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COMMENTATIONES MATHEMATICAE MOVERS IT AT I S CAROLINAB 

1 8 ^ (1977) 

PRODUCTIVE REPRESENTATIONS OF SEMIGROUPS BY PAIRS O.F 

STRUCTURES 

Vera TRNHOVX, Praha 

A b s t r a c t ; We prove t h a t f o r any commutative semigroup 
(S,+) there e x i s t s a c o l l e c t i o n «Cr(s) | s e S } of complete met
r i c spaces such that for every S x , s 2 £ ^* 

( i ) r(s«L • s^) i s isometric t o r ( s 1 ) x r ( s 2 ) and 

( i i ) i f 3^* »2 t h e n r ^ s l * i s n o t homeomorphic to rCsg,). 

Key nordf; Semigroup, representat ion, product, metric 
8 pa ce, box-product. 

AMS; Primary 54H10 Ref. 2 . ; 3.969 
Secondary 20M30 

1 . Let us begin with a d e f i n i t i o n . 

Def in i t ion . Let IK , H be categor ies , K have f i n i t e 

products. Let W ; K — > H be a functor. Let (S,+) be a 

commutative semigroup. Any mapping 

r : s~-> obj K 

i s ca l l ed an & -productive representation of (S,+) i f 

( i ) for any &xta2€ S, r ( s 1 •* s^) i s isomorphic to 

r ( s ^ ) * r(s^) in K ; 

( i i ) i f 8^,8^6 S, s.j4* s 2 , then ^ ( r ( s A ) ) i s not i s o 

morphic to 5"(r(s2>)) in H . 

In CT^l, a representat ion of (S,+) by products i n a category 
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K i s introduced . I t i s a spec ia l case of the above d e f i n i 

t i o n with IC » H and 7 =- ident . The dual d e f i n i t i o n s 

of $ -coproductive representat ion i s ev ident . 

2. Some of the known resu l t s give ^ - p r o d u c t i v e repre

sentat ions of some semigroups. Let us r e c a l l some of them. 

A) Let JL be the category of l a t t i c e s and a l l l a t t i 

ce -homo mor ph is ms ; l e t 1L L be the category of a l l l inear 

l a t t i c e s and a l l l inear lattice-homomorphisms* Let 06 : 

? JL L — • L be the functor which assigns to each l inear 

l a t t i c e i t s underlying l a t t i c e . Then 

any Abellan group and any countable commutative semigroup 

have it —productive representations. 

B) Let R be the category of all commutative rings with 

unit (and all their unit-preserving homomorphisms), let S be 

the category of all commutative semigroups with unit. Let 

3t : T(L —*> $ be the functor which assigns to each ring 

its multiplicative semigroup* Then 

any Abelian group and any countable commutative semigroup 

have % -productive representations. 

C) Let B be the category of all Banach spaces and all 

bounded linear operators with the norm 4s 1, let B A be 

the category of all Banach algehras. Let 33 - B A — > B be 

the functor which assigns to each Banach algebra its underly

ing Banach space. Then 

any Abelian group and any countable commutative semigroup 

have % -productive representations* 

In all these cases, the & - or Jt - or 55 -productive 

representations are obtained as follows. By [ART}, aby Abelian 
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group has a representation by coproducts of Boolean spaces 

( i . e . compact Hausdorff zero-dimensional spaces ) , in other 

words, for any Abelian group G there e x i s t s a co l l ec t ion 

4 r ( g ) | g 6 G ? of pairwise non-homeomorphic Boolean spaces such 

that r(g^ • g~) i s always homeomorphic to the coproduct 

r(g 1 i l irCg 2 , ) of rCg^) and r (g^) . The analogous resu l t for a l l 

countable commutative semigroup9 i9 proved intK .3 (here, r (g) 

are metrizab le ) . 

Conaider the 9e t s C(r(g)) of a l l real-valued continuous func-

t ion3 on these spaces r ( g ) . They can be structured in a l o t 

of ways: As l inear l a t t i c e s and l a t t i c e s for A), as rings and 

semigroups for B ) , as Banach algebras and Banach spaces for 

C). Structured as a l inear l a t t i c e or ring or Banach a lgebra, 

CCrCg-^llrCg^)) i s isomorphic to C(rCg1))x C(r(g^)) i n the co

rresponding category. Since r(g^) i s not homeomorphic to r ( g ^ ) , 

C(r(g-,)) i s not isomorphic t o C(r(g£)) f structured as l a t t i 

ces (by the Birkhoff-Kaplansky theorem) or Banach spacea (by 

the Banach-Stone theorem) or mul t ip l i ca t ive aemigroup3 (by 

Milgram CM3). 

Let ua notice that i f *& : IK. — • HI preaerves f i n i t e 

products and a semigroup has an 7 -productive representat ion, 

then i t has a representat ion by products in Irl in. the sense 

of CTgJ* Hence, i f a functor J" from an arb i trary category 

into the category Set of a l l s e t s or into the category Lin of 

a l l l inear spaces preserve3 f i n i t e product3, then no non- tr i 

v i a l Abelian group haa an tf -productive repreaentat ion. 

3 . Let CIMI be the category of a l l complete metric 

apaces with diameter 4s 1 and a l l t h e i r contractions (we r e -
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call that a mapping c i s a contraction i f dist (c(x),c(y)l .£ 

£ dist (x,y) for a l l x ,y ) . Let us notice that isomorphisms 

in CMf coincide with isometries and a product-metric d 

of d, and d2 i s given by the usual formula 

d((x1 ,x2 , ) f(y1 ,y^)) = maxi ^ x ^ l ^ l ^ *d2*x2"y2>* ? • 

Let Top be the category of all topological spaces and all 

their continuous mappings. Here isomorphisms coincide with 

home omorphis ms. Let 

M : € M —* Top 

be the functor which assigns to each metric space its under

lying topological space. The aim of this note is to prove 

the following theorem: 

Theorem. Every commutative semigroup has an JL —pro

ductive representation. 

Every commutative semigroup has a representation by pro

ducts of uniform, proximity and topological spaces; by CAKJ, 

every C-embeddable semigroup has a representation by products 

of metrizable topological spaces. The above theorem streng

thens all these results. 

4. First, we sketch modifications of the general method, 

described in iTJlm If a semigroup S has an & -productive re

presentation, then any of its subsemlgroups has also an & -

productive representation. Consequently, it is sufficient to 

investigate J"-productive representation of "universal semi

groups" (this means universal for some class of semigroups 

with respect to an embedding of semigroups). 

Denote by N the additive semigroup of all non-negative inte-
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gers, by N*** its* Mt> -th power (with the operation given 

pointwise) and by exp N*1* the semigroup of al l i t s subsets 

(with the operation given by A • B a*tai* b | ae A, b* B J ) . 

By fF^f any commutative semigroup S can be embedded in 

exp N'1**' with MA* - -*0 • card S. Hence, we shall investi

gate »T -productive representations of the semigroups 

exp N*** . 

5. We shall use the following notation and conventions. 

Isomorphism in a category wil l be denoted by -*- , product 

by IT (or x for f inite collections), coproduct by 1L . 

The product of the empty collection i s a terminal object ( i t 

can be added to a category whenever i t i s missing)* 

If a i s an arbitrary object of a category with f inite pro

ducts, then a0 i s the terminal object, a ----a, an**s- a * a11. 

We say that a category K with al l products? and coproducts 

ia fllqtrtWJTI <••• iT2}) i f 

(ittx *i>* ̂  V "a+toinic v V-
We say that an object a is a fUMffly* of b i f bfi-ailc for an 

object c. 

6. Let K be a category with products* let & x K •—* 

—• H be a functor. Let X be a set of objects of K # 

For any f c X* , denote by 2 ( f ) the product JtJv z * ( z ) ( i f 

f(Z) » 0, Zt{Z} ia the terminal object). We say that % i» 

an ff -independent set of objects of K i f for every t€ N % 

AcN* 
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f€ A whenever 7 ( X ( f ) ) i s a summand of 

r(Cfr,A7iAx$ 2 t«> a >i ^ e r « S is a set and 2 * ( g > s - X (g) 

for a l l sc S. 

(This general izes the notion of poductively independent set 

of ob j ec t s , see CT^l and CAK3.) 

7» Proposit ion. Let IK. be a d i s t r i b u t i v e category, 

l e t 7 : IK. —> H preserve coproducts. Let there e x i s t an 

7 -independent s e t Z of ob jects of IK. . Then the semigroup 

exp -f has an 7 -productive representation* 

Proof. For any f c N * denote X ( f ) * 2 P * 2 Z ^ 2 5 ; l e t 

£ ( f ) be a coproduct of %"*' cop ies of X (f) with AU> =* 
Tt » card ;£ • For Ac BT put 

r(A) =* ,.11^ £ ( f ) . f « A 

Then r i s an 3* -productive representation of exp N . For, 

i f A, B c K 2 , then r(A • B)fif r(A)x r(B) ( imp l ied by 

Z ( f +• gla. % ( f ) x % ( g ) ) . i f A + B , say i f A\ B + 0 , then , 

for te A \ B , 7 % ( f ) i s a summand of 7 vik) while i t can

not be a summand of 7 r(B> because Z i s 7 - independent. 

Hence, 7 r(A) i s not isomorphic to 3rr(B) in H . 

Corollary. Let IK be a d i s t r i b u t i v e category, l e t 

7 : K. —* H be a coproduct-preserving functor. Let K 

have an a r b i t r a r i l y large 7 -independent set of ob j ec t s . 

Then any commutative semigroup has an 7 -productive repre

sentat ion . 

8. Let us examine the category CMI . I t has a l l co-

products ( for , i f 4 ( X i , d 1 ) | i l l } i s a co l l ec t ion of ob-
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jecte, Xi disjoint, put X =* ^ ^ x^f d(x,y) -* d i(x,y) when

ever XjyeX^ for some i , d(x,y) * 1 otherwise; d is complete 

whenever al l the d^s are complete; (X,d) i s a coproduct in 

CM ) . It has a l l products Cfor, i f i(X19d%) | i € l j i s a 

collection of objects, put X » T̂T X ,̂ dC-f x^ ? -C y^ 5 ) * 

*.sup d*(x i ,y i )K Clearly, CM i s distributive. The func-

tor M : CWII • Top preserves coproducte and f inite pro

ducts, but i t does not preserve products in general* To pro-' 

*e the theorem, we have to show that CM contains arbit

rarily large sets of M -independent sets of objects* 

9. If A Y l̂ i e lit i s a collection of topological spa

ces, denote by i 35**1 * h e * r box-product* We recall that a 

set 1±> of topological spaces i s called s t i f f i f for any X t̂ 

X-j c 1fr and any continuous mapping m: Y^—• 1^ either m i s 

constant or X̂  * X-> and m * ident* 

Ibw, let ^ be a set of topological spaces. For any f e W^ 

denote by B (f)) a topological space with the same underly

ing set as y® r and auch that both the identical map

pings 

3 X*ltt—* B (f) —*WTT, X * m 

Vf^. y%% 

are continuous {where IT denotes product in Top)» 

In the following proposition, S i s a set and, for each 

s c S , CB(g))8 i s homeomorphic to B(g>. If X c B ( g ) , Xa 

means the corresponding subspace of (B(g) ) » 

Proposition. Let %> be a s t i f f set of connected Haus-

dorff spaces. Let f€ N1*" , A c N * be given. If B (f) i s ho

meomorphic to a closed-and-open subset of , 11 (BCg)]V, 
CfcAftcAxS 8 
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then f € A. 

Proof, a) JFirst, l e t us not ice that for any X * % and 

any i i y s w e Nf the existence of a homeomorphism of X into 

T implies m-̂ * m̂  (see CHJ). 

b) For any g c w** and any x e B ( g ) f denote by B x ( g ) 

the subspace of B Cg) cons is t ing of a l l these points y which 

d i f f e r from x only i n f i n i t e l y many coord inates . Clearly, eve

ry B xCg) i s connected. One can see e a s i l y by a ) , that i f , 

for some g i f g^c N^* and some x e B Cg-J f there e x i s t s a ho

meomorphism of B .^(g^) in to B f g ^ ) , then g^6 ĝ ,* 

c) Now, l e t h: B ( f ) — > ( i ^ # A ^ s CB Cg)))8 be a homeomor

phism onto a closed-and-open subset* Choose x € B ( f ) . Since 

B x(f)) i s connected , there e x i s t s Cgo fs0>€ k* S such that 

hC B x C f > ) ; c ( B ( g 0 ) ) s . By b ) , f £ g . Put y » h ( x ) . Since 
o 

h ( B ( f ) ) i s a closed-and-open set containing y and 

CB (g0))L i s connected, i t i s contained in h ( B ( f ) ) . Hencet 

h defines- a homeomorphism of B«Cg 0) into B ( f ) . B | y b ) , 

g .4 f. fte conclude that f =* gQe A. 

10. By ITj] f there e x i s t arb i t rar i ly large s t i f f s e ta 

ty, of connected topolog ica l spaces such that any X £ i^ can 

be metrized by a complete metric, say d y We may suppose 

d y . 4 1 . By the previous propos i t ion , Z * 4 (X,dY) | T * %. \ i s 

an M -independent se t of objec t s of CM • This completes 

the proof of the theorem. 
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