John K. Luedeman; Frederick R. McMorris; Soon Kiong Sim
Semigroups for which every totally irreducible S-system is injective

Persistent URL: http://dml.cz/dmlcz/105829

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
SEMIGROUPS FOR WHICH EVERY TOTALLY IRREDUCIBLE S-SYSTEM IS INJECTIVE

John K. LUEDEMAN and F.R. McMORRIS, Clemson, and SOON-KIONG SIM, Caracas

Abstract: We characterize those semigroups for which every totally irreducible S-system is injective. Also obtained are homological characterizations of semilattices of groups and commutative regular semigroups.

Key words: Totally irreducible, regular, injective, p-injective.

AMS: 20M10 Ref. Z.: 2.721.3

O. Introduction. In recent years there have been many investigations into homological properties of semigroups and S-systems. Many of the questions asked are analogous to those from ring and R-module theory. For example, Fountain [3], extending the work of Feller and Gantos [2], characterized those monoids S for which every S-system is injective. This corresponded to the well-known theorem that a ring R is semisimple Artinian if and only if every R-module is injective. The fact that another equivalent condition, namely that every cyclic R-module is injective, does not carry over to semigroups was shown by Johnson and McMorris in [5].

The present note is concerned with characterizing those semigroups for which every totally irreducible S-system is injective. We obtain an analogous theorem to that of
Michler and Villamayor [7]. As a consequence we also obtain the analogue of a theorem of Kaplansky characterizing commutative regular rings. In addition we give a new homological characterization of semilattices of groups which can then be added to the list as given by Lajos [6].

In this paper, S is a monoid with zero.

A unital right S-system M_S with zero is a set M with a multiplication $M \times S \rightarrow M$ given by $(m,s) \mapsto ms$ such that $m(s_1 s_2) = (ms_1)s_2$ and satisfying $m \cdot 1 = m$ for all $m \in M$ and having a distinguished element $\theta \in M$ satisfying $\theta s = \theta$ for all $s \in S$. We will denote this element, as well as the zero of S by 0.

An S-system M_S is injective if for every S-monomorphism $f: A_S \rightarrow B_S$ and S-homomorphism $g: A_S \rightarrow M_S$ there is an S-homomorphism $h: B_S \rightarrow M_S$ satisfying $h \circ f = g$.

An S-subsystem N_S of M_S is essential in M_S if every S-congruence on M whose restriction to N is the identity, is itself the identity on M. Note that if N_S is essential in M_S then $N_S \land K_S \neq 0$ for all non-zero S-subsystems K_S of M_S.

Berthiaume [1] has shown that each S-system M_S has a unique (up to isomorphism over M_S) essential extension M_S called the injective hull of M_S.

For a ring R with identity, Michler and Villamayor [7] have shown that the following statements are equivalent:

1. Every proper right ideal is an intersection of maximal right ideals;
2. Every simple right R-module is injective.

A right S-system M_S is totally irreducible if the
only right S-congruences are the universal congruence \(\omega_M \) and the identity congruence \(i_M \), and \(M \neq 0 \). Note that if \(M_S \) is totally irreducible then \(M_S \) has no proper S-subsystems. Also, since \(S \) has an identity, every congruence is modular so Theorem 6.2 of Hoehnke [4] reads that \(M_S \) is totally irreducible if and only if \(M_S \cong S/\mu \) where \(\mu \) is a maximal right congruence on \(S \).

Finally, if \(f : A_S \rightarrow B_S \) is an S-homomorphism, the kernel congruence, \(\ker f \), on \(A_S \) is given by
\[
\ker f = \{ (x, y) \mid f(x) = f(y) \}
\]
Clearly \(\ker f \) is an S-congruence on \(A_S \).

1. Monoids whose totally irreducible S-systems are injective

Given a congruence \(\varphi \) on \(S \), let \(I(\varphi) \) denote the 0-class of \(\varphi \):
\[
I(\varphi) = \{ x \in S \mid (x, 0) \notin \varphi \}
\]

1.1. Theorem: The following conditions are equivalent:

(1) For every proper congruence \(\varphi \) on \(S \), \(I(\varphi) = \bigcap_{C \in C} I(\varphi) \) where \(C \) is the family of all maximal right congruences on \(S \) which contain \(\varphi \).

(2) Every totally irreducible S-system is injective.

Proof: If \(l = 0 \), there is nothing to prove, so we shall assume that \(l \neq 0 \).

(1) \(\Rightarrow \) (2): Let \(M \) be a totally irreducible S-system, let \(0 \neq x \in \hat{M} \) where \(\hat{M} \) is the injective hull of \(M \), and define \(\lambda : S \rightarrow \hat{M} \) by \(\lambda(s) = xs \). Then \(\ker \lambda \) is a proper right con-
gruence on S. Let $\{\varphi_\alpha \mid \alpha \in \Lambda\}$ be the family of maximal right congruences on S which contain $\ker \lambda$. Let $M_\infty = S/\varphi_\infty$ and define $\mu : xS \rightarrow \prod_\alpha \varphi_\alpha M_\infty$ by $\mu(xs) = ([s]_\infty)$ where $[s]_\infty$ is the equivalence class of s in M_∞. Consider $p_\infty \circ \mu$ where $p_\infty : \prod_\alpha \varphi_\alpha M_\infty \rightarrow M_\infty$ is the projection mapping. Suppose that $p_\infty \circ \mu$ is not one-to-one for all $\alpha \in \Lambda$. Since M is essential in \hat{M} and is totally irreducible, $(0) \neq M = M \cap xS \subseteq xS$ and so $\ker (p_\infty \circ \mu) | M = \omega_M$ for all $\alpha \in \Lambda$. Thus if $xs \in M \cap xS$, $\mu(xs) = 0$ and so $s \in I(\varphi_\infty)$ for all $\alpha \in \Lambda$. Thus $s \in \bigcap_{\alpha \in \Lambda} I(\varphi_\alpha) = I(\ker (\lambda))$ and so $\lambda(s) = xs = 0$. Consequently $M = xS \cap M = (0)$, a contradiction. Thus there exists an $\alpha \in \Lambda$ such that $p_\alpha \circ \mu$ is one-to-one. Then $xS \cong xS \cap M$ and so xS is totally irreducible. Hence $M = xS \cap M = xS$ and $x \in M$, therefore $M = \hat{M}$.

(2) \Rightarrow (1): Let φ be a proper right congruence on S and let \mathcal{C} be the family of all maximal right congruences on S which contain φ. Let $x \in S \setminus I(\varphi)$, and φ_0 be a right congruence on S maximal with respect to $\varphi \leq \varphi_0$ and $(x, 0) \notin \varphi_0$. Let $J \subseteq S$ be the right ideal of S which is a union of classes such that $J/\varphi_0 = [x] S$ where $[x]$ is the φ_0 class of x. Then J/φ_0 is totally irreducible for if σ is a congruence on J, $\sigma \supseteq \varphi_0$, then $\gamma = \sigma \cup \varphi_0 | S \setminus J$ is a congruence on S properly containing φ_0. Thus $(x, 0) \notin \gamma$ and so $\sigma = \omega_{J/\varphi_0}$. Thus J/φ_0 is totally irreducible; and so J/φ_0 is injective. Then we have the diagram
where α is the inclusion mapping. Let $\varnothing = \{ (a, b) \in S \times S \mid \phi[a] = \phi[b] \}$, then $\varnothing \supseteq \varnothing_0$ is a congruence on S. If $\varnothing \neq \varnothing_0$, then $(x, 0) \in \varnothing$ and $\{ x \} = \phi[\{ x \}] = \{ 0 \}$ and $(x, 0) \in \varnothing_0$, a contradiction. Thus $\varnothing = \varnothing_0$ and $\ker \phi = I(S/\varnothing_0)$. Therefore, $S/\varnothing_0 \cong J/\varnothing_0$ and S/\varnothing_0 is totally irreducible, and \varnothing_0 is a maximal congruence on S containing \varnothing. Hence $x \notin I(\varnothing_0)$ so $x \notin \bigwedge \epsilon_\varnothing \bigwedge I(\varnothing_\alpha)$. Thus $x \notin \bigwedge \epsilon_\varnothing \bigwedge I(\varnothing_\alpha) = I(\varnothing).

Remark: Using methods similar to those above, we can prove that if each proper congruence \varnothing on S is the intersection of the family of all maximal congruences containing \varnothing, then every totally irreducible S-system is injective. However the converse is false as seen by considering a group with zero.

The next theorem is the semigroup analogue of Kaplansky's result which states that a commutative ring R with identity is regular if and only if every simple R-module is injective.

1.2. Theorem: Let S be a commutative monoid. S is regular if and only if each totally irreducible S-system is injective.

Proof: Suppose each totally irreducible S-system is injective. Let $a \in S \setminus a^2 S$ and $\alpha = (a^2 S \setminus a^2 S) \cup I_\varnothing$. Let \varnothing be
a maximal congruence containing \mathcal{C}. If $(a,0) \not\in \mathcal{C}$, then $[a]S = S/\mathcal{C}$ since S/\mathcal{C} is totally irreducible. Thus $[a]S = [a]s = [as]$ for some $s \in S$, and so $(1,as) \in \mathcal{C}$. Since \mathcal{C} is a congruence $(a,a^2s) \in \mathcal{C}$, but then $(a,0) \in \mathcal{C}$ since $(a^2s,0) \in \mathcal{C}$, a contradiction. Hence, $(a,0) \in \mathcal{C}$ for every maximal congruence $\mathcal{C} \supseteq \mathcal{C}$ so

$$a \in \mathcal{C} \bigcap I(\mathcal{C}) = I(\mathcal{C}) = a^2S$$

where $C = \{ \mathcal{C} \supseteq \mathcal{C} \mid \mathcal{C}$ is a maximal right congruence on $S \}$. Thus $ae a^2S$ for all $a \in S$ so S is regular.

Conversely, let M_S be totally irreducible. Then there is a maximal right congruence \mathcal{C} on S with $M \cong S/\mathcal{C}$. A theorem of Öehmke [9] says that S/\mathcal{C} is either a group or the two element semilattice. Schein [11] defines an order $a \leq b$ on M if $a \leq b$ where E is the set of idempotents of S. Moreover, $B \subseteq M$ is compatible if for every $b \in B$ there is an $e_b \in E$ with $b e_b = b$ and $b e_c = c e_b$ for all $c \in B$. A face of $B \subseteq M$ is an element $a \in M$ with $a \leq b$ for all $b \in B$ and $as = at$ whenever $Bs = Bt$ for $s, t \in S$. Schein [11] proved that M is injective if and only if every compatible subset of M has a face. Clearly every group and the two element semilattice are injective by Schein's result and thus $M \cong S/\mathcal{C}$ is injective.

2. A generalization. In the theory of rings with identity, an R-module M is injective if and only if each R-homomorphism from a right ideal of R to M has an extension to all of R. These two concepts do not coincide in the theory of semigroups as shown by Berthiaume [1].
Definition: An S-system M_S is *weakly injective* if each S-homomorphism $f : A \rightarrow M$ from a right ideal of S to M has an extension $\hat{f} : S \rightarrow M$.

An S-system M_S is *p-injective* if each S-homomorphism $f : aS \rightarrow S$ from a principal right ideal of S to M has an extension $\hat{f} : S \rightarrow M$.

Note that since S has an identity 1, if $f(1) \neq m$, then $f(s) = ms$ and \hat{f} is given by left multiplication by m. In this section we characterize monoids S each of whose cyclic S-systems is p-injective and use this to generalize Theorem 1.2.

2.1. **Theorem** (Ming [8]): For a monoid S, the following are equivalent:

1. S is regular.
2. Every S-system is p-injective.
3. Every cyclic S-system is p-injective.

The proof found in [8] carries over directly.

2.2. **Theorem:** S is regular and $SaS aS$ for all $a \in S$ if and only if every totally irreducible S-system is p-injective and every right ideal is two-sided.

Proof: If S is regular, then every S-system is p-injective by Theorem 2.1. Moreover, if J is a right ideal of S and $a \in J$, then $SaS aS \subseteq J$ and J is two-sided.

Conversely, if every right ideal is two-sided, then aS is a right ideal, $a \in aS$ and so $SaS aS$. To see that S is regular, let $b \in S$. If b is not regular, then $(1, b) \notin \Sigma = (bS \times bS) \cup I$ for otherwise $(1, b) \in \Sigma$ implies that $(1, 0) \in \Sigma$ and $\Sigma = \omega_S$. Thus $l = bs$ for some $s \in S$ and $b = bsb$.
Likewise if $\lambda : S \rightarrow bS$ is given by $\lambda(s) = bs$, then $(1, b) \notin \ker \lambda$ for otherwise $(1, b) \in \ker \lambda$ implies $b = b^2$ and so b is regular. Let φ be a congruence maximal with respect to $\varphi \supseteq \alpha \cup \ker \lambda$ and $(1, b) \notin \varphi$. If $\varphi \subseteq \gamma$, $(1, b) \in \gamma$ but $(b, 0) \in \alpha \subseteq \varphi \subseteq \gamma$ so $\gamma = \omega_S$, thus φ is a maximal right congruence, and so S/φ is totally irreducible. Let $\psi : bS \rightarrow S/\varphi$ be defined by $\psi(bs) = [s]$, the equivalence class of s determined by φ. Since S/φ is p-injective, there is some $c \in S$ with $\psi(bt) = [c]bt$ for all $t \in S$. Thus $[c]b = \psi(b) = \psi(b \cdot 1) = [1]$ or $(1, cb) \in \varphi$. Now $cb \in Sb \subseteq bS$ so $(cb, 0) \in \alpha \subseteq \varphi$ and so $(1, 0) \in \varphi$. Then $\varphi \supseteq \omega_S$, a contradiction.

Remark: The conditions of Theorem 2.2 are equivalent to the fact that every N-class of S is a right group (Petrich [10], p. 118).

2.3. Corollary: S is a semilattice of groups if and only if every totally irreducible S-system is p-injective and every one sided ideal is two sided.

2.4. Corollary: Let S be commutative, then S is regular if and only if every totally irreducible S-system is injective.

In a future note, we plan to investigate those semigroups for which every cyclic S-system is injective.

References

Department of Mathematical Sciences - Department of Mathematics
Clemson University - University Central de
Clemson, South Carolina 29631 - Venezuela, Caracas
U.S.A. - Venezuela

(Oblatum 5.10. 1977)