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<X)MMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,2 (1975) 

EXTENSION OF SEQUENTIALLY CONTINUOUS MAPPINGS 

Roman FRl6, 2ilina 

Abstract: A.D. Tajmanov proved in [?] a necessary and 
sufficient condition for a continuous mapping of a dense sub-
space of a T-r topological space into a compact Hausdorff spa
ce to be continuously extended onto the whole space. He prove 
a similar result for convergence, resp. sequential, spaces. 

Key words: Convergence space, sequential space, exten
sion of a (sequentially) continuous mapping, sequentially 
complete convergence, resp. sequential, space. 
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The reader is asked to refer for the background material 

on closure spaces to Cll, convergence spaces to C5], and se

quential spaces to [2]. The convergence of sequences in se

quential spaces is briefly discussed in £3]. Throughout the 

paper we shall always assume that a closure space has unique 

sequential limits and hence it is a T^ space. We employ the 

symbol f: lP,u) - » (Q,v) to denote a continuous mapping of 

a closure space (P,u) into a closure space (Q,v)• If 

(Q,v) is a convergence space or a sequential space, then t 

is continuous iff it is sequentially continuous. Recall (cf. 

141), that a closure space (P,u) is called sequentially re

gular if the convergence of sequences in (P,u) is projecti-
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vely generated by C(P) , i . e . x = lim x n i ff f(x) « 

* lim f (x n ) for each f 6 C(P) . A sequential ly regular 

convergence, reap, sequent ia l , space is called sequential ly 

complete i f i t i s closed in each sequential ly regular con

vergence, r e sp . sequent ia l , space in which i t is C-embed

ded. A sequent ia l ly regular convergence space (L,&) is a 

sequential envelope of i t s e l f i f f (L, X) i s sequential ly 

complete • 

Our s t a r t i n g point i s the above mentioned Tajmanov's 

r e s u l t : 

Theorem 1. Let X be a dense subset of a topological 

space (P,u) and (Q,v) a compact topological space. Then 

f: (X, u / x ) -*(Q,v) can be extended to F: (P,u) -* (Q,v) 

i f f the following condition is s a t i s f i e d : 

(1) A, B c Q , vA n vB « 0 implies tuf*T A)} n 

n (uf*TBl) = 0 . 

Lemma 2 . Let (P,u) and (Q,v) be topological spaces* 

Let f be a mapping of a subset X c P into Q such that 

the condition ( l ) i s s a t i s f i ed . Then f: (X,u/X) > (Q,v) . 

The straightforward proof i s omitted. 

As a simple corollary of Lemma 2 in [63 we have 

Lemma 3. Let (L,X) be a convergence space, X c L , 

and x $ X i X . Then there is a countable set S c X such 

tha t x e A*^S . 

Theorem 4* ket (L,&) be a convergence space, X c L , 

X *% ~ 3- f and (M,^a) a sequential ly complete sequential ly 

1) In 151 the term it-complete is used instead. 
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regular convergence space. Let f t (X, &/ x ) ^ (M,^ / ) • Then 

f can be extended to f: (L, X) ' (M,^) iff the following 

condition is s a t i s f i e d : 

(2) ^ , S^ c X , card ^ £ #0 , Ip^tlSjl ) n 

n ( (U, *f C S2,l ) * 0 implies %°^SX n A**-1 S^ = 0 . 

Proof. (2) i s necessary. If f*: (L,A) • (M, (*\ , 

f/x « f , then i t follows from 16 B.4 in III that 

•Ft (L, A ^ ) MM, fu** ) and (2) i s obvious. 

(2) i s su f f i c ien t . Let (L be the completely regular mo

d i f ica t ion of (JU , (Q,v) the fiech-Stone compactification of 

(M,^) , and ( Q , ^ ) the convergence space associated with 

(Q,v) . Prom Theorem 11 in t5J i t follows that (A, *- ^>/M and 

since (M,fc) i s sequent ia l ly complete, we have o> Iff ~ M . 

Plainly f: (X,A/ X ) *(Qf>>) and f: (X,a , / X )—*-(Q,v) . 

Denote by P = L and u * X * . Using (2) and Lemma 3 i t can 

be eas i ly proved that the condition (1) is* s a t i s f i ed . I t f o l 

lows from Lemma 2 that f: (X,u/X) ** (Q,v) and hence, by 

Theorem 1, f can be extended to F : (P$u) >(Q,v) . Prom 

35 C9 in [1] i t follows that f: (L ,A) -MQ, i>) . Since 

f [ X ] c M and D M = M , we have T [L1 c M• . Thus 7: 

: (L,A ) *» (M,(t»v) and the proof i s f inished. 

Corollary 5. Let (L, X *) be a sequential space, X c L, 

A 1 X = L , and (M, (L> *) a sequent ia l ly complete sequent ia l 

ly regular sequential space. Then f: (Xf X V x ) — * » (M, ft ^ ) 

can be extended to f: (L, X *) > (M, (* * ) i f f the condi

t ion (2) i s s a t i s f i e d . 

Corollary 6» Let (L,&) be a convergence space, X e L , 
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JL**1 X « L , and CQ c C(D . Then ( X f & / X ) , r e s p . 

(X, ft V x ) , can be C - embedded i n t o ( L , A ) , r e s p . 

v*>. ( L , A 1 ) , i f f t he fo l lowing c o n d i t i o n i s s a t i s f i e d : 

(3) Sx , Sg-c X , card $± & #0 , f C S ^ n f C S ^ ) * 

= # for some f € C impl i e s Д**1 S x л .A** 1 ^ * 
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