MULTIVALUED GENERALIZED CONTRACTIONS AND FIXED POINT THEOREMS

Shigeru ITOH, Tokyo

Abstract: We prove fixed point theorems for multivalued generalized contraction and contractive mappings in metrically convex metric spaces. Theorem 1 generalizes a fixed point theorem of Assad-Kirk for multivalued contraction mappings, Theorem 2 that of Assad for multivalued contractive mappings.

Key words: Multivalued generalized contraction (contractive) mapping, metrically convex metric space.

AMS: Primary 47H10, 54H25 Ref. Z.: 7.978.53
Secondary 54C60, 54E50

1. Introduction. Recently fixed point theorems for multivalued contraction or contractive mappings were obtained by Nadler [9], Assad-Kirk [1] and Assad [2], etc. On the other hand, Kannan [5] initiated studies of certain type of mappings which have many similarities to contraction and nonexpansive mappings. His ideas were further studied and generalized by Reich [10], Ćirić [3], Kannan [8], Hardy-Rogers [5], Goebel-Kirk-Shimi [4] and Wong [11, 12, 13], etc.

In this paper we shall give fixed point theorems for multivalued generalized contraction mappings and generalized contractive mappings. Theorem 1 is an extension of a theorem in Assad-Kirk [1]. Theorem 2 extends a fixed point theorem in Assad [2].
The author wishes to express his thanks to Professors H. Umegaki and W. Takahashi for their encouragement in preparing this paper.

2. Preliminaries. Let \((X, d)\) be a metric space. For any \(x \in X\) and \(A \subseteq X\), we denote \(d(x, A) = \inf \{d(x, y) : y \in A\}\). It can easily be checked the following lemma.

Lemma 1. For any \(x, y \in X\) and \(A \subseteq X\), we have
\[
|d(x, A) - d(y, A)| \leq d(x, y).
\]

Let \(\mathcal{CB}(X)\) denote the family of all nonempty closed bounded subsets of \(X\) and \(D\) be the Hausdorff metric on \(\mathcal{CB}(X)\) induced by the metric \(d\) on \(X\). The following lemmas are direct consequences of the definition of Hausdorff metric.

Lemma 2. If \(A, B \in \mathcal{CB}(X)\) and \(x \in A\), then for any positive number \(\varepsilon\), there exists \(y \in B\) such that
\[
d(x, y) \leq D(A, B) + \varepsilon.
\]

Lemma 3. For any \(x \in X\) and any \(A, B \in \mathcal{CB}(X)\), it follows that
\[
|d(x, A) - d(x, B)| \leq D(A, B).
\]

\((X, d)\) is said to be metrically convex if for any \(x, y \in X\) with \(x \neq y\), there exists an element \(z \in X\) such that
\[
d(x, z) + d(z, y) = d(x, y).
\]

In Assad and Kirk [11] the following is noted.

Lemma 4. If \(K\) is a nonempty closed subset of a complete and metrically convex metric space \((X, d)\), then for any \(x \in K, y \notin K\), there exists a \(z \in \partial K\) (the boundary of \(K\)) such
that
\[d(x, z) + d(z, y) = d(x, y). \]

3. Generalized contraction mappings. Let \(K \) be a nonempty closed subset of a metric space \((X, d)\) and \(T \) be a mapping of \(K \) into \(\mathcal{C}(X) \). \(T \) is said to be a generalized contraction mapping if there exist nonnegative real numbers \(\alpha, \beta, \gamma \) with \(\alpha + 2\beta + 2\gamma < 1 \) such that for any \(x, y \in K \),
\[
D(T(x), T(y)) \leq \alpha d(x, y) + \beta \{d(x, T(x)) + d(y, T(y))\} + \gamma \{d(x, T(x)) + d(y, T(x))\}.
\]
If \(\beta = \gamma = 0 \), then \(T \) is called \(\alpha \)-contraction.

The following theorem holds.

Theorem 1. Let \((X, d)\) be a complete and metrically convex metric space, \(K \) a nonempty closed subset of \(X \). Let \(T \) be a generalized contraction mapping of \(K \) into \(\mathcal{C}(X) \). If for any \(x \in \partial K \), \(T(x) \in K \) and \(\frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} < 1 \), then there is a \(z \in K \) such that \(z \in T(z) \).

Proof. Denote \(k = \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \), then \(0 \leq k < 1 \).
If \(k = 0 \), then the conclusion of Theorem 1 is obvious. So we may assume that \(k > 0 \). We choose sequences \(\{x_n\} \) in \(K \) and \(\{y_n\} \) in \(X \) in the following way. Let \(x_0 \in \partial K \) and \(x_1 = y_1 \in T(x_0) \). By Lemma 2, there exists a \(y_2 \in T(x_1) \) such that
\[
d(y_1, y_2) \leq D(T(x_0), T(x_1)) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k.
\]
If \(y_2 \in K \), let \(x_2 = y_2 \). If \(y_2 \notin K \), choose an element \(x_2 \in K \) such that \(d(x_1, x_2) + d(x_2, y_2) = d(x_1, y_2) \) using Lemma 4. By induction, we can obtain sequences \(\{x_n\} \), \(\{y_n\} \) such that for
n = 1, 2, \ldots;

(1) \ y_{n+1} \in T(x_n),

(2) \ d(y_n, y_{n+1}) \leq D(T(x_{n-1}), T(x_n)) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n,

where

(3) \ y_{n+1} = x_{n+1} \text{ if } y_{n+1} \in K, \text{ or }

(4) \ d(x_n, x_{n+1}) + d(x_{n+1}, y_{n+1}) = d(x_n, y_{n+1}) \text{ if } y_{n+1} \notin K.

We shall estimate the distance \(d(x_n, x_{n+1}) \) for \(n \geq 2 \).

There arise three cases.

(i) The case that \(x_n = y_n \) and \(x_{n+1} = y_{n+1} \). We have

\[
\begin{align*}
\text{d}(x_n, x_{n+1}) &= \text{d}(y_n, y_{n+1}) \\
&\leq D(T(x_{n-1}), T(x_n)) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \\
&\leq \alpha d(x_{n-1}, x_n) + \beta \delta d(x_{n-1}, T(x_{n-1})) + d(x_n, T(x_n)) \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \\
&+ \gamma \{ d(x_{n-1}, T(x_n)) + d(x_n, T(x_{n-1})) \} \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \\
&\leq \alpha d(x_{n-1}, x_n) + \beta \delta d(x_{n-1}, x_n) + d(x_n, x_{n+1}) \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n,
\end{align*}
\]

hence

\[
(1 - \beta - \gamma)d(x_n, x_{n+1}) \leq (\alpha + \beta + \gamma)d(x_{n-1}, x_n) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n
\]

and

\[
\begin{align*}
d(x_n, x_{n+1}) &\leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} d(x_{n-1}, x_n) + \frac{k^n}{1 + \beta + \gamma}.
\end{align*}
\]

(ii) The case that \(x_n = y_n \) and \(x_{n+1} \neq y_{n+1} \). By (4) we obtain that

\[
\begin{align*}
d(x_n, x_{n+1}) &\leq d(x_n, y_{n+1}) = d(y_n, y_{n+1}).
\end{align*}
\]

As in the case (i), we have
\[d(y_n, y_{n+1}) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} d(x_{n-1}, x_n) + \frac{k^n}{1 + \beta + \gamma}, \]

thus

\[d(x_n, x_{n+1}) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} d(x_{n-1}, x_n) + \frac{k^n}{1 + \beta + \gamma}. \]

(iii) The case that \(x_n \neq y_n \) and \(x_{n+1} = y_{n+1} \). In this case \(x_{n-1} = y_{n-1} \) holds. We have

\[d(x_n, x_{n+1}) = d(x_n, y_n) + d(y_n, x_{n+1}) = d(x_n, y_n) + d(y_n, y_{n+1}). \]

By (2) it follows that

\[d(y_n, y_{n+1}) \leq D(T(x_{n-1}), T(x_n)) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \]

\[\leq \alpha d(x_{n-1}, x_n) + \beta d(x_{n-1}, T(x_{n-1})) + d(x_n, T(x_n)) \]

\[+ \gamma d(x_{n-1}, T(x_n)) + d(x_n, T(x_n)) = \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \]

\[\leq \alpha d(x_{n-1}, x_n) + \beta d(x_{n-1}, y_n) + d(x_n, x_{n+1}) \]

\[+ \gamma d(x_{n-1}, x_n) + d(x_n, x_{n+1}) = \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n. \]

Since \(0 \leq \alpha < 1 \) and \(d(x_{n-1}, x_n) + d(x_n, y_n) = d(x_{n-1}, y_n) \), we obtain

\[d(x_n, x_{n+1}) \leq (1 + \gamma) d(x_n, y_n) + (\alpha + \gamma) d(x_{n-1}, x_n) + \]

\[+ \beta d(x_{n-1}, y_n) + (\beta + \gamma) d(x_n, x_{n+1}) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n \]

\[\leq (1 + \gamma) d(x_{n-1}, y_n) + \beta d(x_{n-1}, y_n) \]

\[+ (\beta + \gamma) d(x_n, x_{n+1}) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n, \]

and

\[d(x_n, x_{n+1}) \leq \frac{1 - \beta - \gamma}{1 + \beta + \gamma} \left(d(x_{n-1}, y_n) + \frac{k^n}{1 + \beta + \gamma} \right). \]

As in the case (ii), we have

\[d(x_{n-1}, y_n) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} d(x_{n-2}, x_{n-1}) + \frac{k^{n-1}}{1 + \beta + \gamma}. \]
Thus it follows that
\[
d(x_n, x_{n+1}) \leq \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \ d(x_{n-2}, x_{n-1})
\]
\[+ \frac{k^{n-1}}{1 - \beta - \gamma} + \frac{k^n}{1 + \beta + \gamma}.
\]

The case that \(x_n + y_n \) and \(x_{n+1} + y_{n+1} \) does not occur. Since
\[
\frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} \leq \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2}, \text{ for } n \geq 2 \text{ we have}
\]
\[
d(x_n, x_{n+1}) \leq \begin{cases}
kd(x_{n-1}, x_n) + \frac{k^n}{1 - \beta - \gamma}, & \text{or} \\
kd(x_{n-2}, x_{n-1}) + \frac{k^{n-1} + k^n}{1 - \beta - \gamma}.
\end{cases}
\]

Put \(\sigma = \frac{1}{k^2} \max \{ \| x_0 - x_1 \|, \| x_1 - x_2 \| \} \), then by induction we can show that
\[
d(x_n, x_{n+1}) \leq k^{\frac{n}{2}} (\sigma + \frac{n}{1 - \beta - \gamma}) (n = 1, 2, \ldots).
\]
It follows that for any \(m > n \geq 1 \),
\[
d(x_n, x_m) \leq \sigma \sum_{i=n}^{m-1} (k^2)^i + \frac{1}{1 - \beta - \gamma} \sum_{i=n}^{m-1} i(k^2)^i.
\]
This implies that \(\{x_n\} \) is a Cauchy sequence. Since \(X \) is complete and \(K \) is closed, \(\{x_n\} \) converges to some point \(z \in K \). By the way of choosing \(\{x_n\} \), there exists a subsequence \(\{x_{n_i}\} \) of \(\{x_n\} \) such that \(x_{n_i} = y_{n_i} \) (\(i = 1, 2, \ldots \)). Then we have
\[
d(x_{n_i}, T(z)) \leq D(T(x_{n_i-1}), T(z))
\]
\[\leq \alpha d(x_{n_i-1}, z) + \beta \left(d(x_{n_i-1}, T(x_{n_i-1})) + d(z, T(z)) \right)^\gamma
\]
\[+ \gamma \left(d(x_{n_i-1}, T(z)) + d(z, T(x_{n_i-1})) \right)^\gamma
\]
\[\leq \alpha d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, z) + \beta d(x_{n_i-1}, x_{n_i})
\]
Therefore, $d(x_n, T(z)) \to 0$ as $i \to \infty$. By the inequality
\[
d(z, T(z)) \leq d(x_n, z) + d(x_n, T(z))
\]
and the above result, it follows that $d(z, T(z)) = 0$. Since $T(z)$ is closed, this implies that $z \in T(z)$. q.e.d.

Since every Banach space is metrically convex, we have the following corollary for singlevalued mappings.

Corollary 1. Let E be a Banach space and K be a nonempty closed subset of E. Let f be a generalized contraction mapping of K into E. If $f(\partial K) \subset K$ and
\[
\frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} < 1,
\]
then there exists a (unique) fixed point of f in K.

3. **Generalized contractive mappings.** Let K be a nonempty closed subset of a metric space (X, d). Let T be a mapping of K into $\mathcal{CB}(X)$. T is said to be a generalized contractive mapping if there exist nonnegative real numbers α, β, γ such that for any $x, y \in K$ with $x \neq y$,
\[
D(T(x), T(y)) < \alpha d(x, y) + \beta \{d(x, T(x)) + d(y, T(y))\}
\]
\[
+ \gamma \{d(x, T(y)) + d(y, T(x))\},
\]
- 253 -
where $0 < \alpha + 2\beta + 2\gamma \leq 1$. If $\beta = \gamma = 0$ and $\alpha = 1$, then T is called contractive. T is said to be continuous at $x_0 \in K$ if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$D(T(x), T(x_0)) < \varepsilon$$

whenever $d(x, x_0) < \delta$. If T is continuous at each point of K, we say that T is continuous on K.

We shall give a fixed point theorem for continuous generalized contractive mappings.

Theorem 2. Let (X, d) be a complete and metrically convex metric space and K be a nonempty compact subset of X. Let T be a generalized contractive mapping of K into $\mathcal{B}(X)$ and continuous on K. If for any $x \in \partial K$, $T(x) \subset K$ and

$$\frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \leq 1,$$

then there exists an element $z \in K$ such that $z \in T(z)$.

Proof. Define a function g of K into \mathbb{R}^+ (nonnegative real numbers) by $g(x) = d(x, T(x))$ ($x \in K$), then by Lemma 1 and Lemma 3, we have

$$|g(x) - g(y)| \leq d(x, T(x)) - d(y, T(x)) + D(T(x), T(y)) = d(x, y) + D(T(x), T(y)).$$

Hence g is continuous and since K is compact, there exists a $z \in K$ such that $g(z) = \min \{g(x) : x \in K\}$. Suppose that $g(z) = 0$, then we obtain a contradiction. For each $n = 1, 2, \ldots$, there exists a $x_n \in T(z)$ for which

$$d(x_n, z) \leq g(z) + \frac{1}{n}.$$

If $x_n \in K$ for n sufficiently large, then some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges to an $x_0 \in K$. We may assume that $x_0 \neq z$, then
\[g(x_0) = d(x_0, T(x_0)) \leq D(T(z), T(x_0)) \]
\[< \alpha d(z, x_0) + \beta d(z, T(z)) + d(x_0, T(x_0)) \]
\[\cdot \gamma d(z, T(x_0)) + d(x_0, T(z)) \]
\[\leq \alpha g(z) + \beta g(x_0) + \gamma g(z) + g(x_0) \]

and

\[(1 - \beta - \gamma) g(x_0) < (\alpha + \beta + \gamma) g(z). \]

Thus

\[g(x_0) < \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} g(z) \leq g(z), \]

contradicting the minimality of \(g(z) \). If there exists a subsequence \(\{x_{n_1}\} \) of \(\{x_n\} \) such that \(x_{n_1} \notin K \), then \(z \notin \partial K \). For simplicity, we may assume that \(x_n \notin K, \ n = 1, 2, \ldots \). By Lemma 4, for each \(n \) there exists \(y_n \in \partial K \) for which

\[d(x_n, y_n) + d(y_n, z) = d(x_n, z). \]

Since \(K \) is compact and \(T(y_n) \subseteq K \), there exists \(w_n \in T(y_n) \) such that \(d(x_n, w_n) = d(x_n, T(y_n)) \). We may also assume that \(\{y_n\} \) converges to some \(y_0 \in \partial K \). Let

\[\varepsilon = \alpha d(y_0, z) + \beta d(y_0, T(y_0)) + d(z, T(z)) \]
\[+ \gamma d(y_0, T(z)) + d(z, T(y_0)) \cdot D(T(y_0), T(z)), \]

then \(\varepsilon > 0 \), because \(y_0 \notin z \). For this \(\varepsilon \), there exists a positive integer \(N \) such that for any \(n \geq N \)

\[d(y_0, z) - d(y_n, z) < 2\varepsilon, \]
\[g(y_0) - \varepsilon < g(y_n), \]
\[d(x_n, z) < g(z) + 2\varepsilon, \] and
\[D(T(y_n), T(z)) < D(T(y_0), T(z)) + 2\varepsilon. \]

Then for any \(n \geq N \), we have

\[g(y_0) - \varepsilon < g(y_n) = d(y_n, T(y_n)) \]

- 255 -
\[
\sum d(y_n, w_n) \leq d(y_n, x_n) + d(x_n, w_n) = d(x_n, y_n) + d(x_n, T(y_n)) \\
\leq d(x_n, y_n) + d(T(z), T(y_n)) \leq d(x_n, y_n) + d(T(z), T(y_0)) + 2\varepsilon \\
= d(x_n, y_n) + \alpha d(y_o, z) + \beta \delta d(y_o, T(y_0)) + d(z, T(z)) + \\
\gamma \delta d(y_o, T(z)) + d(z, T(y_o)) - 6\varepsilon \\
\leq d(x_n, y_n) + (\alpha + 2\gamma) d(y_o, z) + (\beta + \gamma) g(y_o) + (\beta + \gamma) g(z) - \\
- 6\varepsilon < (1 + \beta + \gamma) g(z) + (\beta + \gamma) g(y_o) - 2\varepsilon ,
\]
hence
\[
g(y_o) < \frac{1 + \beta + \gamma}{1 - \beta - \gamma} g(z) - \frac{\varepsilon}{1 - \beta - \gamma}
\]
Take a \(u \in T(y_o) \) such that \(d(y_o, T(y_o)) = d(y_o, u) \). Since \(g(z) > 0 \), \(u \neq y_o \). Thus we obtain
\[
g(u) = d(u, T(u)) \leq d(T(y_o), T(u)) \\
< \alpha d(y_o, u) + \beta \delta d(y_o, T(y_o)) + d(u, T(u)) + \\
\gamma \delta d(y_o, T(u)) + d(u, T(y_o)) + \\
\leq (\alpha + \beta + \gamma) g(y_o) + (\beta + \gamma) g(u)
\]
and
\[
g(u) < \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} g(y_o).
\]
Therefore it follows that
\[
g(u) < \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} g(z) - \frac{(\alpha + \beta + \gamma)\varepsilon}{(1 - \beta - \gamma)^2}
\]
\[
\leq g(z) - \frac{(\alpha + \beta + \gamma)\varepsilon}{(1 - \beta - \gamma)^2}.
\]
This is a contradiction. Hence \(g(z) = 0 \) and since \(T(z) \) is closed, we have \(z \in T(z) \). \ q.e.d.

In Banach spaces, the following corollary holds.
Corollary 2. Let K be a nonempty compact subset of a Banach space E and f be a continuous generalized contractive mapping of K into E. If $f(\partial K) \subset K$ and
\[
\frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \leq 1,
\]
then there exists a (unique) fixed point of f in K.

Remark. If for any $x \in K$, $T(x) \subset K$ in Theorem 1 (or Theorem 2), then the conditions that $k = \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} < 1$ (or $k \leq 1$) and that X is metrically convex are unnecessary.

References
[9] NADLER S.B. Jr.: Multi-valued contraction mappings, Pa-

Department of Information Sciences
Tokyo Institute of Technology
Oh-Okayama, Meguro-Ku, Tokyo 152
Japan

(Oblatum 2.4. 1976)