Marek Boguszak; Svatopluk Poljak; Jiří Tůma
Note on homomorphism interpolation theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 1, 105--109

Persistent URL: http://dml.cz/dmlcz/105678

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
NOTE ON HOMOMORPHISM INTERPOLATION THEOREM

Marek BOGUSZAK, Svatopluk POLJAK, Jiří TŮMA, Praha

Abstract: A homomorphism interpolation theorem for societies and cohomomorphisms is proved. This extends similar theorems for graphs and complete partitions.

Key words: Society, partition, homomorphism.

AMS: 05A99

This note contains a method by means of which one can prove homomorphism interpolation theorems (of the type discussed in [1 - 3]). Particularly, we give a short proof of [2]. Our method is directly applicable to infinite objects, too. Moreover, we prove that with two exceptions there are always at least two different complete partitions. Let us remark that the proof is a suitable category-theory modification of [1].

Let \(\mathcal{F} \) be the category whose objects are sets with a hereditary family of subsets \((S = \langle X, \mathcal{M} \rangle, \text{N} \in \mathcal{M} \rightarrow N \in \mathcal{M}) \) and morphisms are cohomomorphisms \((f: \langle X, \mathcal{M} \rangle \rightarrow \langle Y, \mathcal{N} \rangle \text{ is a morphism iff } N \in \mathcal{M} \rightarrow f^{-1}(N) \in \mathcal{N}) \).

An object of category \(\mathcal{F} \) is called a society, the members \(M \) of family \(\mathcal{M} \) are called teams. All the following considerations are done in the category \(\mathcal{F} \).
We say that the society \(R = \langle Y, \mathcal{U} \rangle \) is inductive created by a morphism \(f: S = \langle Y, \mathcal{U} \rangle \rightarrow R \), iff \(N \in Y \), \(N \in \mathcal{U} \) \(f^{-1}(N) \in \mathcal{U} \). The morphism \(f \) is called an inductive morphism (for \(R \)).

Let \(S \) be a society, \(\wp S \) be a cardinality of a smallest set \(Y \) (as to the cardinality) for which there exists a couple \((f, \mathcal{U}) \) such that the society \(R = \langle Y, \mathcal{U} \rangle \) is inductively created by the morphism \(f: S \rightarrow R \). It is easy to prove that the composition of two inductive morphisms is an inductive morphism.

Let \(x, y \) be two different elements of a team of society \(S = \langle X, \mathcal{M} \rangle \). Let \(S/x\sim y \) be the society inductively created by a canonical morphism \(p_{xy}: S \rightarrow X/x\sim y \) (where \(x\sim y \) is the equivalence which identifies only two points: \(x, y \)).

Lemma: Let \(S \) be a society. Then \(\wp S \leq \wp S/x\sim y \leq \wp S + 1 \).

Proof: The inequality \(\wp S \leq \wp S/x\sim y \) is trivial. We say that a society \(S = \langle X, \mathcal{M} \rangle \) is discrete iff \(\mathcal{M} = \{\{x\} \mid x \in X\} \). We sign \(D_n \) discrete society such that \(\text{card } D_n = n \). Observe that if \(R = \langle Y, \mathcal{U} \rangle \) is an inductively created society by a morphism \(f: S \rightarrow R \), \(\text{card } R = \wp S \), then \(R \) is a discrete society (see the definition \(S/x\sim y \)).

Now we can prove the second inequality. We construct a morphism \(g \) from the society \(S/x\sim y \) onto the discrete society \(T \), \(\text{card } T \leq \wp S + 1 \): Let \(f: S = \langle X, \mathcal{M} \rangle \rightarrow D_n = \langle [1,n], \{\{i\} \mid i \in [1,n]\} \rangle \) be a morphism. Define the
mapping g by $g|_{x \setminus \{x, y\}} = f$, $g(x \sim y) = n + 1$. From this follows $\varphi S/\sim \not\subseteq \varphi S + 1$.

Theorem 1: Let S be a society, $\varphi S = n$, let $m \in \mathbb{N}$ be natural numbers and let $f: S \rightarrow D_m$ be an inductive morphism. Then for each $n \in [k \not\in \mathbb{N}]$ there exists an inductive morphism $h: S \rightarrow _{D_k}$.

Proof: Let $S = \langle X, \mathcal{M} \rangle$, card $X < \omega_0$.

We decompose the given morphism f in the finite number of mappings $f_i: T_i \rightarrow T_{i+1}$, $i \in [1, m]$, such that f_i is inductive morphism, $T_1 = S$, card $T_i = card T_{i+1}$ (every mapping f_i is of type p_{xy}). Applying Lemma it must exist the company T_i in this decomposition, for which is $\varphi T_i = k$. The existence of inductive morphisms $h_1: S \rightarrow T_i$, $h_2: T_i \rightarrow _{D_k}$ is evident. We put $h = h_1h_2$.

Let card $X \geq \omega_0$, let $g: S \rightarrow D_n$, $f: S \rightarrow D_m$ be inductive morphisms. Let $\{G_i\}_{i=1}^m$ and $\{F_j\}_{j=1}^m$ be two partitions of X corresponding to the kernels Ker g, Ker f.

For every i, j with $G_i \cap F_j \neq \emptyset$ we choose a point $y_{ij} \in G_i \cap F_j$. We sign the set of all these points Y. Let the mapping $e: X \rightarrow Y$ map each set $G_i \cap F_j$ onto the point y_{ij}. We sign R the inductively created society on the set Y by the mapping e. Clearly there exist inductive morphisms
g' (f' respectively) onto D_n (D_m respectively). They are defined by $f' e = f$, $g' e = g$.

Clearly card $R < \omega_0$, so by the first part of the proof there exists an inductive morphism $h: R \to D_k$. We put $h = h' e$.

Corollary: For the given natural number k, $n < k < m$, there are at least two different inductive morphisms $h: S \to D_k$, $h_x: S \to D_k$.

Proof: We preserve the notation of the proof of Theorem 1. Let us choose a couple $<x, y> \in \text{Ker} f - \text{Ker} h$. Applying Lemma and Theorem for $S/x \sim y$ we obtain the inductive morphism $h_x: S/x \sim y \to D_k$. We put $h_x = h'_x p_{xy}$. Clearly $h' h_x (h$ is the morphism defined in the preceding proof).

Definition: We call the partition a complete M-partition of a set X iff it corresponds to the kernel of some inductive morphism from the society $\langle X, M \rangle$ in a discrete society.

Obviously this coincides with the definition of the complete M-partition given in [3]: a complete M-partition of X of order k is a partition $\{S_1, \ldots, S_k\}$ of X such that each $S_i \in M$ and $S_i \cup S_j \notin M$ for $i \neq j$.

Theorem 2: Let $m > n$ be natural numbers, let $S =$
be a society and let there exist a complete M-partition of X into m (into n, respectively) classes. Then for each k, $n < k < m$, there exist at least two different complete M-partitions into k classes.

The proof follows immediately from Theorem 1 and its Corollary.

We want to thank J. Nešetřil, for his valuable help and advice.

References

Matematicko-fyzikální fakulta
Karlova universita
Sokolovská 83, 18600 Praha 8
Československo

(Oblatum 6.11. 1975)