Svatopluk Fučík
Remarks on the solvability and nonsolvability of weakly nonlinear equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 1, 61--70

Persistent URL: http://dml.cz/dmlcz/105674

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
REMARKS ON THE SOLVABILITY AND NONSOLVABILITY OF WEAKLY
NONLINEAR EQUATIONS 1)

Svatopluk Fučík, Praha

Abstract: The existence of the solution of the nonlinear operator equation
\[Ax + \alpha Sx^+ + \beta Sx^- + Gx = f \]
(where \(A \) is a Fredholm linear selfadjoint noninvertible operator in a real semiordered Hilbert space \(X \), \(S \) is a linear completely continuous operator in \(X \), \(G \) is a nonlinear mapping in \(X \), for \(x \in X \) it is \(x^+ = \max(x,0) \), \(x = x^+ - x^- \)) is studied.

Key words: Nonlinear operator equation, solvability, nonsolvability, multiplicity of solutions.

AMS: 47H15

Ref. Z.: 7.978.53

1. Assumptions. Notations. Until further comment, \(X, Z \) will denote real Hilbert spaces with norms \(\|x\|_X \), \(\|z\|_Z \), respectively. The inner product in \(X \) is denoted by \(\langle x_1, x_2 \rangle \).

A subset \(C \) of \(Z \) is called a cone if it is closed, convex, invariant under multiplication by nonnegative numbers, and if \(C \cap (-C) = \{0\} \).

1) The results contained in this note were first presented by the author at the Summer School on "Nonlinear Analysis and Mechanics", September 1974, Stará Lesná near Poprad, Slovakia, and they are announced without the proofs in the third part of the paper (71).
Let \(C \) be a given cone in \(Z \) with the following properties:

(Z1) If \(z \in Z \) then there exists a uniquely determined couple \(z^+, z^- \in C \) such that \(z = z^+ - z^- \).

(Z2) The mappings \(z \mapsto z^+, z \mapsto z^- \) are Lipschitzian, i.e., there exists \(\phi > 0 \) such that

\[
\| z_1^+ - z_2^+ \|_Z \leq \phi \| z_1 - z_2 \|_Z , \quad \| z_1^- - z_2^- \|_Z \leq \phi \| z_1 - z_2 \|_Z
\]

for each \(z_1, z_2 \in Z \).

(Z3) \(X \subseteq Z \) and the identity mapping from \(X \) into \(Z \) is continuous. Denote by \(\gamma \) its norm.

(A1) Let \(A \) be a linear bounded selfadjoint operator from \(X \) into \(X \) with a closed range \(R(A) \) and finite-dimensional null-space \(N(A) \), \(\dim N(A) \geq 1 \).

Let \(P \) be the orthogonal projection from \(X \) onto \(N(A) \) and let \(Q = I - P \) (\(I \) is the identity operator in \(X \)), i.e., \(Q \) is the orthogonal projection from \(X \) onto \(R(A) \). Under our assumptions there exists a linear continuous map (the so-called right inverse) \(M: R(A) \rightarrow R(A) \) satisfying

\[
MAx = Qx \quad (x \in X) , \quad AMy = y \quad (y \in R(A)) .
\]

Denote by \(\| M \| \) the norm of \(M \).

Let \(S \) be a linear continuous mapping from \(Z \) into \(C \) with the norm \(\| S \| \) and suppose:

(S1) The mappings \(x \mapsto Sx^+ \), \(x \mapsto Sx^- \) are completely continuous operators from \(X \) into \(X \).
2. **First result**

Lemma. Let \(\alpha, \beta \) be real numbers and suppose that

\[
(S 2) \quad \inf_{h \in N(A)} (\alpha S h^+ - \beta S h^- \langle h \rangle) > 0.
\]

Then \(\sigma_0(\alpha, \beta) > 0 \), where

\[
\sigma_0(\alpha, \beta) = \left\{ \sup \| \sigma \| \geq 0; \inf_{\nu \in \mathbb{R}(A)} \inf_{h \in N(A)} (\alpha S (h + \nu)^+ - \beta S (h + \nu)^- \langle h \rangle) > 0 \right\}.
\]

Proof. Suppose that there exists \(\sigma_n > 0 \), \(\lim_{n \to \infty} \sigma_n = 0 \), and \(v_n \in \mathbb{R}(A), \| v_n \|_X = \sigma_n, h_n \in N(A), \| h_n \|_X = 1 \), such that

\[
\lim_{n \to \infty} (\alpha S h_n + v_n) - \beta S (h_n + v_n) \langle h \rangle = 0.
\]

Since \(N(A) \) is finite-dimensional, we can suppose that the sequence \(h_n \) converges in the norm topology of \(X \) to \(h_0 \in N(A), \| h_0 \|_X = 1 \). The continuity of \(S \) and the assumption \((Z 2) \) imply

\[
(\alpha S h_0^+ - \beta S h_0^- \langle h_0 \rangle) = 0
\]

which contradicts \((S 2) \).

Theorem 1. Let \(\alpha, \beta \) be real numbers. Suppose

\((Z 1) - (Z 3), (A 1), (S 1), (S 2) \). Moreover, suppose that

\((G 1) \quad G: X \to X \) is a completely continuous operator such that

\((G 2) \quad \sup_{x \in X} \| Gx \|_X < \infty \).
Then the equation

\[(1) \ Ax + \alpha Sx^+ - \beta Sx^- + Gx = f\]

is solvable in \(X\) for each \(f \in X\) provided

\[
\left(|\alpha| + |\beta| \right) \|S\| \varphi < \frac{\sigma^0(\alpha, \beta)}{1 + \sigma^0(\alpha, \beta)} \|M\|^{-1}.
\]

Proof. According to [4, Theorem 1] it suffices to verify the following condition:

For any \(K > 0\) we have \(t_K > 0\) such that

\[(2) (\alpha S(t(h + v)^+) - \beta S(t(h + v)^-), h) + (G(t(h + v)), h) \geq K\]

for all \(t \geq t_K\), \(h \in N(A)\), \(\|h\|_X = 1\), \(v \in R(A)\), \(\|v\|_X \leq \sigma^*\), where \(\sigma^* < \sigma^0(\alpha, \beta)\).

The assumptions \((S2), (G2)\) and Lemma 1 immediately imply \((2)\).

Remark 1. The assumption \((G2)\) may be (without changing the proof) replaced by the growth condition \(\|Gx\|_X \leq c_1 + c_2 \|x\|_X^\gamma\), where \(\gamma \in (0, 1)\). If the constant \(c_2\) is sufficiently small, then it may be \(\gamma = 1\) and the same assertion as in Theorem 1 is valid.

Remark 2. Suppose, moreover,

\[(A2) \quad \dim N(A) = 1\]

and \(N(A)\) is a linear hull of \(h_0 \in X\), \(\|h_0\|_X = 1\).

If we suppose

\[(S3) \quad (Sh_0^+, h_0) = -(Sh_0^-, h_0) = 0\]

then \(\sigma^0(\alpha, \beta) = \sigma^0(1, 0)\) and if \(\alpha \neq -\beta\) then the condition \((S2)\) is fulfilled.
3. Second result

Lemma 2. Let α, β be real numbers and suppose (A 1), (A 2) and

\[
\begin{align*}
(S 4) & \quad \left\{ \begin{array}{l}
(\alpha S h_0^+ - \beta S h_0^-, h_0) > 0 \\
(\beta S h_0^+ - \alpha S h_0^-, h_0) < 0
\end{array} \right.
\end{align*}
\]

Then $\delta_1^c (\alpha, \beta) > 0$, where

\[
\delta_1^c (\alpha, \beta) = \sup \{ \sigma \in \mathbb{R} : \inf_{v \in \mathbb{R}(A)} (\alpha S(h_0 + v)^+ - \beta S(h_0 + v)^-, h_0) > 0 \}
\]

and

\[
\sup_{v \in \mathbb{R}(A)} (\beta S(h_0 + v)^+ - \alpha S(h_0 + v)^-, h_0) < 0
\]

(The proof is quite analogous to that in Lemma 1.)

Theorem 2. Let α, β be real numbers and suppose:

(Z 1) - (Z 3), (A 1), (A 2), (S 4). Let $G : X \rightarrow X$ be a Lipschitzian mapping, i.e. there exists $c > 0$ such that

\[
\| Gx_1 - Gx_2 \|_X \leq c \| x_1 - x_2 \|_X
\]

for each $x_1, x_2 \in X$. Suppose (G 2).

If

\[
(x = \| M \| (\phi \| S \| \eta \| | \alpha | + | \beta | + c) \leq 1,
\]

(4) $\frac{\delta_1^c}{1 - \delta_1^c} < \delta_1^c (\alpha, \beta),$

then there exists a lower semicontinuous function $\Gamma : \mathbb{R}(A) \rightarrow (-\infty, \infty)$, bounded from below on bounded sub-
sets of $R(A)$ and with the following properties:

a) The equation (1) has a solution for the right hand side $f \in X$ if and only if

$$(f, h_0) \geq T(Qf).$$

b) The equation (1) has at least two solutions for the right hand side $f \in X$ provided

$$(f, h_0) > T(Qf).$$

Proof of Theorem 2

Step 1. For fixed $t \in (-\infty, \infty) = R_1$ and $f \in X$ define the mapping

$$F_{t,f} : R(A) \rightarrow R(A)$$

by

$$F_{t,f} : v \mapsto -MQ \left(\alpha S(t_0 + v) + \beta S(t_0 + v) - f \right).$$

With respect to (3) the mapping $F_{t,f}$ is lipschitzian with the constant $k < 1$ and thus according to the Banach's contraction mapping principle there exists a unique fixed point $v_{t,f} \in R(A)$ of $F_{t,f}$.

Step 2. For all $t_1, t_2 \in R_1$ and $f_1, f_2 \in X$ we obtain (by an easy calculation)
Step 3. Define

\[\Phi: t \mapsto P(\alpha S(t_0 + v_{t_1}^0) - \beta S(t_0 + v_{t_1}^0) + G(t_0 + v_{t_1}^0)). \]

The equation (1) with the right hand side \(f \in X \) has a solution \(x_0 \in X \) if and only if there exists \(t_0 \in \mathbb{R} \) such that

(5) \[\Phi(t_0) = Pf. \]

Step 4. Since \(v_{t_1}^0 = v_{t_1} P \) and \(N(A) \) is one-dimensional, the equation (5) is equivalent with

(6) \[\varphi_Q(t) = (f, h_0), \]

where

(7) \[\varphi_Q: t \mapsto (\Phi(t), h_0). \]

Step 5. For fixed \(f \in X \) the function \(\varphi_Q \) is continuous on \(\mathbb{R} \) and, moreover:

\[\lim_{|t| \to \infty} \varphi_Q(t) = \infty \]

(it follows from the inequalities

\[\varphi_Q(t) \geq t \left(\alpha S(h_0 + \frac{v_{t_1}^0}{t}) + \beta S(h_0 + \frac{v_{t_1}^0}{t}) - h_0 \right) - \sup_{x \in X} \|Gx\|_X \text{ if } t > 0, \]

\[\varphi_Q(t) \geq -t \left(\beta S(h_0 + \frac{v_{t_1}^0}{t}) + \alpha S(h_0 + \frac{v_{t_1}^0}{t}) - h_0 \right) - \]

- 67 -
and from (S 4), (4), Lemma 2 and Step 2).

Step 6. Define

\[\Gamma(Qf) = \min_{t \in \mathbb{R}} g_{Qf}(t) . \]

The assertions of Theorem 2 follow now immediately from Steps 5, 3, 4.

Remark 3. If \((\text{Sh}_0^+, h_0)^2 \oplus (\text{Sh}_0^-, h_0)^2\) then there exist \(\alpha, \beta \in \mathbb{R}_1\) satisfying (S 4).

Remark 4. Note that the typical example of the equation (1) is the boundary value problem for nonlinear elliptic partial differential equation of the order 2m (see [7]). In this case we put \(X = W^{m,2}_0(\Omega)\) (the well-known Sobolev space) and \(Z = L^2(\Omega)\). In the case of second order partial differential equations it is possible to put \(X = Z = W^{1,2}_0(\Omega)\). In both cases \(C\) may be the set of all almost everywhere nonnegative functions from \(Z\).

Remark 5. The second order ordinary differential equations of the type (1) are investigated in [8]. The generalization of the results from [6] as well as the study of periodic problems and partial differential equations of second order is in [2, 3].

Remark 6. The analogous result as in Theorem 2 is proved in [1, 5] for partial differential equations of the second order in the case that \(h_0\) is a nonnegative function. In this note the condition "\(h_0 \equiv 0\)" is replaced by (S 4) (and, of course, the abstract consideration is
useful for higher order equations). A. Ambrosetti communicated me that E. Podolak (Princeton University) prepares the manuscript in which the condition " $h_0 \geq 0$ " is replaced in the case of second order partial differential equations by

$$\int_{\Omega} (h_0^+(x))^2 dx = \int_{\Omega} (h_0^-(x))^2 dx.$$

But in all previous papers (also in the present note) for the method of proofs it is essential that $\dim N(A) = 1$. The observation of the analogous problems as in Theorem 2 but in the case of $\dim N(A) > 1$ is a terra incognita by the author's best knowledge.

References

Matematicko-fyzikální fakulta
Karlová universita
Sokolovská 83, 18600 Praha 8
Československo

(Oblatum 10.11.1975)