Commentationes Mathematicae Universitatis Caroline

Věra Trnková
 Productive representations of semigroups by pairs of structures

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 383--391
Persistent URL: http://dml.cz/dmlcz/105782

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAR

18,2 (1977)

PRODUCTIVE REPRESENTATIONS OF SEMIGROUPS BY PAIRS OF

STRUCTURES

Vera trnková, Praha

```
Abstract: We prove that for any commutative semigroup
\((s,+)\) there exists a collection \(\{r(s) \mid s \in S\}\) of complete metric spaces such that for every \(s_{1}, s_{2} \in S\),
(i) \(r\left(s_{1}+s_{2}\right)\) is isometric to \(r\left(s_{1}\right) \times r\left(s_{2}\right)\) and
(ii) if \(s_{1} \neq s_{2}\) then \(r\left(s_{1}\right)\) is not homeomorphic to \(r\left(s_{2}\right)\).
```

Key words: Semigroup, representation, product, metric space, box-product.

AMS: Primary 54H10
Ref. Ž.: 3.969
Secondary 20M30

1. Let us begin with a definition.

Definition. Let K, H be categories, K have finite producte. Let $\mathbf{3}: K \longrightarrow H$ be a functor. Let $(S,+$) be a commutative semigroup. Any mapping

$$
\mathbf{r}: \mathbf{S} \longrightarrow \text { obj K }
$$

is called on \mathcal{F}-productive representation of $(s,+)$ if
(i) for any $s_{1}, s_{2} \in S, r\left(s_{1}+s_{2}\right)$ is isomorphic to $r\left(s_{1}\right) \times r\left(s_{\mathbf{2}}\right)$ in K;
(ii) if $s_{1}, s_{2} \in S, s_{1} \neq s_{2}$, then $\mathcal{F}\left(r\left(s_{1}\right)\right)$ is not isomorphic to $\mathcal{F}\left(r\left(s_{2}\right)\right)$ in H.
In $\left[\mathbf{P}_{2}\right]$, a representation of $(S,+)$ by products in a category
\mathbb{K} is introduced. It is a special case of the above definition with $K=H$ and $\mathcal{F}=$ ident. The dual definitions of \mathcal{F}-coproductive representation is evident.
2. Some of the known results give \mathcal{F}-productive representations of some semigroups. Let us recall some of them.
A) Let \mathbb{L} be the category of lattices and all latti-ce-homomorphisms; let $\mathbb{l} \mathbb{l}$ be the category of all linear lattices and all linear lattice-homomorphisms. Let \mathscr{L} : $: \mathbb{L} \longrightarrow \mathbb{L}$ be the functor which assigns to each linear lattice its underlying lattice. Then
any Abelian group and any countable commutative somigroup have \mathscr{E}-productive representations.
B) Let \mathbb{R} be the category of all commutative rings with unit (and all their unit-preserving homomorphisms), let $\$$ be the category of all commutative semigroups with unit. Let $\mathcal{R}: \mathbb{R} \longrightarrow S$ be the functor which assigns to each ring its multiplicative semigroup. Then
any Abelian group and any countable commutative semigroup have \mathcal{K}-productive representations.
c) Let \mathbb{B} be the category of all Banach spaces and all bounded linear operators with the norm ≤ 1, let $\mathbb{B} \mathbb{A}$ be the category of all Banach algebras. Let $\mathcal{B}: B A \longrightarrow B$ be the functor which assigns to each Banach algebra its underlying Banach space. Then
any Abelian group and any countable commutative semigroup have 3 -productive representations.
In all these cases, the \mathscr{L} - or \mathcal{K} - or Ω-productive representations are obtained as follows. By [AKT], aby Abelian
group has a representation by coproducts of Boolean spaces (i.e. compact Hausdorff zero-dimensional spaces), in other words, for any Abelian group G there exists a collection $\{r(g) \mid g \in G\}$ of pairwise non-homeomorphic Boolean spaces such that $r\left(g_{1}+g_{2}\right)$ is always home omorphic to the coproduct $r\left(g_{1}\right) ل r\left(g_{2}\right)$ of $r\left(g_{1}\right)$ and $r\left(g_{2}\right)$. The analogous result for all countable commutative semigroups is proved in $[K]$ (here, $r(g)$ are metrizable).

Consider the sets $C(r(g))$ of all real-valued continuous functions on these spaces $r(g)$. They can be structured in a lot of ways: As linear lattices and lattices for A), as rings and semigroups for B), as Banach algebras and Banach spaces for C). Structured as a linear lattice or ring or Banach algebra, $C\left(r\left(g_{1}\right) H r\left(g_{2}\right)\right)$ is isomorphic to $C\left(r\left(g_{1}\right)\right) \times C\left(r\left(g_{2}\right)\right)$ in the c^{-} rresponding category. Since $r\left(g_{1}\right)$ is not homeomorphic to $r\left(g_{2}\right)$, $C\left(r\left(g_{1}\right)\right)$ is not isomorphic to $C\left(r\left(g_{2}\right)\right)$, structured as lat $1-$ ces (by the Birkhoff-Kaplansky theorem) or Banach spaces (by the Banach-Stone theorem) or multiplicative semigroups (by Milgram [M]).

Let us notice that if $\mathbb{F}: \mathbb{K} \longrightarrow \mathbb{H}$ preserves finite products and a semigroup has an \mathcal{F}-productive representation, then it has a representation by products in \mathbb{H} in the sense of $\left[T_{2}\right]$. Hence, if a functor \mathcal{F} from an arbitrary category into the category Set of all sets or into the category Lin of all linear spaces preserves finite products, then no non-tri$\boldsymbol{\nabla}$ ial Abelian group has an \boldsymbol{F}-productive representation.
3. Let $\mathbb{C} \mathbb{M}$ be the category of all complete metric spaces with diameter $\leqslant 1$ and all their contractions (we re-
call that a mapping c is a contraction if dist $(c(x), c(y)) \leqslant$ \leqslant dist (x, y) for all x, y). Let us notice that isomorphisms in $\mathbb{C} M$ coincide with isometries and a product-metric d of d_{1} and d_{2} is given by the usual formula
$d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}$.
Let Top be the category of all topological spaces; and all their continuous mappings. Here isomorphisms coincide with home omorphisms. Let

$$
\mathcal{M}: \mathbb{C} M \rightarrow \mathbb{T o p}
$$

be the functor which assigns to each metric space its underlying topological space. The aim of this note is to prove the following theorem:

Theorem. Every commutative semigroup has an \mathcal{M}-productive representation.

Every commutative semigroup has a representation by products of uniform, proximity and topological spaces; by [AK], every c-embeddable semigroup has a representation by products of metrizable topological spaces. The above theorem strengthens all these results.
4. First, we sketch modifications of the general method, described in [TT]. If a semigroup S has an \boldsymbol{T}-productive representation, then any of its subsemigroups has also an \mathcal{F} productive representation. Consequently, it is sufficient to investigate \mathcal{F}-productive representation of "universal semigroups" (this means universal for some class of semigroups with respect to an embedding of semigroups). Denote by N the additive semigroup of all non-negative inte-
gers, by $\mathbb{N}^{\text {ch }}$ tts -th power (with the operation given pointwisel and by exp $N^{4 H}$ the semigroup of all its subsets (with the operation given by $A+B=\{a+b \mid a \in A, b \in B\}$). By [T_{3}], any commutative semigroup S can be embedded in $\exp \mathrm{N}^{\text {H/ }}$ with $w=\mathrm{H}_{0}$. card S. Hence, we shall investigate \mathfrak{F}-productive representations of the semigroups $\exp \mathrm{N}^{m}$ 。
5. We shall use the following notation and conventions. Isomorphism in a category will be denoted by \simeq, product. by Π (or \times for finite collections), coproduct by 11 . The product of the empty collection is a terminal object (it can be added to a category whenever it is missing). If a is an arbitrary object of a category with finite products, then a^{0} is the terminal object, $a^{l} \simeq a, a^{n+1} \simeq a \times a^{n}$. We say that a category K with all products and coproducts is distributive (see $\left[T_{2}\right]$) if

$$
\left(i \frac{H}{6} I a_{i}\right) \times\left(\frac{H}{d} J b_{j}\right) \simeq_{\left(i, j \frac{1}{e} I \times J\right.}\left(a_{i} \times b_{j}\right)
$$

We say that an object a is a summend of b if $b \simeq a \| c$ for an object c.

[^0]$f \in \mathbb{F}$ whenever $\mathcal{F}(\mathbb{Z}(f))$ is a summand of $\mathcal{F}^{\prime}\left((g, s)^{\|} A_{\times S} \mathbb{Z}(g)_{s}\right)$, where S is a set and $\mathbb{Z}(g)_{g} \simeq \mathbb{Z}(g)$ for all $s \in S$.
(This generalizes the notion of productively independent set of objects, see [T_{2}] and [AK].)
7. Proposition. Let \mathbb{K} be a distributive category, let $\mathfrak{H}: K \rightarrow H$ preserve coproducts. Let there exist an \mathcal{F}-independent set \mathcal{Z} of objects of \mathbb{K}. Then the semigroup $\exp \boldsymbol{N}^{\boldsymbol{X}}$ has an \mathcal{F}-productive representation.

Proof. For any $f \in N^{\mathscr{x}}$ denote $\mathbb{Z}(f)=z \prod_{z} Z^{f(Z)}$; let $\mathbb{C}(f)$ be a coproduct of 2^{μ} copies of $\mathbb{Z}(f)$ with uth $=$ $=$ card \boldsymbol{Z}. For AcII $\boldsymbol{N}^{\boldsymbol{X}}$ put

$$
r(A)=f \frac{\|}{f} \mathbb{C}(f)
$$

 if $A, B C H^{\boldsymbol{Z}}$, then $r(A+B) \simeq r(A) \times r(B)$ (implied by
$\mathbf{Z}(f+g) \simeq \mathbb{Z}(f) \times \mathbb{Z}(g))$. If $A \neq B$, say if $A \backslash B \neq D$, then, for feA\B, $\mathcal{F} \mathbb{Z}(f)$ is a summand of $\mathcal{F} r(A)$ while it cannot be a summand of $\mathcal{F} r(B)$ because \mathcal{X} is \mathcal{F}-independent. Hence, $\boldsymbol{\mathcal { F }} \mathrm{r}(\mathrm{A})$ is not isomorphic to $\boldsymbol{\sim} \mathrm{r}(\mathrm{B})$ in H .

Corollary. Let K be a distributive category, let $\mathcal{F}: \mathbb{K} \longrightarrow \mathbb{H}$ be a coproduct-preserving functor. Let \mathbb{K} have an arbitrarily large \mathcal{F}-independent set of objects. Then any commutative semigroup has an $\boldsymbol{\mathcal { F }}$-productive representation.
8. Let us examine the category $\mathbb{C} M \mid$. It has all coproducts (for, if $\left\{\left(X_{i}, d_{i}\right) \mid i \in I\right\}$ is a collection of ob-
jects, X_{i} disjoint, put $X=i Y_{I} X_{i}, d(x, y)=d_{i}(x, y)$ whenever $x, y \in x_{i}$ for some $i, d(x, y)=1$ otherwise; d is complete whenever all the d_{i} 's are complete; (X, d) is a coproduct in $\mathbb{C} M$). It has all producta (for, if $\left\{\left(X_{i}, d_{i}\right) \mid i \in I\right\}$ is a collection of objects, put $x=i \mathbb{C} X_{i}, d\left(\left\{x_{i}\right\}\left\{y_{i}\right\}\right)=$ $=\sup _{I} d_{i}\left(x_{i}, y_{i}\right)$). Clearly, $C \mathbb{M}$ is distributive. The functor $\mathcal{M}: \mathbb{C} M \mid \longrightarrow T$ op preserves coproducts and finite products, but it does: not preserve products in general. To prove the theorem, we have to show that $\mathbb{C} M$ contains arbitrarily large sets of \mathcal{M}-independent sets of objects.
9. If $\left\{Y_{i} \mid i \in I\right\}$ is a collection of topological spaces, denote by $i \mathcal{B}_{I} Y_{i}$ their box-product. We recall that a set Y of topological spaces is called stiff if for any Y_{1}, $y_{2} \subset y$ and any continuous mapping $m: Y_{1} \rightarrow y_{2}$ either m is constant or $Y_{1}=Y_{2}$ and $m=$ ident. How, let \mathcal{H} be a set of topological spaces. For any fer \boldsymbol{H}^{4} denote by $\mathbb{B}(f)$ a topological space with the same underiying set as $y_{s}^{3} y^{(Y)}$ and such that both the identical mappings

$$
y_{Y \in y^{3}} Y^{f(Y)} \longrightarrow B(f) \longrightarrow y \prod_{y} Y^{f(Y)}
$$

are continuous \mathbb{Q} where Π denotes product in Top).
In the following proposition, S is a set and, for each ses, $(B(g))_{s}$ is homeomorphic to $\mathbb{B}(g)$. If $X \subset B(g), X_{s}$ means the corresponding subspace of $(B(g))_{s}$

Proposition. Let \mathcal{H} be a stiff set of connected Hausdorff spaces. Let $f \in N^{Y}, A \in N^{Y}$ be given. If $B(f)$ is homeomorphic to a closed-and-open subset of $\underset{(g, A) \in A \times S}{ }\left(B(g) \lambda_{B}\right.$,
then fe\&.
Proof. a) First, let us notice that for any $Y \in y$ and any $m_{1}, m_{2} \in N$, the existence of a homeomorphism of $y^{m_{1}}$ into y^{2} implies $m_{1} \leq m_{2}$ (see $[H]$).
b) For any $g \in \mathbb{N}^{Y}$ and any $x \in \mathbb{B}(g)$, denote by $B_{x}(g)$ the subspace of $\mathbb{B}(g)$ consisting of all these points y which differ from x only in finitely many coordinates. Clearly, very $\mathbb{B}_{x}(g)$ is connected. One can sea easily by $\left.a\right)$, that if, for some $g_{1}, g_{2_{2}} \in N^{\psi}$ and some $x \in B\left(g_{1}\right)$, there exists a home omorphism of $\mathbb{B}_{\mathrm{x}}\left(g_{1}\right)$ into $B\left(g_{2}\right)$, then $g_{1} \leqslant g_{2}$.
c) Now, let $h: B(f) \longrightarrow \prod_{(g, S) \in A \times S}(B(g))_{s}$ be a homeomorphism onto a closed-and-open subset. Choose $x \in \mathbb{B}(f)$. Since $\mathbb{B}_{x}(f)$ is connected, there exists $\left(g_{0}, s_{0}\right) \in A \times S$ such that $h\left(B_{x}(f)\right) \subset\left(B\left(g_{0}\right)\right)_{B_{0}}$. By b), $f \leq g_{0}$. Put $y=h(x)$. Since $h(B(f))$ is a closed-and-open set containing y and $\left(\mathbb{B} y_{y}\left(g_{0}\right)\right)_{s_{0}}$ is connected, it is contained in $h(\mathbb{B}(f))$. Hence, h^{-1} defines a homeomorphism of $B_{y}\left(g_{0}\right)$ into $B(f)$. By b), $g_{0} \leqslant f$. We conclude that $f=g_{0} \in A$.
10. By [$\left.T_{1}\right]$, there exist arbitrarily large stiff sets Y of connected topological spaces such that any $Y \in \mathcal{Y}$ can be metrized by a complete metric, say d_{Y}. We may suppose $d_{Y} \leqslant 1$. By the previous proposition, $Z=\left\{\left(Y, d_{Y}\right) \mid Y \in \mathcal{Y}\right\}$ is anr \mathcal{M}-independent set of objects of $\mathbb{C} M$. This completes the proof of the theorem.

References

[AK] J. ADAMEK, V. KOUBEK: On representation of ordered commutative semigroups, to appear.

```
[AKT] J. ADÁMEK, V. KOUBEK, V. TRNKOVÁ: Sums of Boolean
                                    spaces represent any group, Pacif. J. of Math.
                                    61(1975), l-7.
[H] J. HERRLICH: Topologische Reflexionen und Coreflexio-
                        nen, Lecture Notes in Math. 78(1968).
[K] J. KETONEN: The structure of countable Boolean algeb-
    ras, preprint.
(M) A.N. MHGRAM: Multiplicative semigroups continuous
                                functions, Duke Math. J. 16(1948), 377-383.
〔T1〕 V. TRNKOVA: Non-constant continuous mappings of metric
                                    and compact Hausdorff spaces, Comment. Math.
                                    Univ. Carolinae 13(1972), 283-295.
[ \(\left.\mathbf{T}_{2}\right]\) V. TRNKOVA: Representation of semigroups by products
        in a category, J. of Algebra 34(1975), 191-204.
〔T3〕 V. TRNKOVÁ: On a representation of commutative semi-
    groups, Semigroup Forum 10(1975), 203-214.
Matematický ústav
Karlova universita
Sokolovská 83, 18600 Praha 8
Ceskoslovensko
```

（Oblatum 28．3．1977）

[^0]: 6. Let K be a category with products, let $\boldsymbol{F}: K \rightarrow$
 $\longrightarrow H$ be a functor. Let X be a set of objects of K. For any $f \in N^{x}$, denote by $Z(f)$ the product $2 \mathbb{T H}_{z} z^{f(Z)}$ (if $f(Z)=0, Z^{f(Z)}$ is the terminal object). We say that $Z \quad$ is an \mathcal{F}-independent set of obiects of K if for every $f \in N^{\boldsymbol{X}}$, $A \subset N^{\text { }}$,
