 

A uniform space is called an Z^ -space if for tvtry uni­

form covtr 16 thtrt axista an £^ -uniformly continuous par­

tition sub-ordinattd to 16 • Tht class of all ^^-spaces is 

reflective, and M. Zahradnlk showed that infinite-dimensional 

Banach spaces are not Z* -spaces. 

5. Coz-refinement. Coz(X,Y) consists of all f: X—-** 

— > X such that the preimagts of coztro-stts art cozero-sets. 

The coz-spacts (set § 2) form a subcategory of paved spaces, 

[3], and 

II i coz Xfi 1 • coz n A pXQ } • coz H * PXXa } . 

Coz-fine spaces wrt the unit interval I are called 

Alexandrov spaces, coz-fine classes wrt R are called invtr-

sion-clostd spacts. For a long list of characttristic proptr-

ties see ElO] . We add a result of D. Prtiss with a nict 

proof by M. Zahradnik that invtrsion-clostd spacts havt tht 

Daniel property, i.e. each sequence i fn$ of bounded uniform­

ly continuous functions decreasing to 0 is equi-uniformly 

continuous. 
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Hereditarily Alexandrov spaces X (equivalently, boun­

ded coz-functions extend from subspaces) are characteriz­

ed by each of the following conditions (the author): 

a) The Samual eompactification is hereditarily Alexan­

drov. 

b) X is Alexandrov, and the cozero sets form a normal 

paving. 

c) X is Alexandrov, and if Yc X , and Z-, and Z2 

are zero-sets on X such that In Z, n Zp s 0 , then there 

exist disjoint zero-sets Z-T and Z« such that Z^ D z±n * * 

Hereditarily inversion-closed spaces are just the spaces 

with the property that the countable partitions by Baire sets 

are uniform covers ([83) . Consequently, for refinements X 

larger than that given by inversion-closed spaces we get that 

for hereditarily %-fine the Baire sets are just cozero sets, 

and hence, e.g., hereditarily coz-fine is Baire-fine. On the 

other hand, the identification of hereditarily coz-fine spa­

ces among Baire-fine spaces seems to be a difficult open pro­

blem. The measurable coreflection of a complete metric space 

is actually Baire-fine because the defect in the proof £4 1 

was overcome by a simple (however, deep) lemma by D. Preis 

[14] . 

7. The locally e-fine metric-fine spaces £91 are cha­

racterized as follows (the author): 

if f: X *S , S metric, is uniformly continuous, 

and 

if G =* f CS1 where f: X — • & is the extension 
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to the Samual compactifications, then the identity of X 

into G with the topological fine uniformity is uniformly 

continuous. 

This approach applies to metric-fine replaced by: 

metric- X =- sub (metric-fine) = (complete metric)-fine. 

8- Atoms* An atom is a uniform space X which is not 

set-fine (-* uniformly discrete), and there is no uniform 

structure between that of X and the set-fine uniformity on 

X . J . Pelant and J. Reiterman proved: 

a. If X is T2 , then X is an* atom and pX is not 

set-fine proximity iff there exist disjoint sets A and B 

of X , and a bisection o; : A • • J» B , and an ultraf ilter Q, 

on A such that the covers %(co) , oc * & , form a ba­

sis: 

% (oc.) is the collection of all two-point sets 

{a, <p a I , a € 06 , and all singletons (x), a + x 4* gp a 

for a in «o . 

b. If CU is an ultrafilter on X then the uniformity 

which has all covers V(eo) , oc • Q, , for a basis, where 

V (o&) consists of *o and all (x), x m X - oc , is an 

atom iff Ct is selective. 
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