Commentationes Mathematicae Universitatis Caroline

Tomáš Kepka
 Epimorphisms in some groupoid varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 265--279

Persistent URL: http://dml.cz/dmlcz/105772

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
18,2 (1977)

EPTMORPHISMS IN SOME GROUPOID VARIETIES
Tom@̉ KEPKA, Praha

Abstract

Two classes of groupoid identities generating varieties with non-surjective epimorphiams are investigated.

Key rords: Epimorphism, groupoid, variety.
AMS: 08A15
Ref. Ž.: 2.725.2

Every variety of universal algebras can be viewed as a category of structures. In this case, a morphism is a monomorphism iff it is an injective homomorphism. The corresponding assertion for epimorphisms is not true. The first known examples of varieties with non-surjective epimorphisms seen to be the varieties of semigroups and rings. The reader is referred to $0^{\circ}[1]$ for original proofs of these facts. The situation in semigroups was investigated in detail in [2] and [3]. Some generalizations for algebras and categories were proved in [4] and [5]. In this paper we deal with two methods which enable us to find o large number of groupoid identities generating varieties with non-surjective epimorphisms. The first one is in some sense a generalization of the classical method used for commutative semigroups. The corresponding identities are similar to the medial law $x y . u v=x u . y v$. The second method can be used for certain varieties of commatative groupoids,
namely for those varieties, every groupoid of which has at most one idempotent.

1. Introductione Let F be an absolutely free groupoid generated by a set X of variables. Elements from F are called (groupoid) terms. We define the length $1(t)$ of a term t by $I(u)=1$ for every $u \in X$ and $l(r s)=1(r)+1(s)$ for all r; sef. Purther we denote by var (t) the set of all variables occurring in t. The notation $t=t\left(x_{1}, \ldots, x_{n}\right)$ means that $\operatorname{var}(t)=\left\{x_{1}, \ldots, x_{n}\right\}$. If t is a term and u is a variable then $o(t, u)$ is the number of occurrences of u in t. If G is a groupoid then t_{G} is the corresponding n-ary operation defined on G by means of the term t. If t, s are terms then $\operatorname{Mod}(t \hat{} s)$ is the variety of groupoids satiafying the identity $t \hat{i} \mathrm{~s}$. We put $\boldsymbol{\varphi}=\operatorname{Mod}(x y \hat{=} y x), \boldsymbol{J}=\operatorname{Mod}(x \hat{=} x x)$, $\varphi=\operatorname{Mod}(x, y z \hat{i} x y, z), M=\operatorname{Mod}(x y \cdot u v \hat{=} x u \cdot y v), D=$ $=\operatorname{Mod}(x, y z \hat{N} x y . x z, z y . x \hat{N} z x \cdot y x)$. The following lemma is clear.
1.1. Lemma. $\varphi \cap \mathscr{Y} \equiv M$ and $m \cap \mathscr{J}$

A groupoid identity $t \hat{\approx} s$ is said to be quasibalanced if $o(t, u)=o(s, u)$ for every variable u. A groupoid variety is called quasibalanced if it can be determined by a set of quasibalanced identities. The following lemma is obvious.
1.2. Iemma. The following conditions are equivalent for a groupoid variety U :
(1) If $U \underset{\sim}{m} \operatorname{Mod}(t \hat{\equiv} s)$ then $t \hat{\#} s$ is quasibalanced.
(ii) U is quasibalanced.
(iii) $\mathscr{\varphi} \mathcal{Y}$ U.
2. Closed subgroupoide. Let G be a groupoid and $a \in G$. We define two mappings L_{a}, R_{a} of G into G by $L_{a}(b)=a b$ and $R_{a}(b)=$ $=$ ba for every $b \in G . T h e$ groupoid G is called left(right) cancellation(division) groupoid if $L_{a}\left(R_{a}\right)$ is an injective(surjectivelmapping for every $a \in G$. Further, G is called a left (right) quasigroup if $L_{a}\left(R_{a}\right)$ is bijective for every ac \boldsymbol{O}. Finally, G is a cancellation groupoid if it is both left and right cancellation groupoid. Similarly we define division groupoids and quasigroups.

Let H be a subgroupoid of a groupoid G. We say that H is a left closed subgroupoid of G if $b \in H$ whenever $a, b \in G$ and a, abe H. Similarly we define right closed and closed subgroupoids. If $M \in G$ is a subset then $\mathrm{cl}_{G}(M)$ denotes the left closed subgroupoid generated by M. Similarly we define $\mathrm{cr}_{G}(\mathrm{M})$ and $c_{G}(M)$. A subgroupoid $K \subseteq G$ is called left dense if $c l_{G}(K)=$ = G. Similarly we define right dense and dense subgroupoids. The following two lemmas are easy.
2.1. Lemma. Let H be a subgroupoid of a groupoid G. Then H is a left dense (resp. right dense, dense) subgroupoid of $\mathrm{cl}_{G}(\mathrm{H})$ (resp. $\mathrm{cr}_{\mathrm{G}}(\mathrm{H}), \mathrm{c}_{\mathrm{G}}(\mathrm{H})$).
2.2. Lemma. Let H be a left (right) closed subgroupoid of a left (right) division groupoid G. Then H is a left (right) division groupoid.
2.3. Lemma. Let H be a left (right) dense subgroupoid of a groupoid G and f, g be two homomorphisms of G into a left (right) cancellation groupoid K such that $f|H=g| H$. Then $f=g$.

Proof. Put $A=\{a \in G \mid f(a)=g(a)\}$. Then $H \subseteq A$ and A is a subgroupoid of G. Moreover, A is a left right closed subgroupoid, as one may check easily. Hence $A=G$.
2.4. Lemma. Let H be a dense subgroupoid of groupoid G and f, G be two homomorphisms of G into a cancellation groupoid K such that $\mathrm{f}|\mathrm{H}=\mathrm{g}| \mathrm{H}$. Then $\mathrm{f}=\mathrm{g}$ 。

Proof. Similar to that of 2.3 .
A groupoid G is said to be an LN-groupoid ($R N-g r o u p o i d$) if every factorgroupoid of the cartesian product $G \times G$ is a left (right) cancellation groupoid. Further, G is an Nrgroupoid if it is both an LN and RN-groupoid. The following result is not difficult.
2.5. Lemms. (i) Every group is an N-quasigroup.
(ii) Every quasigroup from $\mathscr{C} \cap D$ is an N-quasigroup. The class of quasigroups can be considered as a variety of algebras with three binary operations. The following lemma is evident.
2.6. Lemma. Let G be a subgroupoid of a quasigroup Q. Then G is a dense subgroupoid of Q iff Q is generated by G as quasigroup.
3. Medial groupoids and generalizations. Let $t=$ $=t\left(x_{1}, \ldots, x_{n}\right)$ be a term. We put
$V(t)=\operatorname{Mod}\left(t\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \hat{=} t\left(x_{1}, \ldots, x_{n}\right), t\left(y_{1}, \ldots, y_{n}\right)\right)$.
For example, if $t=x \cdot y x$ then

$$
V(t)=\operatorname{Mod}\left(x_{1} y_{1} \cdot\left(x_{2} y_{2} \cdot x_{1} y_{1}\right) \hat{=}\left(x_{1} \cdot x_{2} x_{1}\right)\left(y_{1} \cdot y_{2} y_{1}\right)\right)
$$

3.1. Lommg. $M=V(x y)$.

Proof. Easy.
3.2. Lemma. $\quad m \subseteq V(t)$ for every term t.

Proof. By induction on $l(t)$.
3.3. Lemma. Let t be a term. Then $\operatorname{Mod}(x \hat{I} t) \leq V(t)$.

Proof. Easy.
Let $t=t(x, y)$ be a term and G be a groupoid. We shall say that G is a t-complete groupoid if for $a l l a, b \in G$ there are c, $d \in G$ such that $t_{G}(a, c)=b=t_{G}(d, a)$. The following lemma is clear.
3.4. Lemma. Let $t=x y$ and G be a groupoid. Then G is $t-c 0^{-}$ mplete iff G is a division groupoid.

Let $R(+)$ be the additive group of rational numbers, P be the set of positive rational numbers and $a 0 b=1 / 2(a+b)$ for $a l l a$, $b \in R$. The next lemma is almost obvious.
3.5. Lemma. (i) $R(+) \in \varphi \cap \mathcal{Y}, R(+)$ is an N-quasigroup and $Q(+)$ is a dense subgroupoid of $R(+)$.
(ii) $R(0) \in M \cap \varphi \cap \mathcal{Y}, R(0)$ is an N-quasigroup and $P(0)$ is a dense subgroupoid of $R(0)$.
(iii) $R(+), R(0) \in V(t)$ for every term t.
(iv) $R(+), R(0)$ are t-complete for every term $t=t(x, y$..
3.6. Lemma. Let $t=t(x, y)$ be a term and K, H be two subgroupoids of a groupoid $G \in V(t)$. Suppose that K, H are t-complete, $K \cap H$ is non-empty and G is generated by $K \cup H$. Then G is a homomorphic image of the cartesian product $\mathrm{K} \times \mathrm{H}$.

Proof. Define $f: K \times N \rightarrow G$ by $f(a, b)=t_{G}(a, b)$ for all $a \in K$ and $b \in H$. Since $G \in V(t), f$ is a homomorphism. Let $a \in K \cap H$ and $b \in H$ be arbitrary. There is $c \in H$ such that $b=t_{H}(a, c)$. However $t_{H}(a, c)=t_{G}(a, c)=f(a, c)$. Hence $H \subseteq \operatorname{Im} f$. Similarly $K \subseteq \operatorname{Im} f$ and $\operatorname{Im} f=G$ 。
3.7. Proposition. Let $t=t(x, y)$ be a term and $G \in V(t)$ be a t-complete LN-groupoid (RN-groupoid). Let $H \subseteq G$ be left (right) dense subgroupoid. Then the inclusion $H \subset G$ is
an epimorphism in $\mathcal{V}(t)$.
Proof. Let $f, g: G \rightarrow K$ be such that $K \in V(t)$ and if $H=g \mid . H$. We can assume that K is generated by $A \cup B$, whera $A=\operatorname{Im} P$ and $B=\operatorname{Im} g$. The groupoids A, B are homomorphic images of G, and therefore A, B are t-complete. Further, $f(H)=g(H) \subseteq A \cap B$. By $3.6, K$ is a homomorphic image of $A \times B$. However $A \times B$ is a homomorphic image of $G \times G$, and consequentIy K is a left (right) cancellation groupoid. An application of 2.3 finishes the proof.
3.8. Proposition. Let $t=t(x, y)$ be a term and $G \in \mathcal{V}(t)$ be a t-complete N-groupoid. Let $H S G$ be a dense subgroupoid. Then the inclusion $H \subseteq G$ is an epimorphism in $V(t)$.

Proof. Similar to that of 3.7 .
3.9. Corollary. Let Q be a medial N-quasigroup generated as a quasigroup by a subgroupoid G. Then the inclusion $G \subseteq \mathbb{Q}$ is an epimorphism in the variety m.

Proof. Apply 3.8, 3.1, 3.4 and 2.6.
3.10. Theorem. Let t be a groupoid term containing at least two variables. The following varieties have non-surjective epimorphisms:
(1) Every variety \mathcal{U} such that $\mathscr{C} \cap \varphi \subseteq \mathcal{U} \subseteq \mathcal{V}(t)$.
(ii) Every variety \mathcal{U} such that $m \cap \varphi \cap \mathcal{I} \subseteq \mathcal{U} \subseteq$ $\subseteq \mathcal{V}(t)$.
(iii) Every variety $U \cap V(t)$, where U is a quasibalanced variety.
(iv)) The variety generated by $\varphi \cap \mathcal{\rho}$ and Mod ($x \hat{=} t$).

Proof. (i) It is easy to see that there exists a term
$s=s(x, y)$ such that $\mathcal{V}(t) \subseteq \mathcal{V}(s)$. According to 3.5 and 3.8, the inclusion $P(+) \subseteq R(+)$ is an epimorphism in $V(s)$, and hence in $V(t)$.
(ii) Similarly as for (i).
(iii) and (iv). Clearly, $\mathcal{C} \cap \mathcal{G} \subseteq \mathcal{U} \cap \mathcal{V}(t) \subseteq V(t)$ and $\operatorname{Mod}(x \hat{\equiv}) \subseteq V(t)$.

Let U be a groupoid variety. We shall asy that U satisfies the condition (M) if G is a cancellation groupoid, whenever $G \in U$ and G / r is a quasigroup where r is the least congruence with $G / r \in m$.
3.11. Proposition. The variety $\mathscr{C} \cap \mathscr{D}$ satisfies (M). Proof. See [6], Lemma 8.5.
3.12. Propositioy. Let a groupoid variety U satisfy (M) and $Q \in U$ be on N-quasigroup. Let $G \subseteq \mathbb{Q}$ be a dense subgroupoid. Then $G \subseteq Q$ is an epimorphism in U.

Proof. Let $f, g: Q \rightarrow K, K \in U$ and $f|G=g| G$. We can assume that K is generated by Im fuIm g. Similarly as in the proof of 3.7 , we can show that K / r is a quasigroup where r is the least congruence with $K / r \in M$ (use 3.4 and 3.1). Hence K is a cancellation groupoid and the rest is clear.
3.13. Corollary. The varieties $m, m \cap J, m \cap \varphi, m \cap \mathscr{Y}$, $m \cap D, \varphi \cap \varphi, D \cap \varphi, m \cap \varphi \cap J, D \cap \varphi \cap J, m \cap \varphi \cap D$ have non-surjective epimorphisms.
4. Several lemmas. Let F (resp. K) be the absolutely free (resp. free commutative) groupoid generated by x. Let $\varphi: F \rightarrow K$ be the canonical homomorphism. The following three lemmas are easy.
4.1. Lemme. Let $a, b, c, d \in K$ and $a b=c d$. Then either $=\mathrm{c}, \mathrm{b}=\mathrm{d}$ or $\mathrm{a}=\mathrm{d}, \mathrm{b}=\mathrm{c}$.
4.2. Lemma. Let $a, b \in F$ and $\varphi(a)=\varphi(b)$. Then $l(a)=$ $=1(b)$.
4.3. Lemma. Let $a, b \in F, \varphi(a)=\varphi(b)$ and G be a commutative groupoid. Then $a_{G}=b_{G}$.

Let $p \in K, q \in F$ be such that $\varphi(q)=p$ and \mathbb{C} be a commutative groupoid. We put $l(p)=l(q)$ and $p_{G}=q_{G}$.
4.4. Lemma. Let $p, q, a \in K$ and $p_{K}(a)=q_{K}(a)$. Then $p=$ $=\mathrm{q}$.

Proof. By induction on $l(p)+1(q)$.
4.5. Lemma. Let $p, q, a, b \in K$. Then $p_{K}(a)=q_{K}(b)$ iff at least one of the following conditions holds:
(1) $p={ }^{\prime} q_{K}(r)$ and $r_{K}(a)=b$ for some $r \in K$.
(ii) $q=p_{X}(r)$ and $r_{K}(b)=a$ for some $r \in K$.
proof. The direct implication can be proved easily by 4.4 and induction on $1(p)+1(q)$, while the converse implication is trivial.

An element $p \in K$ is called reducible if $p=q_{K}(r)$ for some $q, r \in K, q \neq x \neq r$. The following lemma is trivial.
4.6. Lemma. Let $p \in \mathbb{K}$ be such that $\mathrm{I}(\mathrm{p})$ is a prime. Then p is not reducible.
4.7. Lemma. Let $p, q \in K$ be not reducible. Suppose that $p \neq q$ and $p \neq x \neq q$. Then $p_{K}(a) \neq q_{K}(b)$ for all $a, b \in K$.

Proof. Use 4.5.
Define a relation η on K by a η b iff $b=a c$ for some cek. Let ρ denote the least reflexive and transitive relation containing η. If $a, b \in K$ and $a \rho b$ then we shall say that a is a subterm of b. Finally we shall define symmetric
groupoid terms by induction. Every variable is aymmetric term. If t is a symmetric term then $t t$ is symmetric.
5. Commutative groupoids. Let U be a groupoid variety. Then $\mathcal{J}(U)$ denotes the class of all $G \in U$ with the following property: If e $\& G$ then there exiats a groupoid $E \in U$ such that $H=G \cup\{\in\}$, e is an idempotent and G is a subgroupoid of H .
5.1. Propositione Let U be groupoid variety such that every groupoid from \mathcal{U} contains at most ine idempotent. Let $H \in U$ and G be a subgroupoid of H such that $H=G \cup\{\in\}$ and e is an idempotent. Then the inclusion $G \subset H$ is an epimorphism in U.

Proof. Let $A \in U$ and f, g be two homomorphisms of H into such that $\mathcal{I}|G=G| G$. Since e is idempotent, $f(e)$ and $g(e)$ are so, and consequently $f(e)=g(e)$. Thus $f=g$.
5.2. Corollary. Let \mathcal{U} be a groupoid variety such that every groupoid from \mathcal{U} contains at most one idempotent and $\mathcal{J}(\mathcal{U}$) is non-empty. Then U has non-surjective epimorphisms.

Let E (resp. F) be the absolutely free groupoid generated by x, y (resp. x). We shall assume that F is a subgroupoid of E. Further, let $t, p, q \in E$ be such that $t, p \in f$ and $\operatorname{var}(q)=\{y\}$. Put $a=\operatorname{Mod}(x y \hat{} y x, t \hat{} \hat{p q})$.
5.3. Lemma. Every groupoid from a contains at most one idempotent.

Proof. Let $G \in a$ and $a, b \in G$ be idempotents. Then $a=$ $=t_{G}(a)=p_{G}(a) \cdot q_{G}(b)=a b=b a=t_{G}(b)=b$.
5.4. Lemma. Let $G \in a$ and $a, b \in G$ be such that $p_{G}(a)=$ $=p_{G}(b)$. Then $t_{G}(a)=t_{G}(b)$.

Proof. Obvious.
5.5. Lemma. Let $G \in a$. The following conditions are equivalent:
(i) $\in \mathcal{T}(a)$.
(ii) $p_{G}(G) \cap q_{G}(G)$ is empty.

Proof. (i) implies (ii). Let $G, H \in a, H=G \cup\{e\}$, e $=$ and $p_{G}(a)=q_{G}(b)$ for some $a, b \in G$. Then $t_{G}(a)=$ $=p_{G}(a) . e=e \cdot q_{G}(b)=t_{B}(e)=e, a$ contradiction with $e \notin G$.
(ii) implies (i). Let $\theta \notin G$ and $H=G \cup\{e\}$. Put $a \circ b=$ $=a b, 0 \circ e=e, 0 \circ p_{G}(a)=t_{G}(a)=p_{G}(a) \circ e, e \circ c=e=c \circ e$ for all $a, b, c \in G, c \notin P_{G}(G)$. As it is easy to see, G is a subgroupoid of $H(0)$ and $H(0) \in a$.
5.6. Corollary. Let t, p, q be three groupoid terms such that $\operatorname{var}(\mathrm{t})=\{x\}=\operatorname{var}(\mathrm{p})$ and $\operatorname{var}(\mathrm{q})=\{y\}$. Let $a=$ $=\operatorname{Mod}(\mathrm{xy} \hat{=} \mathrm{yx}, \mathrm{t} \hat{\equiv} \mathrm{pq})$ and suppose that there exists a groupoid $G \in a$ such that $p_{G}(a) \neq q_{G}(b)$ for all $a, b \in G$. Then the variety a has non-surjective epimorphisms.
5.7. Proposition. The variety $Q=\bmod (x . x x \hat{=}$ $\hat{=}(x . x x)((y . y y)(y . y y)), x y \hat{z} y x)$ has non-surjective epimorphisme.

Proof. Let $G=\{0,1\}$ and $0.0=1,1.0=0.1=1.1=0$. One may check easily that $G \in a$ and $a . a a \neq(b . b b)(b . b b)$ for all $a, b \in G$. Now we can use 5.6.
5.8. Proposition. The variety $a=\operatorname{Mod}(x y \hat{\hat{2}} \mathrm{yx}, \mathrm{x} \hat{三}$ $\hat{A}(x x)(y \cdot y y))$ has non-surjective epimorphisms.

Proof. Let K be the free commutative groupoid generated
by x and H be the set of all $p \in K$ such that non (aa)($x \cdot x x) \rho p$ and non $b, b b \& p$ for $a l l a, b \in K, b \neq x$. If $a, b \in M$ and $a b \in M$ then we put $a \circ b=a b$. Further we put aa $0 x \cdot x x=a=x \cdot x x \circ a a$ and ao aa $=x . x x=a a<a$ for every acM. We have defined a groupoid $M(0)$ and $M(0) \in a$, as one may verify easily. Cle$a r l y, a \circ a \neq b \circ(b \circ b)$ for $a l l a, b \in M$. Now we can use 5.6.

Let K be the free commutative groupoid generated by x and $t, p, q \in K$ be three elements satisfying the following conditions:
(1) p, q are not reducible.
(2) $\mathrm{p} \neq \mathrm{q}$.
(3) non $x \cdot q_{K}(a) \rho p$ for every $a \in K$.
(4) non $x \cdot q_{K}(a) \rho t$ for every $a \in K$.
(5) non $x \cdot p_{K}(a) \rho q$ for every $a \in K$.
(6) non $x \cdot p_{K}(a) \rho t$ for every $a \in K$.
(7) non $p_{K}(a) \cdot q_{K}(b) \rho t$ for all $a, b \in K$.
5.9. Lemme. $p \neq x$ and $q \neq x$.

Proof. Let $p=x$. Since $p \neq q, q \neq x$ and $I(q) \geq 2$. In particular, $x x=x p$ is a subterm of q, a contradiction. Similarly $q \neq x$.

Let M be the set of all $r \in K$ such that non $p_{K}(a) \cdot q_{K}(b) \rho r$ for all a, $b \in K$. It is visible that $p, q, t \in M$.
5.10. Lemma. $t_{K}(a) \in M$ for every a $\in M$.

Proof. We shall prove by induction on $l(k)$ that $k_{K}(a) 6$ ϵM for every subterm k of t. If $k=x$ then there is nothing to prove. Let $k=b c, b_{K}(a) \in M$ and $c_{K}(a) \in M$. If $b_{K}(a) \cdot c_{K}(a) \in$ $\epsilon \mathbb{I}$ then $k_{K}(a) \in M$. Suppose that $b_{K}(a) \cdot c_{K}(a) \notin M$. Then there are d, e $\in K$ such that $p_{K}(d) . q_{K}(e) \rho b_{K}\left(a l c_{K}(a)\right.$. However $b_{K}(a)$,
$c_{K}(a) \in M$, and hence $p_{K}(d) \cdot q_{K}(a)=b_{K}(a) \cdot c_{K}(a)$. We shall assume that $p_{K}(d)=b_{K}(a)$ and $q_{K}(e)=c_{X}(a)$ (the other case is similar). Taking into account 4.5, we have the following possibilities:
(1) $b=p_{K}(r)$ and $c=q_{K}(s)$ for some $r, s \in K$. Then $p_{K}(r)$. - $q_{K}(s)$ is a subterm of t, a contradiction.
(ii) $b=p_{K}(r)$ and $q=c_{K}(s)$ for some $r, s \in K$. If $c=x$ then $b c=p_{\mathrm{K}}(r) \cdot \mathrm{x}$ is a subterm of t , a contradiction: Hence $\mathrm{c} \neq \mathrm{x}$, and $80=x$, since q is not reducible. Consequentiy $q=c$ and $b c=p_{K}(r) \cdot q_{K}(x)$ is a subterm of t, a contradiction. (iif) $p=b_{K}(r)$ and $c=q_{K}(s)$ for some $r, s \in K$. This case Is similar to the preceding one.
(iv) $p=b_{K}(r), q=c_{K}(s)$ and $r_{K}(d)=a=s_{K}(e)$ for some r, s6K. If $r=x=s$ then we get a contradiction with $t \in M$. Hence either $\mathbf{r} \neq \mathrm{x}$ or $\mathrm{s} \neq \mathrm{x}$. However p , q are not reducible and so either $b=x$ or $c=x$. Let $b=x$ (the other case is similar). If $c=x$ then $p=r, q=s$ and $p_{X}(d)=a=q_{K}(e)$, a contradiction with 5.9 and 4.7. Hence $c \neq x$, consequently $s=$ $=x, q=$ and $b c=x q$ is aubterm of t, a contradiction.
5.11. Lemme. $p_{K}(a), q_{K}(a) \in M$ for every $a \in M$.

Proof. Only for p. We shall proceed by induction on subterms. Let bc be a subterm of $p, b_{K}(a), c_{K}(a) \in M, b_{K}(a)=$ $=p_{K}(d)$ and $c_{K}(a)=q_{K}(e)$ for some d, e $\in K$. Since $l(p) \geq 1(b)$, $p=b_{X}(r)$ and $r_{K}(a)=d$ for some $x \neq r \in X_{\text {. Since }} p$ is not re ducible, $b=x$ and $p=r$. If $q=c_{K}(s)$ for some $s \in K$ then either $s=x$ and $x . q$ is a subterm of p, a contradiction, or $c=$ $=x$ and $q=a, p_{X}(d)=a=q_{X}(e)$, a contradiction. Thue $c=$ $=q_{K}(m)$ and bc $=x \cdot q_{K}(m)$ is a subterm of p, a contradiction.

We shall define a new binary operation 0 on the set M. If $a, b \in M$ and $a b \in M$ then we put $a a b=a b$. Let $a, b \in M$ and $a b \notin M$. Then there are $r, s \in K$ such that $a b=p_{X}(r) \cdot q_{X}(s)$. As it is easy to see, $r \in M$ and r, a are determined uniquely: We put $a \circ b=t_{K}(r)$ (see 5.10). The following lemma is obvious from 4.7.
5.12. Lemma. as: $\in M$ for every $a \in M$.

The next lemma is an easy consequence of 4.7, 5.10, 5.19, 5.12 .
5.13. Lemma. (i) $p_{M(a)}(a)=p_{K}(a), q_{M(0)}(a)=q_{K}(a)$ and $t_{M(0)}(a)=t_{K}(a)$ for' every a $\in M_{\text {. }}$
(ii) $M(a)$ is a commutative groupoid without idempotent elements.
(iii) $t_{M(0)}(a)=p_{M(0)}(a) \circ q_{M(0)}(b)$ for all $a, b \in M$.
(iv) $p_{M(0)}(a) \neq q_{M(0)}(b)$ for all $a, b \in M$.
5.14. Lemma. Let $t, p, q \in K$ be such that $p \neq q, i(p)=$ $=l(q)$ is a prime and $l(t) \leqslant l(p)$. Then t, p, q satisfy the conditions (1),...,(7).

Proof. Easy.
5.15. Theorem. Let E (resp. K) be the absolutely free (resp. free commutative) groupoid generated by x, y (resp. x) and $\psi: E \rightarrow K$ be the homomorphism such that $\psi(x)=x=$ $=\psi(y)$. Let $t, p, q \in \mathbb{B}$ be such that $\operatorname{var}(p)=\{x\}=\operatorname{var}(t)$, $\operatorname{var}(q)=\{y\}$ and $\psi(t), \psi(p), \psi(q)$ satisfy the conditions (1) ,..., (7). Then the variety $\operatorname{Mod}(x y \hat{\#} y x, t \hat{=} p q$) has non-surjective epimorphisms.

Proof. Apply 5.6 and 5.13.
5.16. Corollany. Let $t, p, q \in \mathbb{F}$ be such that $\operatorname{Var}(p)=$ $=\{x\}=\operatorname{var}(t), \operatorname{var}(q)=\{y\}, l(p)=l(q)$ is a prime, $l(t) \leqslant$ $\leqslant 1(p)$ and $\psi(p) \neq \psi(q)$. Then $\operatorname{Mod}(x y \hat{=} y x, t \hat{=} p q)$ has non-surjective epimorphisms.
5.17. Example. The varieties Mod ($\mathrm{xy} \hat{\hat{E}} \mathrm{yx}, \mathrm{x} \hat{=}$ $\hat{\boldsymbol{z}}(\mathrm{x} . \mathrm{xx})(\mathrm{y}(\mathrm{yy} . \mathrm{yy})) \mathrm{)}$ and $\operatorname{Mod}(\mathrm{xy} \hat{=} \mathrm{yx}, \mathrm{xx} . \mathrm{xx} \hat{=}$ $\hat{=}((x . x x)(x x))(y(y(y . y y))))$ have non-surjective epimorphisms.

The following lemma is evident.
5.18. Lemma. Let p be a symmetric groupoid term. Then every groupoid from Mod $(p(x) \hat{=} p(y))$ contains exactly one idempotent.
5.19. Proposition. Let $\xi: B \rightarrow E$ be the endomorphism such that $\xi(x)=x=\xi(y)$. Let $t, p, q \in \mathbb{E}$ be such that $\operatorname{var}(t)=\{x\}=\operatorname{var}(p), \operatorname{var}(q)=\{y\}, \xi(p)=\xi(q)$ and t is symmetric. Then the variety $a=\operatorname{Mod}(x y \hat{=} \mathrm{yx}, \mathrm{t} \hat{=} \mathrm{pq}$) has the strong amalgamation property.

Proof. Let $G, H \in a$ and $A=G \cap H$ be a subgroupoid of both G and H. Clearly, $a \subseteq \operatorname{Mod}(t(x) \hat{=} t(y))$, and consequently A contains an idempotent e. Further, $t_{A}(a)=t_{G}(b)=$ $=t_{H}(c)=e$ for all $a \in A, b \in G$ and $c \in H$. Put $B=G \cup H$ and define $a b=e=b a$ for $a l l a \in G, b \in H, a, b \notin A$. It is visible that $B \in a$
5.20. Example. The variety Mod ($\mathrm{xy} \hat{=} \mathrm{yx}, \mathrm{xx} . \mathrm{xx} \hat{\underline{\hat{N}}}$ $\hat{=}((x x)(x . x x))((y y)(y . y y)))$ has the atrong amalgamation property, and hence it has only surjective epimorphisms.
[1] K. DRBOHLAV: A note on epimorphisms in algebraic categories, Comment. Math. Univ. Carolinae 4(1963), 81-85.
[2] J.M. HOWIE, J.R. ISBELL: Epimorphisms and dominions II, J. Alg. 6(1967), 7-21.
[3] J.R. ISBELL: Epimorphisms and dominions I, Proc. Conf. Categorical Algebra La Jolla, Springer Verlag 1966, 232-246.
[4] J.R. ISBELL: Epimorphisms and dominions III, Amer.J. Math. 90(1968), 1025-1030.
[5] J.R. ISBELL: Epimorphisms and dominions IV, J. London Math. Soc. 1(1969), 265-273.
[6] T. KEPKA: Commutative distributive groupoids (to appear).

Matematicko-fyzikalni fakulta
Karlova universita
Sokolovská 83, 18600 Praha 8
Ceskoslovensko
(Oblatum $20.10 \cdot 1976$)

