Commentationes Mathematicae Universitatis Carolinae

Jaroslav Ježek; Tomáš Kepka
 Semigroup representations of commutative idempotent Abelian groupoids

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 3, 487--500
Persistent URL: http://dml.cz/dmlcz/105641

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

> 16,3 (1975)

SEMIGROUP REPRESENTATIONS OF COMMUTATIVE IDEMPOTENT ABELIAN GROUPOIDS

Jaroslav JEŽEK and Tomás KEPKA,
Praha

Abstract: A general method of obtaining commutative idempotent abelian groupoids is found.

Key words: Groupoid, semigroup, commutative, idempotent, abelian, representation.

AMS, Primary: 20L05 Ref. Ž.: 2.722 .9
Secondary: 20M10

A groupoid is called

- commutative if it satisfies the identity $a b=b a$,
- idempotent if it aatisfies the identity aa=a,
- abelian if it satiafies the identity ab.cd =ac.bd,
- distributive if it satisfies the identities a.bc = =ab,ac and bc,a = ba.ca.

For the sake of brevity, the commutative idempotent abelian groupoids will be called CIA-groupoids. Clearly, every CIA-groupoid is distributive.

The purpose of this paper is to describe a general method of obtaining CIA-groupoids. We shall prove that a groupoid G is a CIA-groupoid if and only if there exists a uniquely 2-divisible commatative semigroup $S(+)$ such that
$G \subseteq S$ and $x y=1 / 2(x+y)$ for all $x, y \in G$. Moreover, we shall show that in general we cannot demand the equality $G=$ $=S$.

1. Some properties of distributive groupoids. Let G be a groupoid. A non-empty subset $I \subseteq G$ is an ideal if $a b \in I$ and $b a \in I$, whenever $a \in I$ and $b \in G$. In such a case, we can define a congruence relation r on G as Pollows:
$\langle x, y\rangle \in r$ iff either $x=y$ or $x, y \in I$.
The carresponding factor-groupoid is denoted by G / I.
If G is a groupoid then Id G will denote the set of all idempotents of G.
1.1. Proposition. Let G be a distributive groupoid. Then
(i) Id G is an ideal of G,
(ii) $a, b c \in I d G$ and $a b, c \in I d G$ for $a l l a, b, c \in G$.
(iii) The mapping $x \longmapsto x \cdot x x=x x_{0} x$ is a homomorphism of G onto Id G,
(iv) $G / I d G$ has just one idempotent.

Proof. (i) We have $x_{0} x x=x x_{0} x x=x x_{0} x$ and ($x . x x$) $(x, x x)=x x_{0} x x=x_{0} x x$ for all $x \in G$. Thus $x_{0} x x \in$ Id G and Id G is non-empty. If $a \in I d G$ and $b \in G$, then $a b, a b=$ $=a a, b=a b$ and $b a \cdot b a=b a$.
(ii) We can write $a, b c=a b, a c=(a b, a)(a b, c)=$
$=(a, b a)(a b, c)=((a a, b)(a, a))(a b, c)$. Since $a a, a \in \operatorname{Id} G$ and Id G is an ideal, a.bc \in Id G. Similarly, ab.c \in ϵ Id G.
(iii) and (iv) are easy.
1.2. Proposition. The following conditions are equivalent for a groupoid G :
(i) G is distributive and Id G contains just one element. (ii) There is an element $0 \in G$ such that $a .0=0=0 . a$ and $a . b c=0=a b, c$ for all $a, b, c \in G$.

Proof. The proposition is obvious from 1.1.
Every groupoid satisfying the equivalent conditions of 1.2 will be called a BD-groupoid.
1.3. Proposition. Let G be a distributive groupoid. Then Id G is an idempotent distributive groupoid and G/Id G is a BD-groupoid. Moreover, G is isomor phic to a subdirect product of Id G and $G / I d G$.

Proof. Apply 1.1 and 1.2.
1.4. Proposition. Let $f: G \longrightarrow H$ be a homomorphism of distributive groupoids. Then f induces two homomorphisms g: Id $G \rightarrow$ Id H and $h: G / I d G \longrightarrow H / I d H$. Moreover, if P is injective (surjective) then both g and h are so.

Proof. An easy work.
A groupoid is called triabelian if every its subgroupoid generated by three (not necessarily different) elements is abelian.
1.5. Proposition. (i) A distributive groupoid is tri-
abelian iff it satiafies the identity ab.ca $=a c \cdot b a$.
(ii) Every commutative distributive groupoid is triabelian.
(iii) Every distributive cancellation groupoid is triabelian.

Proof. (i) The "only if" part of the proof is obvious. For the "if" part we can assume that G is idempotent (due to 1.3 and to the fact that every BD-groupoid is abelian).

First auppose that a, b, c, d are four elements of G satisfying ab, cd =ac.bd . Denote by $S(a, b, c, d)$ the subgroupoid generated by a, b, c, d. As it is easy to see, the set $\{x \mid a b, x d=a x, b d\}$ is $\{$ subgroupoid containing a, b, c, d, and hence $a b, x d=a x, b d$ for $a l l \quad x \in S(a, b, c, d)$. Quite similarly we can prove that ay. $x d=a x . y d$ for $a l l$ $x, y \in S(a, b, c, d)$.

Now let $a, b, c \in G$ be arbitrary elements. We are going to show that the subgroupoid $S(a, b, c)$ generated by a, b, c is abelian. Since $a b, c b=a c \cdot b b$ and $a b, c c=a c \cdot b c, a x \cdot y b=$ $=a y . x b$ and $a x \cdot y c=a y . x c$ for $a l l a, y \in S(a, b, c)$. The subgroupoid $\{z \mid a x, y z=a y . x z\}$ contains thus the elements a, b, c and we get $a x \cdot y z=a y . x z$ for $a l l a, y, z \in S(a, b, c)$. Prom the reason of symmetry, $b x . y z=b y . x z$ and $c x . y z=$ $=c y, x z$, and consequently ux.yz $=u y . x z$ for all $u, x, y, z \in$ $\in S(a, b, c)$.
(ii) This assertion is an immediate consequence of (i).
(iii) It is proved in [I] that every distributive quasigroup generated (as a quasigroup) by three elements is abelian. According to [5], every distributive cancellation groupoid is a subgroupoid of a distributive quasigroup and the

assertion follows easily.

Remark. The following problem seems to be open. Is every distributive groupoid triabelian?

A congruence r of a groupoid G is called normal if the factor G / r is a cancellation groupoid. A groupoid is called ideal-simple if it has no proper ideal.
1.6. Proposition. The following conditions are equivalent for a commatative distributive groupoid G:
(i) G is ideal-simple.
(ii) Every congruence of G is normal.

Proof. (i) implies (ii). By 1.1, G is idempotent. Let r be a congruence of $G,\langle a b, a c\rangle \in T$ for some $a, b, c \in G$ and $I=\{x \mid\langle x b, x c\rangle \in I\}$. As one may check easily, I is an ideal and therefore $I=G$. Thus $\langle b b, b c\rangle \in r$ and $\langle c b, c c\rangle \in r$, and so $\langle b, c\rangle \in r$.
1.7. Corollary. (i) Every ideal-simple commutative distributive groupoid is an idempotent cancellation groupoid.
(ii) Every commatative distributive division groupoid is a quasigroup.
(iii) Every congruence of a commutative distributive quasigroup is normal.

Example. Let Q be the set of all rational numbers and $x * y=2 x-y$ for all $x, y \in Q$. It is easy to check that Q is an abelian idempotent quasigroup with respect to $*$ and the relation r, defined by $\langle x, y\rangle \in r$ iff $x-y$ is an integer, is a congruence of $Q(*)$. However, r is not normal, since $\langle 1 / 2 * 1,0 * 1\rangle \in r$. The factorgroupoid
$Q(*) / r$ is an ideal-simple distributive division groupoid which is not cancellative.

Let H be a subgroupoid of a groupoid G. We say that a congruence s of G is an extension of a congruence r of H if $r=s \cap(H \times H)$.
1.8. Propositton. Let G be a subgroupoid of a distributive quasigroup Q such that G is contained in no proper subquasigroup of Q. Then every normal congruence of G can be extended to exactly one normal congruence of Q.

Proof. Apply Zorn's lemma for a more detailed proof. see [4].
2. Congruences of free CIA-groupoidg. Denote by R the set of all rational numbers 2^{-m}. c, where c is an integer and m is a natural number. For every $n \geq 1$, the cartesian power R^{n} is a CIA-quasigroup with respect to the operation - defined by

$$
\begin{gathered}
\left\langle a_{1} \ldots, a_{n}\right\rangle 0\left\langle b_{1}, \ldots, b_{n}\right\rangle=\left\langle 1 / 2\left(a_{1}+b_{1}\right), \ldots\right. \\
\left.\ldots, 1 / 2\left(a_{n}+b_{n}\right)\right\rangle
\end{gathered}
$$

In fact (see [3]), R^{n} is a free CIA-quasigroup and the elements $e_{0}^{n}=\langle 0,0, \ldots, 0\rangle, e_{1}^{n}=\langle 1,0, \ldots, 0\rangle, e_{2}^{n}=$ $=\langle 0,1,0, \ldots, 0\rangle \ldots, e_{n}^{n}=\langle 0, \ldots, 0,1\rangle$ are its generators. Let F_{n} denote the set of all $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R^{n}$ satisfying $a_{1} \geq 0, \ldots, a_{n} \geq 0$ and $a_{1}+\ldots+a_{n} \leq 1$. Clear. 1y, F_{n} is a subgroupoid of R^{n}. As it is proved in [3], F_{n} is a free CIA-groupoid and the elements $e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}$
are its free generators. Further define
$F_{n, i}=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \in F_{n} \mid a_{i}=0\right\}$ for $i=1,2, \ldots, n$,
$F_{n, *}=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \in F_{n} \mid a_{i}+\ldots+a_{n}=1\right\}$,
$H_{i}=F_{n} \backslash F_{n, i}$ for $1=1,2, \ldots, n$,
$H_{0}=F_{n} \backslash F_{n, *}$ and
Int $F_{n}=F_{n} \backslash\left(F_{n, 1} \cup F_{n, 2} \cup \ldots \cup F_{n, n} \cup F_{n, *}\right)$.
It is not difficult to show that all these sets are subgroupoids of F_{n}. Moreover, Int F_{n} is ideal-simple and it is an ideal of F_{n}.

The following lemma is proved in [4]. However, the proof is easy.
2.1. Lemma. Let A be a subgroupoid of F_{n} with Int $F_{n} \subseteq A$ and r be a congruence of A. If $\langle a, a \circ b\rangle E r$ for some $a \in A$ and $b \in$ Int F_{n}, then $\langle a, b\rangle \in r$.
2.2. Lemma. Let r be a congruence of F_{n} and a, $b \in H_{0}$. Then $\langle a, b\rangle \in r$ iff $\langle 1 / 2 a, 1 / 2 b\rangle \in r$.

Proof. The direct implication is easy. To prove the converse, first assume that $\left\langle a_{1}, \ldots, a_{n}\right\rangle=a \in \operatorname{Int} F_{n}$. Since $\left\langle b_{1}, \ldots, b_{n}\right\rangle=b \in H_{0}, b_{1}+\ldots+b_{n}<1$. For every $1=1,2, \ldots, 1$ et
$c_{i}=\left\langle 2^{-i} a_{1}+\left(1-2^{1-1}\right) b_{1}, \ldots, 2^{-1} a_{n}+\left(1-2^{1-1}\right) b_{n}\right\rangle$,
$d_{i}=\left\langle\left(1-2^{-i}\right) b_{1}, \ldots,\left(1-2^{-i}\right) b_{n}\right\rangle$,
$p_{i}=\left\langle\left(1+2^{-i}\right) b_{1}, \ldots,\left(1+2^{-i}\right) b_{n}\right\rangle$ and
$q_{i}=\left\langle 2^{1-i} a_{1}+\left(1-2^{1-i}\right) b_{1}, \ldots, 2^{1-i} a_{n}+\left(1-2^{l-i}\right) b_{n}\right\rangle$.

As it is easy to see, the following equalities hold: $c_{1}=\left\langle 1 / 2 a_{1}, \ldots, 1 / 2 a_{n}\right\rangle=1 / 2 a, \quad d_{1}=1 / 2 b, \quad q_{1}=a$, $c_{1+1}=c_{1} \circ b, d_{i+1}=d_{1} \circ b, q_{i+1}=q_{i} \circ b, \quad c_{i} \in F_{n}$. $p_{i} \in R^{n}, q_{i} \in \operatorname{Int} F_{n}, d_{i} \circ p_{i}=b$ and $c_{i} \circ p_{i}=q_{i+2}$. Since $b_{1}+\ldots+b_{n}<1$, there is $k \geq 1$ such that $p_{k} \in$ $\in F_{n}$. Then $\left\langle c_{1}, d_{1}\right\rangle \in r,\left\langle c_{2}, d_{2}\right\rangle \in r, \ldots,\left\langle c_{k}, d_{k}\right\rangle \in r$, $\left\langle c_{k} \circ p_{k}, d_{k} \circ p_{k}\right\rangle \in r$, and hence $\left\langle q_{k+2}, b\right\rangle \in x$. Several applications of 2.1 (for $A=F_{n}$) give $\left\langle q_{k+1}, b\right\rangle \in r$. $\left\langle q_{k}, b\right\rangle \in r, \ldots,\left\langle q_{2}, b\right\rangle \in r$ and $\langle a, b\rangle \in r$.

In the general case we shall proceed by induction on n. If $n=1$ then either $a=b$ or $a \in$ Int F_{1} or $b \in$ $\in \operatorname{Int} F_{1}$ (since $P_{1, *}=\{1\}$ and $F_{1,1}=\{0\}$). Let $n \geq$ 2. If there exists an $i \in\{1, \ldots, n\}$ such that both a and b belong to $P_{n, i}$, then the induction hypothesis can be applied, since $F_{n, i}$ is (canonically) isomorphic to F_{n-1}. If no such an i exists then $a \circ b \in$ Int F_{n}. As $\langle 1 / 2 a, 1 / 2 b\rangle \in r$, we have $\langle 1 / 2 a, 1 / 2 a \circ 1 / 2 b\rangle \in r$, and consequently $\langle a, a \circ b\rangle \in \mathrm{r}$. Quite similarly $\langle a \circ b, b\rangle \in$ $\in r$, and so $\langle a, b\rangle \in r$.
2.3. Lemma. Let r be a congruence of F_{n} and $i \in$ $\in\{0,1, \ldots, n\}$. Define a relation r_{i} on F_{n} by $\langle a, b\rangle \in$ $\in r_{i}$ iff $\left\langle e_{i}^{n} \circ a, e_{i}^{n} \circ b\right\rangle \in r$. Then r_{i} is a congruence of F_{n} 。

Proof. The lemma is obvious.
2.4. Lemma, Let r be a congruence of F_{n}. Then
(1) $r £ r_{i}$ for all $i \in\{0,1, \ldots, n\}$,
(ii) $r_{i} \cap\left(H_{i} \times H_{i}\right)=r \cap\left(H_{i} \times H_{i}\right)$ for all $i \in\{0,1, \ldots$, n \},
(iii) $\quad r=r_{0} \cap r_{1} \cap \ldots \cap r_{n}$.

Proof. (i) is obvious. By 2.2, (ii) holds for $1=0$. Let $i \in\{1, \ldots, n\}$. Define an automorphism f of F_{n} by $f\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle x_{1}, \ldots, x_{1-1}, 1-\left(x_{1}+\ldots+x_{n}\right)\right.$, $\left.x_{i+1}, \ldots, x_{n}\right\rangle$. Clearly, $f=f^{-1}, f\left(e_{0}^{n}\right)=e_{i}^{n}, f\left(e_{i}^{n}\right)=$ $=e_{0}^{n}$ and $f\left(e_{j}^{n}\right)=e_{j}^{n}$ for all $j \notin\{0, i\}$. Pat $\langle a, b\rangle \in$ a iff $\langle f(a), f(b)\rangle \in x$. Obviously, s is a congruence of F_{n} and $B_{0} \cap\left(H_{0} \times H_{0}\right)=B \cap\left(H_{0} \times H_{0}\right)$. If $\langle a, b\rangle \in r_{i} \cap$ $\cap\left(H_{i} \times H_{i}\right)$ then $\left\langle e_{i}^{n} \circ a, e_{i}^{n} \circ b\right\rangle \in r,\left\langle f\left(e_{i}^{n} \circ a\right), f\left(e_{i}^{n} \circ b\right)\right\rangle \epsilon$ $\in в,\left\langle e_{0}^{n} \rho f(a), e_{0}^{n} \circ f(b)\right\rangle \in s,\langle f(a), f(b)\rangle \in s_{0}$, $\langle f(a), f(b)\rangle \in s_{0} \cap\left(H_{0} \times H_{0}\right) \subseteq s$ and $\langle a, b\rangle \in r \cap$ $\cap\left(\mathrm{H}_{i} \times \mathrm{H}_{i}\right)$. Thus $\mathrm{r}_{i} \cap\left(\mathrm{H}_{i} \times \mathrm{H}_{i}\right) \subseteq \mathrm{r} \cap\left(\mathrm{H}_{i} \times \mathrm{H}_{i}\right) \quad$. Finally we shall prove (iii). By (i), $r \leq r_{0} \cap r_{1} \cap$ $\cap \ldots r_{n}$. Let $\langle a, b\rangle \in r_{0} \cap r_{1} \cap \ldots \cap r_{n}$. As one may check easily, there exist two numbers $j, k \in\{0,1, \ldots, n\}$ such that both a and $a \circ b$ belong to H_{j} and both b and $a \circ b$ belong to H_{k}. We have $\langle a, a \circ b\rangle \in\left(r_{0} \cap r_{1} \cap\right.$ $\left.\cap \ldots \cap r_{n}\right) \cap\left(H_{j} \times H_{j}\right) \equiv r_{j} \cap\left(H_{j} \times H_{j}\right)=r \cap\left(H_{j} \times H_{j}\right) \leq$ $\subseteq r$ and similarly $\langle a \rho b, b\rangle \in r_{k} \cap\left(H_{k} \times H_{k}\right) \subseteq r$. Thues $\langle a, b\rangle \in \mathbf{r}$.
3. Semigroup representations of CIA-groupoids. A commutative semigroup $G(+)$ is called uniquely 2-divisible
if the mapping $x \mapsto x+x$ is a permatation of G. The inverse permatation is denoted by $1 / 2 x$.
3.之. Proposition. Let $G(+)$ be a uniquely 2-divisible commatative semigroup. Define a binary operation on G by $x y=1 / 2(x+y)$. Then the groupoid A is a CIAgroupoid.

Proof. The proposition is obvious.
If G is a CIA-groupoid and there exiats a binary operation + on G such that $G(+)$ is a uniquely 2-divisib1e commatative semigroup and $x=1 / 2(\dot{x}+y)$ for all x, $y \in G$, then the semigroup $G(+)$ will be called a semigroup representation of a. We shall denote by a the class of all CIA-groupoids which have a semigroup representation.
3.2. Proposition. Let $G(\dot{+})$ be a semigroup representation of a CIA-groupoid G . Then
(i) G is a cancellation groupoid iff $G(+)$ is a cancellation semigroup,
(ii) G is a quasigroup iff $G(+)$ is a group,
(iii) the semigroup $G(+)$ has a unit element (i.e., an element e such that $x+e=x$ for all x) iff there is an a $\in G$ such that $x \longmapsto x$ is permatation.

Proof. We shall prove only the converse implication of (iii), since the rest is obvious. There exists e $\in \mathbb{G}$ with ea $=1 / 2 a$. For any $x \in G$, it is $(x+e) \cdot a \quad 1 / 2(x+e+$ $+a)=1 / 2(x+2(e a))=1 / 2(x+a)=x a$, so that $x+e=$ $=x$.

Let us denote by \mathcal{B} the class of all CIA-groupoids which have a semigroup representation with a unit element.
3.3. Proposition. A CIA-groupoid G belongs to 3 iff there is an a $G \in$ such that $x \longmapsto x a$ is a permatation.

Proof. It suffices to pat $x+y=P(x y)$, where $f(z a)=\mathrm{z}$.

Rement. $B \in a$ and $B \neq a$. The subgroupoid $G=\{x \mid x \in R, x>0\}$ of the quasigroup R belonge to $a \backslash B$. It follows irom 3.2 and 3.3 that every semigroup representation of H e $\sqrt{3}$ has a unit element.
3.4. Proposition: (i) Brery Pinite subdirectly irredueible CII-gronpoid is contained in $\sqrt{3}$.
(ii) Brery finite CIA-groupoid is a subgroupoid of a finite CIA-groupoid from 33 .
(iii) If $G \in a$ ($G \in \mathcal{B}$) and r is normal congruence of G, then $G / \Sigma \in a \quad(G / \Sigma \in \mathcal{B})$.
(iv) If $G \in a$ ($G \in \mathcal{B}$) and r is a fully invariant congruence of G, then $G / r \in a(G / r \in \mathcal{B})$.

Proof. (i) Let a be a Pinite subdirectly irreducible CIA-groupoid. If $a, x, y \in G$ then $\langle x, y\rangle \in s_{a}$ meana $x a=$ = ya - Obviously, s_{a} is a congruence relation for every a and $a \cap_{a}=1 d_{a}$ - Consequently there is an $a \in G$ such that $x=7 a$ iff $x=y$. Since G is finite, the mapping $x \longmapsto x a$ is a permatation and we may use 3.3.
(ii) It follows from (i).
(iii) Let r be normal congruence of a CIA-groupoid G with a semigroup representation $G(+)$. If $\langle x, y\rangle \in$ r then $z_{0}(6 z, 2 x)=2 z+1 / 2 x=4 z \cdot x, z_{0}(6 z, 2 y)=4 z . y$ and $\langle 4 \mathrm{z} \cdot \mathrm{x}, 4 \mathrm{z} . \mathrm{y}\rangle \in \mathrm{F}$ for all $\mathrm{E} \in \mathrm{G}$. Since F is normal,
$\langle 2 x, 2 y\rangle \in r$. Conversely, if $\langle 2 x, 2 y\rangle \in r$, then $\langle 4 x, 4 y\rangle \in T,\langle 2 x, 4 x, 2 y \cdot 4 y\rangle \in T, 3 x=2 x, 4 x, 3 y=$ $=2 y \cdot 4 y, 3 x_{0} x=2 x, 3 y \cdot y=2 y$, and $s o\langle x, y\rangle \in x$.

The remainder of the proof is clear.
(iv) Similarly.
3.5. Proposition. Non-trivial free CIA-groupoids have no semigroup representations.

Proof. With reapect to 3.4 (iii) and to the fact that F_{1} is a cancellation groupoid, it suffices to show that $F_{1} \notin Q$. Suppose, on the contrary, that F_{1} has a semigroup representation $F_{1}(*)$. Let $f(x) * f(x)=x$ for each $x \in F_{1}, a=1 / 2 * 1 / 2$ and $b=1-a$. Clearly, a, $b \in F_{1}, 1 / 2=a \circ b=f(a) * f(b)$ and $a=1 / 2 * 1 / 2=$ $=f^{-1}(1 / 2)=a * b$. By 3.2 (i), $F_{1}(*)$ is a cancellation semigroup. Since $x * a=x * b * a$ for every $x \in F_{1}$, b is a unit element of $F_{1}(*)$. Thus $F_{1} \in B$, a contradiction with 3.3.
3.6. Theorem. Every CIA-groupoid is a subgroupoid of a CIA-groupoid with a semigroup representation.

Proof. The class C of all subgroupoide of groupoids from a is closed under ultraproducts. Since every groupoid is isomorphic to an ultraproduct of its finjtely generated subgroupoids (ses e.g. [2]), it is enough to prove that every finitely generated CIA-groupoid belongs to C. In other words, we must prove that $F_{n} / r \in C$ for every $n \geq 1$ and every congruence r of F_{n}. As F_{n} / r is isomorphic to a subdirect product of $F_{n} / r_{0}, F_{n} / r_{1}, \ldots, F_{n} / r_{n}$ (by 2.4) and C is closed under cartesian products and subgrou-
poids, it remains to show that $r_{n} / r_{i} \in C$ for all $i \in$ $\varepsilon\{0,1, \ldots, n\}$. We may restrict ourselves to the case $1=0$, since the rôles of free generators are aymetrical. The set $A=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{j} \in R, x_{j} \geq 0\right\}$ is a uniquely 2-divisible commatative semigroup with respect to the usual addition. Define a binary relation s on A as followa:

$$
\langle x, y\rangle \in \text { iff }\left\langle 2^{-k} x, 2^{-k} y\right\rangle \in r \cap\left(H_{0} \times H_{0}\right) \text {, for }
$$

some k.
As it is easy to see, s is a congruence of the semigroup A and $\langle x, y\rangle \in$ iff $\langle 1 / 2 x, 1 / 2 y\rangle \in \mathrm{s}$. By $2.4, r_{0}=$ $=s \cap\left(F_{n} \times F_{n}\right)$ and the factorsemigroup A / s is a semigroup representation of F_{n} / r_{0}.
3.7. Corollary. A groupoid G is a CIA-groupoid iff there exists a uniquely 2 -divisible commatative semigroup $S(+)$ such that $G \subseteq S$ and $x y=1 / 2(x+y)$ for all x, $y \in G$.
3.8. Corollary. For every commutative abelian distributive groupoid G there exist a comutative semigroup $S(+)$ and an automorphism P of $S(+)$ such that $G \subseteq S$ and $x y=f(x+y)$ for all $x, y \in G$.

Proof. Apply 1.2, 1.3 and 3.7.

Referencea
[1] V.D. BELOUSOV: Osnovy teorii kvazigrupp i lup, Izdatel ${ }^{\circ}$ stvo "Nauka",1967.
[2] G. GRATZER: Universal algebra, D.Van Nostrand,Inc,,1968.
[3] J. JEŽEK and T. KEPKA: Free commutative idempotent abelian groupoids and quasigroups (to appear in

Acta Univ. Carolinae).
[4] J. JEǨEK and T. KEPKA: The lattice of varieties of commatative abelian distributive groupoids (to appear in Algebra Universalis).
[5] J. SOUBLIK: Étude algébrique de la notion de moyenne, J. Math. Pures et Appl. 50(1971),53-264.

Matematicko-fyzikální fakulta

Karlova universita
Sokoloveká 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 12.3. 1975)

