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COHMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAi 

1 8 f 4 ( 1 9 7 7 ) 

WHAT TO EMBED INTO 4 CARTESIAN CLOSED TOPOLOGICAL 

CATEGORT 

(Preliminary communication) 

Jifi ADXMEK, Vdclav KOUBEK, Praha 

Abstract; Herrlich and Nel 141 ask whether every 
topological category is a finitely productive subcatego­
ry of a cartesian closed one. We answer this in the ne­
gative and we characterize all such subcategories by a 
"smallness" condition* 

Key words; Initially complete, cartesian closed, 
t op ological. 

AMS; 18D15, 18B15 Ref. 2.; 2.726.11 

I. Characterization. All categories are here con­

sidered to be concrete with finite concrete products; all 

subcategories to be full, finitely productive and concre­

te. The underlying set of an object A is denoted by lAi ; 

hom-sets in X are denoted by % (A,B) (c IBI ). 

Categories, used by topologists, have a lot of com­

mon properties. Several authors have introduced axioms 

for these categories; the first was HuSek in 151. We shall 

use Herrlich's notion of topological category [33; this 

is a category which has 

(i) projective generation [given objects Ai and 

maps tiiX — » I A^l , id I, there exists an object A on X 
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auch that for each map h: I B\ — > X we haTe: he X(BfA) 

iff fi.he^C(BfAi) for each i] ; 

(ii) 8mall fibrea [for eTery aet X all objects A 

with I A1 » X form a small set ] ; 

(iii) constants [each X (AfB) contains all const­

ant maps from IAI to 1BI ] . 

While Antoine proTes in 121 that eTery concrete ca­

tegory is a subcategory of a cartesian closed one, we are 

interested in subcategories of CCT (cartesian closed topo­

logical) categories. We find a necessary and sufficient 

condition for the existence of a CCT supercategory. By an 

important result of Herriich and Nel 14 3 this is equiTa-

lent to the existence of a canonical (minimal) CCT super-

category, called CCT hull. 

Let a category X be given. A structured map into a 

set X is a pair (ffV) consisting of an object V and a map 

f: I V I — > X. Two such pairs (ffV) and (gfW) are equiTa-

lent 

V - VxH 

X*1 
^x^JL_>H J*x*|U|J2—*R 

W WxU 

if for eTery map h:X — * I R I f R an object, we haTe: 

h.ft3C(VfR) iff h.g6 3C(WfR). 

They are productire ly equiTalent if for each object U the 

structured maps (fxlfVxU) and (gxlfW*U) are equiTal­

ent. Then we write (f fV)^ (gfW). 

Definition. A category is strictly small-fibred if 
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for every set X there exists, up to ̂  , only a set of 

structured maps onto X. 

Example. Every small-fibred category with quotients 

which are finitely productive is strictly small-fibred. 

Theorem. A topological category is isomorphic to a 

subcategory of a cartesian closed topological category 

iff it is strictly small-fibred. 

Counterexample. The following category is topologi­

cal but not strictly small-fibred* 

Objects: pairs (XfH) where X is a set and H is a set of 

pairs (M.m) consisting of a subset McX and a power m 4s 

£ card Mf subject to the condition: 

(0fO)eHand (4x1,0), ( -ix?-l)€ H for each xc X. 

Morphisms from (X,H) to (Y,K): maps f:X—> I such that 

(M,m)& H implies (fOQn)e.K where n = min (m,eard f(M)). 

The proof of necessity in the above theorem is easy. 

Sufficiency is proved by the following construction. 

II• Construction. Given a category X we define a 

new category %>* • 

Objects are pairs (X,A) where X is a set and A is a class 

of structured maps into X which is a union of a set (i) 

of equivalence classes of the productive equivalence w 

(i.e., A » AQ for a set A0c Af where barr denotes the clo­

sure with respect to <*? ). 

Morphisms are defined inductively, forming a class LJ %^ 

(the union ranging over all ordinals i). 
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CK,̂  consists of maps of the form f.h:U—*(Y,B) f U s JC f 

where h e#(U,V) and (f ,V)e B. 

U — MYfB) (XfA0) - >(Y,B) 
h \ f f f f 

*^*i+l *s tne *eas* class, closed to composition, which 

contains maps p:(XfAQ)—> (I,B) such that p.f:V—> (Y,B) 

is in 1C\ for each (f,V)eA0. 

X * u ,KJ X*4 for each limit ordinal nr . 
T 'v<y *• ° 

The category #C* has the following properties (of which 

only the first requires a somewhat technical proof). 

1. X* has finite products: (X,A)x (Y,B) • (XxY, A*B) 

where Ax B « { (f x g,Vx W)j (f ,V) e A and (g,W) e B J . 

2. X is a dense subcategory of X * (full, finitely pro­

ductive), closed to projective generation. 

3. 3C* is cocomplete and for each object (X,A) the endo-

functor 

(Y,B) H-> (Y,B)x (X,A) 

preserves colimits. 

4. If X is strictly small-fibred then 3£* is cartesian 

closed and small-fibred and has projective generation. 

5. If % is topological then X * is CCT. 

R e f e r e n c e s 

Lll J. ADjClIEK, V. KOUHEK: Cartesian closed fibre-coople-
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