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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,2 (1976) 

A NOTE ON TEST MODULES 

L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC, Praha 

Abstract: Sometimes, it is useful to have a criterion 
to determine whether a module is infective, simply by test
ing its injectivity with respect to submodules of a fixed 
module. This problem has#been studied by several authorst 
e.g. the well-known Baer s criterion states that every ring 
R is a test module for injectivity in the category of R-mo-
dules. In this paper, several characterizations of test modu
les for inactivity are presented. Further, an attempt is ma
de to dualize some of these results. 

Key words: Infective module , projective module , test 
module, centrally splitting preradical. 

AMS: 16A52 Ref. 2.: 2.723.2 

By R-mod we understand the category of unital left mo

dules over an associative ring R with unit. First, several 

basic facts concerning preradicals, which are going to be 

our main tool. A preradical r for R-mod is a subfunctor of 

the identity functor, i.e. r assigns to each module M its 

submodule r(M) in such a way that every homomorphism of M 

into N induces a homomorphism of r(M) into r(N) by restric

tion. For every preradical r we define the class of r-tor-

sion modules by (FT *4McR-mod | r(M) - M} and the class 

of r-torsionfree modules by f « {Mc R-mod | r(M) « 0 } . 

A module M splits in r if r(M) is a direct summand of M. We 

shall say that ajreradical r is 
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- idempotent, if r(r(M)) » r(M) for all Me R-modf 

- a radical if r(M/r(M)) « 0 for all Me R-modf 

- hereditary if r(N) = Nn r(M) for all n-^M, MeR-mod, 

- cohereditary if r(M/N) = r(M) + N/ft for all NS Mf 

me R-mod, 

- stable if every infective module splits in r, 

- costable if R and consequently every projective modu

le splits in r, ' . 

- splitting if every module splits in r, 

- centrally splitting if r(R) is a ring direct summand 

in R and r is cohereditary. 

With every preradical r we associate preradicals h(r) 

and ch(r) defined by h(r)(M) = Mnr(E(M))s where E(M) deno

tes the infective hull of M9 and ch(r)(M) =- r(R)M. Obvious

ly, h(r) is hereditary and ch(r) is cohereditary. For every 

module M we define preradicals pw. and p by PM(Q) - -S Im fS 

feHom (M,Q), and pM(Q) • f) Ker f, f € Horn (Q,M), for all ' 

Qe R-mod. Finally, we shall say that 0—> K—> P— .>M—>Q 

is a projective cover of M if P is projective and K is small 

in P, i.#. K + N = P implies N = P. 

We shall need the following simple result. 

Lemma 1 : Let 

i P 
0 —*» A —=s*B &~C —ä--0 

l\ ł« \\ 
0—з^X—&»Ҡ—^Z—з*~0 

be a commutative diagram with exact rows and y : B—»> X, 

if : C — > Y be such that <j>j + p f = g. Then 
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(i) if Ker p = Ker g»q and Im j is essential in Y then 

Im i is essential in B and cpj = gf 

(ii) if Im j s Im ig and Im i is small in B then Im j 

is small in I and ptf ~ g» 

Proof: (i) Obviously, Ker p = Ker g«q means nothing 

else than Im i = g" (Im j) and hence Im i is essential in B. 

Let yelm jnlm (g ~ 9?j)» Then there are xeX, beB with xj » 

~ y = b g ~ b y j , hence bg * (x + bg?) jelm j, and so b s ai 

for some aeA, Now we have y = b (g- g?j) = aip f = 0. 

(ii) It is easy to see that Im j is small in Y« .Furthers 

for each be B there is ae A with b 9? j = aig » ai ( 9?j + p^) = 

-= ai Cp j. Then, however, b - ai€ Ker 9? j = Ker ( g - p y ) , so 

that B = Ker (g - pijr) + Im i# 

Now we present several results concerning M~injeciivity. 

These results are already known, however our proofs are very 

easy* In particular, we get an extremely simple characteriza

tion of M-injective hulls. Let M, QcB-mod* Eecall that Q is 

said to be M-infective if every diagram 

0 —*»A —5*-M 

Q 

with eiaact row can be completed. 

Proposition 2: Let M, QcR-mod* The following conditions 

are equivalent: 

(i) £ is M-infective, 

0—a-A-i^M 

(ii) every diagram t with exact row and 
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Im i essent ia l in Mf can be completed, 

( i i i ) Im f £ Q for every f € Hom(MfE(Q))f 

V (iv) p i l(E<Q))cQ# 

Proof: The implications (i) implies"(ii) and (iii) 

implies (iv) are obvious, while the implication (ii) imp

lies (iii) follows immediately from Lemma 1 (i). 

(iv) implies (i). Let ASM and f 6 Horn (A,Q). There is 

g£Hom (M,E(Q)) making the diagram 

0—*»JL—•*» M v 
E(Q) 

commutative. However, Im g£ %(E(Q))£ Q and we are through. 

Proposition 3 : Let Mf Qc R-mod and r » p^* The follow

ing are equivalent: 

( i ) Q i s M-injective, 

A c ~ * B 

( i i ) every diagram f I such tha t there i s C€B~ 

Q 

mod with B.9C and C/Ker f e T can be completed, 

A «-—» B 

(iii)every diagram f j, with B/Ker f e ̂ ( p ) can 

be completed, 

(iv) every diagram f |, with R/Ker f e ^ h( rv can 

Q 

be completed* 

Proof: (i) implies (ii): Consider the commutative dia

gram 
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A«—-*B<-—*> C 

E(QJ^ 

where C/ker f e 3^. Since Ker tSKer g and Im g—C/Ker g, we 

have 1M g a TT and Proposition 2 (iv) yields Im gSQ. 

(ii) implies (iii). Consider the commutative diagram 

i<-»>B 

A/Ker f c—> B/Ker f 

*L^h^ 
Q 

where pf q are natural epimorphisms f g is a momomorphism and 

pg « f. Since B/Ker f € 3^(r)t B/fcer f £r(£(B/Ker f)) e Tr 

and, by (ii)f there is h: B/Ker f—*> Q making the whole dia

gram commutative. 

(iii) implies (iv) obviously. 

(iv) implies (i). Let A f Mf x c M M , f: A — * Q be such 

that f cannot be extended to a larger submodule of M. Put I s 

* (A:x)f and define g: I — > Q by rg » rxf for all re I. Denote 

K - Ker g and L « Ker f. Then K » (L:x) and H/K «* (Rx + D/L6 
c ^h(r)* Hence & can ^e extended to h: I—-**Q and we can 

define k: Ibc • A — * Q by (rx + a)k * r(lh) • af for all aeAf 

r e Rf a contradiction. 

Proposition 4: Let M, Q€ B-mod and Q^ • Q «* |^0E)Q)>* 

Then 

(i) 0^ is M-injective, 

(ii) if QSN and N is M-injective then there is a liiono-

morphism f: QM—>N such that f | Q » 1Q. 
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.Proof: Since QSQ MSE(Q) f %(E(Q)) * %<E(Q))S^ 

and Q^ is M-injective by Proposition 2 (iv)» If Q£ N for so

me M-infective module Nf we have a monomorphism g: E(Q) —*> 

—>E(N) with g] Q * 1Q* However, pM(E(Q))gS %(E(N))S N, so 

f = g 1 Qjl has the desired property* 

Now we turn our attention to test modules, A module M 

is said to be a test module for injectivity if every M-injec-

tive module is infective. 

Proposition 5: Let McR-mod and r «• pM«. The following 

are equivalents 

(i) M is a test modu3e for injectivity, 

(ii) E(Q) • Q + r(J§(Q)) for all Q«s R-mod, 

(iii) If Q€ R-mod and every homomorphism f: 2 —•> Q, whe

re I is a left ideal and R/&er f e 8*fl(Ty$ can be extended to 

g: R->—»Q, then Q is infective, 

0—^A-i-*-M 

(iv) if Q£ R-mod and every diagram f J, with 

Q 

exact row and 3m i essential in M can be completed then Q is 

infective. 

Proof: Thia is an immediate consequence of Propositions 

2, 3, 4. -

Theorem- 6: Let Me R-mod and r * p^. The following are 

equivalent: 

(i) II is a test module for injectivity, 

(ii) h(r) is central^ splitting and every h(r)-tor-

sionfFee modu3e is completely reducible, 
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(iii) I » h(r)(R) is a ring direct summand in R and 

R/I is a completely reducible ring* 

Proofs (i) implies (ii). For every 1 € (T 9 E(H) 4= N +• 

+ r(E(N)) * r(E(H)), and hence r is stable by £1, Proposi

tion 2.4] • Further, if Q e -^(r)* t h e n H o m (M9E'^^ s °t 

and so Q is 1M~ injective by Proposition 2 (iii). Thus erer^ 

h(r)-torsionfree module is infective, and consequently comp

letely reducible (since ^ W i O *s c^oee& ẑ-̂ er submodules). 

In particular, ^&(r) ^s closed under factor-modules* Since 

r is stable, h(r) is so hy £1, Theorem 2*61 and therefore 

h(r) is a radical by £l, Proposition 2.5] * Moreover, h(r) 

is cohereditary by £3, Proposition 4*1] * However, everj 

stable hereditary cohereditary radical is centrally splitting 

by [2, Proposition 51 . 

'(ii) implies (iii) trivially. 

(iii) implies (i)« For each module Q we have the canoni

cal decomposition E(Q) » A 3 B, where A « IE(Q) and B is. com

pletely, reducible. If Q is M-injective then XE(Q)i£ -r(E(Q))£Q, 

and so" Q « A © (BnQ)« However, both A and B-nQ are injective. 

Proposition 7s Let &€ R-mod and r =- p^* The following 

are equivalents 

(i) E(R) is a homomorphic image of a direct sum of co

pies of M, 

(ii) II is a faithful test module for injectivity, 

(iii) h(r)(N) » K for all HeR-mod, 

(iv) every inject ive module i s r- torsion* 

Proof: ( i ) implies ( i i ) . We have E(R) * r(B(fi» « 
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* h(r)(E(R)), so h(r)(R) » R and M i s a tes t module for in* 

jectivity by Theorem 6 ( i i i ) f Farther, sM » 0 yie lds aE(R) * 

= 0, and hence a. « 0. 

( i i ) implies ( i i i ) . Pat I • h(r)(R). l̂ y ^eorem 6, I i s 

a ring direct summand of B, R S I © L However, h(r) i s cohe

red itary, hence M = h(r)(M) = IM and KM « KIM = 0 yie lds K'« 

.« 0, M being fai thful . 

( i i i ) implies (iv) and (iv) implies ( i ) t r i v i a l l y . 

Corollary 8: A module M i s a generator for R-mod i f f M 

is a faithful test module for i n a c t i v i t y and p™ i s heredita

ry-

In the f inal part we make an attempt to dualize some of 

our results. After giving a characterization of M-projective 

modules with projective covers, we shal l proceed immediately 

to the dualizttion of Theorem 6. In order to get a complete 

dualisation of !Eheorem 6, we must res tr ic t ourselves to the 

ease of lef t perfect rings. This restr ict ion plays a serious 

rSle here, as the recent solution of Whitehead's problem* (se# 

141) seems to indicate. 

Let M£ R-mod. Recall that a module Q i s said to be M-pro-

jeetive If every diagram in the form 

i* 
Si—#.jf - » 0 

with exact row can be completed. We shal l say that M i s a 

test module for projectivity i f every M-projeetive module i s 

projective. 
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Proposition 9: Let M, QcR-mod and 0—a-*K—»p--»Q —a» 

— > 0 be a projective cover of Q. !Ehe following are equiva?-

lent: 

(i) Q is M-projective, 

Q 

( i i ) every diagram M p ^ ^ Q 

with 1cer p small in M can be completed, 

( i i i ) KSKer f for every fcHom (P,M)f 

(iv) KspE(P) . 

Proof: ( i ) implies ( i i ) and ( i i i ) implies (iv) tr iv ia l 

ly while ( i i ) implies ( i i i ) by Lemma 1 ( i i ) . 

(iv) implies ( i ) . Considering the comiirutative diagram 

with exact rows 

0 — * K — » P-~£-*Q * 0 

•i A* 
we have KSp (P)fiKer g. Hence there is h: Q—**M with ph * gf 

and consequently hq * f • 

M 

Theorem 10: Let M* R-mod and r « p . Consider the follo

wing conditions : 

(i) M is a test module for projectivity, 

tii) ch(r) is centrally splitting and every ch(r)-tor-

sion- module is completely reducible, 

(iii) I » (0:M) « r(R) is a ring direct summand of B and 

it is a completely reducible ring, 

(iv) every M-projective module possessing projective co

ver is projective. 
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Then (ii) and (iii) are equivalent, (i) implies (ii) 

and (iii) implies (iv). Moreover, if B is left perfect then 

all these condition© are equivalent. 

Proof: The equivalence of (ii) and (iii) is easily 

seen. Moreover, if B is left perfect then (iv) obviously 

implies (i). 

(i) implies (ii). Let I = r(B). Since M is an B/I mo

dule and B/I is a free B/I-module, B/I is M-projective as 

an B/I-module, and consequently as an B-module. Hence B/I 

is projective and I is a left direct summand. Therefore ch(r) 

is cos table by £l, Theorem 3.8] and hence idempotent by £lf 

Proposition 3.5 3 . Further, if IQ = Q for some Q R-modt 

then Horn (Q,M/.f) = 0 for all N£M f and so Q is M-projective, 

thus being projective. Consequently, every ch(r)-torsion mo

dule is completely reducible (since ^Cv./T\ is closed under 

factor-modules) and, in particular, ^QHCT) *S c3-ose<1 under 

submodules. Thus ch(r) is costable, hereditary and coheredi-

taryt which means that ch(r) is centrally splitting by £2S 

Proposition 5 I • 

(iii) implies (iv). Let Q be M-projective and 0—> K—> 

— * p — > Q — > 0 be a projective cover of Q. We have P =- IP (3 

© A and, with respect to Proposition 9 (iv), K£r(P) and 

r(P) * IP, P being projective. Thus K is a direct summand in 

IP, IP being completely reducible, and so Q - IP/K © A is 

projective. 

Corollary 11: Let B be a left perfect ring. Then every 

faithful module is a test module for projectivity. 
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