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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

THE NON~AXIOMATIZABILITY OF THE OBSERVATIONAL PREDICATE
CAICULUS (GENERALIZED TRACHTENBROT °S THEOREMS)
Ji¥{ IVANEK, Praha

Abstract: The observational predicate calculus (OPC) dif-
fers from the classical predicate calculus by restricting
of the semantics only to finite structures. The following
theorem is proved: Any OPC with at least one at least bi-
nary predicate is non-axiomatizable. The result is streng-

thened in various ways.

Key words: Predicate calculus, finite models, non-axioma-
tizability.

AMS: 02B10 Ref. Z.: 2.663,2

Introduction. By the observational predicate calculus
(OPC) we mean the predicate calculus with the usual syntax
(prodicates, function symbols, connectives, classical quan-
tifiers; no equality predicate) but with the semantics mo-
dified by allowing only finite models.

B.A. Trachtenbrot constructed in [7],[81 a particular
OPC with a finite number of predicates which is not (recur-
sively) axiomatizable and the set of all non-tautologies of
which (i.e. sentences negation of which has a finite model)
is not separable from the set of all classical tautologies.

We generalize these results as follows:

let L be a language containing at least one at least

binary predicate. Then
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(1) The set Taut(OPC) of all observational tautole-
gies in L (i.,e. the set of all sentences in L valid in all
finite structures for L) is not recursively enumerable,

(2) If Teut(CPC) is the set of all classical tautolo-
gies in L (i.e. the set of all sentences in L valid in all
structures for L) then Taut(CPC) and the complement of
Taut (OPC) are effectively recursively inseparable.

(3) There is a primitive recursive function f associ-
ating with each (index of) a recursively enumerable theory
T sound for OPC an observational tautolegy f(T), which is
a Y3V3 -formula and is not provable from T.

We use a method of proof (suggested by P. H4jek) based
on the Matimsevi® s theorem ([3],[4]) about diophantine ex-

pression of recursively enumerable sets.

§ 1. The theory of natural sets, The theory of natural

sets (TNS) has a single binary predicate letter € and no
function letters and individual constants.

l.1. Definition.

X=F eee (VU (uexe+uey) (equality)
x®Y ... (Vu)(uex—> uey) (imnclusion)
0(x) eoe (Yu) Tuex (empty set)
S(X,¥32) eos (Vu)(ueszs e (uexvu=y)) (generalized
successor)
The theory of natural sets has the following two axioms:
Axiom of Extensionality.
(VY x,y,2) (x=y—» (xez2e> yez)).
Axiom of Strong Compleisness.,
(3u)o(u) & (V x,y,v)((x8v & ye v)—> (32)S(x,y,2)).

~
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1.2, Lemma. For any n
NS k= (pex & ... & wex)— (3y)(Vu)luey «—

<« (u_-zulv...vu-:—un)).

1.3. Remark. In the observational predicate calculus
the Axiom of Strong Completeness is (semantically) equiva-

lent to the axiom

(Vy,z)(yez— (3x)(1ye x & S(x,y,2))).

l.4. Auxiliary definition. Let R be a binary relation

on a class M, a,be M. We denote

Extp(a) =fceM; c Ra (R-extension)

& =pb<==> Extp(a) = Extp(b)  (R-equality)
8 Spb¢=> Extp(a) S Extp(b)  (R-inclusion)

A subclass M’ of a class M is called R-compl te if
deM’ implies Extp(d)sM’ .

1.5. Convention. By the symbol M we shall always de-

note @ binary relational structure { M,e>,
Investigating models of TNS we shall restrict ousel-
ves (by the Axiom of Extensionality) only to structures M

with the property: & Sgb¢=> a = b for all a,be M,

1.6. Exemple. Let s, =48}, s;,, =8, Ufav{ibi;
a,bes,; 3,
HF = ‘.‘\?o s; (the class of all hereditarily finite sets).

HE = (HF, e > is a medel of TNS; in addition, for any i
8 = <°i' €? 1is a finite model of THS,

1.7. Definition. A natural set is a finite model M of

TNS such that the relation e is well-founded on the set M,
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1.8, Example. For any i, 8; is a matural set.

1.9. lemma. For any natural set M there exists a uni-
que hereditarily finite € -complete & -complete set ¥ such
that (ﬁ, € ) is isomorphic with M.

Proof. By the Isomorphism Theorem (Theorem 15B in [21).

1.10. Definition, (Natural numbers.)
F(x)eoo Q) v ((FwW(uex &0(u)) & (YV)(vex —
—>(3w)(S(v,e,w) & vEw & (wexvw=x)))) (x is zero or
x contains zero and for ary element v of x the successor w

of v exists and either w is an element of x or w equals to

x)

RO NGO 8 (Fug,eeeu) (& uyFug & (Vu)(uex <>

<—+(u_=_ulv vee Vu;un))). (x is the standard natural num-

ber n)
1.11. lemma., For any myn21
(1) k= n(x) «— (3 xo,...,xn_l)(g(xo) & wes

e &= 10xp )&V ) (uex e (u=x V..o vu=xy))),
(i1) = (o(x) & n(y))—x=y,

= (n(x) & m + n(y))— xey.

Proof. let M= nla) for some M, ae M. Using the de-
finition of the predicate N and the trivial assertion
= (i(v) & S(v,v,q) & v¥w)— i + 1(w) (for all i)
we successively construct an e-chain ag,a;,... € M such that
M= ila;] as long as possible. But, a contains exactly n
e-different e-elements, hence this construction must be fi-
=_a, This

n e
implies (i). One can prove (ii) from (i) by induction.

nished on the n-th step: a, e a,..., 8,5 € 2, &
1.12. Lemma. Let M= N[al ., If for all n MEs n [al,
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then there is an e-~chain 84,87ye¢<)8, 000 Such that for
each n we have a_ e a and M l==E[8n] .

Proof. It is enough to repeat the construction of the
proof of the Lemma 1.11, in this case this construction can-
not be finished after a finite number of steps,

1.13. Lemma. Let M = ( M,e? , and let M’ be an e-com-
plete part of M, M° = (M’,e MM") . If for some p

M E= (3 x)p(x)

then for each m< p

.

aeM, ME=mlal¢e=> aeM’ , M =mlal.
Proof. The implication " <= " is obvious.
"= " Let M e==m(al ., There is a beM’ such that
M= plbl, hence (by "¢= ") M =p [bl. By Lemma 1.11
(ii) we have a e b or a =gb. Since M’ is e-complete, we ha-

ve aeM’ and a g b. Finally, by Lemma 1.11 (ii) we obtain
M= mlal.

1.14. Definition.
P(x,y) vee (YU)(uey «> uSx) (power)

Z(Xeee (Fyqyeee,¥6) (Plx,yy) & Plyy,y,) & oo &P(ys,ys))
(arithmetical securedness)

1.15. Lemma. For any nZ1

INS = (Z2(x) & yEx & (Jug,.ee,u ) (Vu)(ueyes (u=suyv
V.eeevusu )))—>Z(y).
Proof., It suffices to use repeatedly Lemma 1.2.
1.16. Definition. A natural set M" = (M’,e’) is said
to be a securing set for a natural number p in a structure
M= (Med) if

(1) M’ is a substructure of M (i.e, e’ =elu” ),
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(2) M’ is an e-complete part of M,

(3) M= (3 x)(p(x) & 2(x)),

1.17. Example. Denote exp(n) = 2n, expi+1(n) =
= exp (expi(n)). Then -‘oxps(p) is a securing set for p in
HF.

1.18, Theorem. Let M be a model of the theory of natu-
ral sets and let M= Nlal & 2[al.

(i) If M= plal for some p, then there exists a na-
tural set M’ which is a securing set for p in M.

(ii) If M~ p [al for all p, then for each p there
exists a natural set !p which is a securing set for p in M.

Proof. (i) By the definition of the predicate Z there
are Qqqye..,qg¢€ M such that

Xi= Pla,q] & Plqy,q]1&%& ...&P [95"16] .
Since by Lemma 1.1l Ext'(a) is e-complete, it follows that
&S, q; and Exte(ql) is e-complete,..., Exte(qs) is e-comple~
te, Let M° = Extge(qs) M = (M, ePU’Y .

L3

M’ is a finite model of TNS, because M’ is a finite e-

comple te and € o-comple te part of a model of TNS, Ir bl’
by,-.. is a descending e-chain in y_', then clearly be,bg,...
... € Ext_(a); therefore, by Lemma 1,11 there is a k£p + &
such that M= 0 [bk'.l . Hence every descending e-chain in M’
is finite. Thus the relation e is well-founded on M’,
Finally one can verify
M= plal& z[a],
since M’ is e-complete and 8,q7500+49g€ M.
(ii) This is a consequence of Lemma 1,12, Lemma 1.15

and part (i) of the present theorem.
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§ 2. Polynomial formulas. We show how to express po-

lynomials by means of some particular formulas using the
notion of securing sets.
2.1. Definition.

U(x,y,2) o (Yu)(uez e (uexvugy)) (z is the union of
x and y)
D(x,¥,2).. (3v,27,25,29)(0(v) & S(v,x,27) & S(z1,¥,25) & .
&S(V,ZI,ZB) & S(z3,zz,z)) (z is the ordered pair of x and
y)
K(x,¥,2) «o (VU)(uegz <> (3v,w) (vex & wey & D(v,w,u)))
(z is the cartesian product of x and y)
F(x,y,f) .. (32)(K(x,y,2) & fE2z & (VY v)(ve x —>

— (3w, u)(wey & uef & D(v,w,u))) & (Vw)lwegy —>
—(3v,u)(vex &uef & D(v,w,u))) & (Vv,v ,w,w ,u,u’)
((uef& u’e £ & D(v,w,u) & D(v',w’,u’)) —s
—((v=v'vwz=w')—>u=u’)) (f is a bijection between x
and y)

*(x,y,2) .o N(x) & N(y) & N(2) & (3u,v,w,x",y",2°,F)

(0(u) & S(u,u,v) & S(u,v,w) & K(v,x,x")&Kw,y,y°) &
&U(x",y°,2°) & F(z’,z,f)) (addition; z is equinumerous with
the union of disjoint copies of x and y)

£ (x,y,2) 4+ N(x) & N(y) & N(z) & (32z7,£)(K(x,y,2") &

& F(z’,z,f)) (multiplication; z is equinumerous with the car-
tesian product of x and y).

2.2. Example. For any natural numbers m),m,,m
HF &= [ml,mz,xﬁ"]<——-=> m +m,=m
HF &= 2(lmy,myymle= m my, =m

The following lemma explains the role of securing sets
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in our construction of arithmetic.
2.3. Lemma, lLet a natural set M’ be a securing set for
p in M. If for some a),8,,2€ M, my,8,,m£p we have
MEe=m (ay) & mylay,]&m &) then nl,az,neu' and
(1) ! = % la),0,0)= MU E T (ay,0,,e]E= notmy =
=m,
(1) M= la),05,8le= MpEe=2L 8 ,85% Je=>n,c m, = M.
Proof. We prove (ii); one can prove (i) analogously.
First, by Lemma 1.13 we have al,la,aeu' and
M= ml8,] & m,[a,) & m[al. Now, we prove the first
equivalence of (ii). Since M’ is a securing set for p in N,
there are b,qy,...,q¢5€ M’ such that
M= plb]l & PIb,q;] & PLlqgy,q1 & .o & P [a5,a61] -
If M= = [a),a,al, then for some a’,f,geM
M= KLa),8,,8"] & Fla',a,f]1 & XKla',a,g].
Since, 8§, b, a, €, b, we have a’c_ q, (end ag, D5, q,);
thus fc q, and g 5, q,. If follows a’,f,geM’ and
M E= K[8,,0,,08"1& F[a",a,f] & K[a',a,g]
since M’ is E.-conplete and the quantifiers in the defini-
tions of the predicates K, F are bounded. Similarly the con-
verse implication holds.
By Lemms 1.9 there exists a uniquely determined heredi-
tarily finite @ -complete < -complete set N such that
(¥, € > is isomorphic with M’ (by means of some mapping f).
It is easy to verify the following by induction:
ME= ilelée= f(c) = ie W (for any ce M’, i = 0,1,...).
Hence M k= = [ a;,8,,8 )&= A= e Coy,m,,ml,

Pinally, '_i: is a securing set for p in HF, hence by the first
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equivalence of the assertion (ii) (which has been proved)
and Example 2,2
!= -~ [nl,nz,ﬂ3(==> Ek——— - ['nl’-Z’- J<=> nl’ .2 = m.
2,4, Definition. We define (by induction) polynomial
formulag with j + 2 free variables amd their values - func-
tions of j + 1 arguments on natural numbers:
(1) The following formulas
g(xo,...,xj,x)...N(xo) & oo & N(xj) & N(x) & 0O(x),
;(xo,...,xj,x)...N(xo) .o & N(xj) & N(x) & 1(x),
;i(xo,ooo ,xj,X)...N(xo) & eee & N(xJ) & N(x) 8‘ x_='_-xi
are initial polynomial formulas with values
O(mo,...,mj) = 0, l(mo,...,mj) =1, Ii(mo""’mj) = my
(i =0,1,...,J) respectively.
(2) Let ar,@® be polynomial formulas with values P, Q,
respectively. Then the following formulas
TO @ (xo,...,xj,x)..(ﬂ ¥,2)((yexvy=x) & (zexve=x) &
& t(y,z,x) & ar (xo,...,xj,y) & e (xo,...,xj,z)

¥ op (xo,...,xj,x)..(i ¥,2){(yexvy=x) & (zexvz=x)&
&> (y,z,x) & sr (xo,...,xj,y) & o (xo,...,xj,z)

are polynomial formulas with values

P® Q(mo,...,nj) = P(mo,...,mj) + Q(no,...,mj),

P® Q(‘o'"'"j) = P(no,...,nj) . Q(no,...,nj),

respectively.

(3) Each polynomial formula can be obtained from the
initial polynomial formulas (1) by finite number of uses the
rale (2).

2,5, Lemma, (i) If gr is a polynomial formula with

J + 2 free variables, then its value is a polynomial of j + 1
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ar ginmen ts on natural numbers,

(ii) For any polynomial P of j + 1 ar giments on natu-
ral numbers there exist (many) polynomial formulas with j + 2
free variables such that their values are P.

Proof. Polynomials of j + 1 arguments on natural num-
bers are exactly those functions which can be obtained from
the functions 0,1,10,...,IJ~ (see 2.4 (1)) by finite number of
additions @ and multiplications @ (see 2.4 (2)).

2,6, Example. If a polynomial formula <« has a polyno-
mial P as its value, then for all natural numbers Boyeeeylym
we have

HF /= o L mo,...,mj,ml<=> P(mo'“"’ma‘) = m,

2.7. Theorem. Let a natural set M’ be a securing set
for p in M. If for some ao,...,aj,aeM, mo,...,mj,mép we ha-
ve
!t==_m°[ﬂ°] & cee &k E.j Laj] &E[a]
then ao,...,aj,ae M’ and for each polynomial formule ¥ with
a value P
M= o Lag,...,a5,8 )1 Mol 8gener8ra =
=1 P(mo’o--,mj) = M.

Proof, For the initial polynomial formulas the theorem
trivially holds. By Lemma 2.3 the rule (2) of Definition 2.4
does not lead out of the class of polynomial formulas satis-

fying the theorem.

§ 3. Generalized Trachtenbrot’s theorems.

3.1, Lemma (Matiasevi® [31,{4])). If a set R of natural

numbers is recursively enumerable, then there exist j and po-

- 50 -



lynomials P, Q of j + 1 arguments on natural numbers (with

natural coefficients) such that k € R¢=> P(k,myyeee ,mJ-) =

= Q(k,ml,...,mj) for some myseeesly

3.2. Notation. For any finite language L of the predi-
cate calculus we denote
Sem:L .se the set of all sentences (i.e. closed formulas) in
L N
TautL(CPC) ees the set of all classical tautologies in L
TautL(OPC) «o¢ the set of all observational tautologies in L
(i.e. all sentences which are true in every finite structure
for the language L)

3.3. Theorem, If ary finite language L of predicate
calculus contains at least one at least binary predicate, then
Sent; - Taut;(OPC) and Taut (CPC)
are effectively inseparalble recursively emmerable sets.

Proof. Let A, B be some effectively inseparable recursi-
vely enumerable sets of natural numbers (see Rogers [5], Th.
XII, § 7.8), let a partial recursive function g realize their
effective inseparability.

Assume we have a recursive sequence {qk; k= 0,1,...}
of sentences of the language L such that

(a) keA = Pye Sent; - Taut (OPC),

(b) keB = ¢y eTauty(CPC),

Denote by Wy recursively enumeratle set with the index
t, by h a primitive recursive function such that h(t) is an
index of the recursively enumerable set { k; ¢, & wt} , leee
Wo(g) = 1k; @pew,3.

If for ary disjoint sets W, ,W,
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Sent; - Taut;(OPC)e W, Tauty (CPC)eW,,
then by (a),(b) we have
therefore g(h(u)’h(v”¢wh(u)u'h(v) which implies

9g(h(u),h(v))¢wuuwv‘
Hence, Sent; - Taut;(OPC) and Taut;(CPC) are effectively in-

separable sets by means of the partial recursive function

flu,v) = fg(h(u),h(v))*
Now, we use Matiasevil’s theorem, the theory of natural

sets and polynomial formulas to construct formulas Px with
the desired properties (a),(b).

By Lemma 3.1 there are polynomials PA, QA of i + 1 argu-
ments and Py, Qg of j + 1 arguments on natural numbers (with
natural coefficients) such that
ke Ae=> Py (kymy,e0eymy) = QA(k,ml,...,mi) for some my,...,m;
ke B> PB(k'nl""’nj) = Qa(k,nl,...,nj) for some Nyyeeeyhy

thoose (by Lemma 2.5) polynomial formulas I,, @,, g,
© g with values PA’QA’PB’QB’» respectively, and denote

Cpeee (Fxpyeee, %, x)(2(xy) & 0w & Z(x;) & Z(x) & k(x,) &
& Ty (X yeeey Xy, X) & @)X ,000,x4,%))

{2k... (3y°,...,yj,y)(Z(y°) & o008 Z(yy) & Z(y) & k(y ) &
&JI’B()’O,...,yj,y)& ©plygreees¥;¥))

Pyeee TNS —> (o, —> 3,).

Since the language L contains at least one at least bina-
ry predicate, we can assume that € Sent;. We wish to show

(a),(b).
(a) If keA, then there exist my,...,n;,m such that

PA(k,ml,...,mi) =m= QA(k,ml,.-.,mi).
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By Example 1.17 there is a natural set s which is a se-
curing set for m” = max (k,ml,...,mi,m) in HF. By Theorem
2.7
sar= o, [x,m,ccom,mI & @, (k,my,yeee,m,m]
hence s = TNS & cc,.

Assume 8 = (3,, i.e. for some byyeeesbs,be S we have

J',
8E20bI%& ... Z0lb;] & Z0bl & kIby] &
& :vrB[bo,...,bj,bJ & @E[bo,...,bj,bl .
Since s is finite, there exist nl,...,nj,n such that
Hence, by Theorem 2.7,
PB(k’nl”"’n,j) =n = QB(k’nl""’n,j)
which contradicts k¢ B.
(b) If ke&B, then there exist NpyeeeyDsyn such that
PB(k,nl,...,nJ-) =n = QE(k,nl,...,nJ-).
Let M be a model of TNS and o¢,. Then for some a ,...,a,,
aeM
ME=Z2le 1% 0.8 20a] &% Zlalkklalk
&m,lag,...,a5,01 % @, La ,...,a5,8],
Assume M F=my [a;] & ... & m; Ca;] & mlal
for some natural numbers Myjyeee,D;,m.
Hence, by Theorem 1.18 (i), there exists a natural set M’
which is a securing set for m” = max (k,mj,...,m;,m) in M,
therefore, by Theorem 2.7,
Py(kymyyeee,my) = m = Qu(k,my,e0.,my)
which contradicts k€A,
Thus, there is an a’e {al,...,ai,aZ- such that

ME=Nla’l& Z(a“]l and Mi=pla’] for all p.
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Hence, by Theorem 1,18 (ii), there exists a natural set
Mp which is a securing set for p = max (k,nl,...,nj,n) in M,
anl, by Lemma 1.12, there are bo,...,bj,bcy_ such that
Mk Lb 1& _qltbll & .o & gj[bjl & nlbvl,
Therefore, by Theorem 2.7
M= ’JTB[bO,...,bJ-,b 1& ep Ebo,...,bj,bJ ,
i.e. M is a model of f3,.

3.4. Corollary. The observational predicate calculus
with at least one at least binary predicate is not axiomatiz-
able (i.e. the set of all its tautologies is not recursively
enumerable), Consequently, the calculus in question is not
decidable.

Now we shall consider complexity of formulas defined by
means of the mumber of alternating blocks of quantifiers,

3.5. Notation. Let Fml; be a class of all formulas of
& lenguage L. For any F,C,DEFml; we denote
EqF = { ¥ € FmL;; there is ¢ e F such that y<>¢ is a
classical tautology}? ,

VC=EQ4{(Vxy,eeeyx;) @ 5 € C,i=1,2,...%,
1C=Eqg{y ; ¥e 3, “
C—>D=EQ {y—> o ; e Cc, e D7,

and analogousdly 3 C, C& D, CvD, C<«<— D,

3.6. Definition. We conmstruct (by induction) classes
ALE, (n=0,1,...):

A, =E =B =1Ig iB e Fml;; (3 is an open formulaj,

®©
Ay = VE, B4y = 3 A, (notice Fmlp = O (A UE)).

We also use the following notation:

AEA,..B for the class AEA,..,-formula for its elements
m="Aomep fns S Tomes ' !
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and analogously for En.

3.7. Lemma, (1) TNS is an AEA-formula.

(2) 2Z(x) is an EAE-formula.

(3) N(x, n(x) (n = 0,1,...) are AEA-formulas.

(4) * (x,y,2), = (x,¥,2) are EAEA-formulas.

(5) Polynomial formulas are EAEA-formulas.

Proof., Proofs of all points are routine by using usual .
prenex operatiors ; for example we prove (3):

The most comple x subformula of N(x)

(Vv)(vex— (3 w)(S(v,v,w) & v¥w & (wexvw=x)))
is an element of the class of formulas
V(B—> (3 (AB & (114B) & (BvAB)))) = V(B—> EAB) = AEAB,
The predicate n(x) is equivalent with the formula
N(x) & (3 “1""’“:1)(%,&*5 ui_'tuj Eujex &oeo AU EX &
&(Vu)luex— (u=uyv...vu=u))))
which is an clement of the class of formulas
AEAB % (3 (EB& B & (V (B—> AB)))) = AEAB & (3 (EB & AB)) =
= AEAB & EAB = AEAB.

3.8, Theorem. If a finite language L contains at least
one at least binary predicate, then there exists a primitive
recursive function rL such that, for any index t of any recur-
sively enumerable theory T in the observational predicate cal-
culus with the language L such that T&Teut;OPC), f;(t) is an
AEAE-formula and fy(t) e Taut; (OPC) - T.

Proof. Assume we have a recursive sequence 4 Yyi k=
= 0,1,...3 of sentences of the language L such that
keW > ¥, €Sent; - Taut;(OPC)

for every recursive enumeralle set W, with an index k. There
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is a primitive recursive function h such that
'h(t)= { k; ‘que 't; for all t = O,l,--o .
Hence
therefore, if W, & Taut;(OPC) then ¥y (.)€ Tarty (OPC) - W,.
Now we construct formulas <. Since K = {k; kew, §
is a recursively enumeratle set of natural numbers, there
are (by Theorem 3.1), polynomials P, Q of i + 1 arguments
such that
ke K<=> P(k,m ,e.0,m;) = Q(Kymy,0e.,m;) for some my,...,m;.
Choose (by Lemma 2.5) polynomial formulas a,® with ve-
lues P, Q,respectively , and denote
Qekooo (3 xoyoco,xi,x)(z(xo) 8\ cce 8( Z(xi) 2( Z(x) 8( E(XO)&
& a1 (XgyeeesXy,x) & @ (Xgyeee,X;,X),
vk... INS —> = mk
It is easy to prove, similarly as in the proof of Theorem
3.3,
ke K== ¥y SentL - TautL(OPC).
Finally, by Lemma 3.7, %, is EAFA-formula, therefore
¥ € AEAB—> (1 EAEAB) = AEAEB.

3.9. Remark. After (1] had been comple ted I was infor-
med by P. H4jek that Professor D. Scott had proved the result
3.4 using different methods; Scott’s proof has not been pub-

lished.
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